JPH0220591B2 - - Google Patents

Info

Publication number
JPH0220591B2
JPH0220591B2 JP61219255A JP21925586A JPH0220591B2 JP H0220591 B2 JPH0220591 B2 JP H0220591B2 JP 61219255 A JP61219255 A JP 61219255A JP 21925586 A JP21925586 A JP 21925586A JP H0220591 B2 JPH0220591 B2 JP H0220591B2
Authority
JP
Japan
Prior art keywords
binder
softening point
pitch
tar pitch
coal tar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61219255A
Other languages
Japanese (ja)
Other versions
JPS6374961A (en
Inventor
Sakae Ikegami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP61219255A priority Critical patent/JPS6374961A/en
Publication of JPS6374961A publication Critical patent/JPS6374961A/en
Publication of JPH0220591B2 publication Critical patent/JPH0220591B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Resistance Heating (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、電気製鋼炉に用いる人造黒鉛電極の
製造方法に関する。 〔従来の技術〕 人造黒鉛電極は、粉砕、分級および所定の割合
に粒度配合したコークスをフイラーとし、これを
ピツチバインダーと共に混合したのち押出成形、
焼成、黒鉛化の諸工程を経て製造されるが、
UHP(超高電力操業)用の電極製造においては、
上記焼成処理後の素材にタールピツチを強制含浸
して再焼成する工程が付加される。 このピツチ含浸−再焼成の工程は、最終的に得
られる黒鉛電極の組織を緻密化して強度その他の
物理特性を向上させる効果があるため、UHP操
業が主流を占める今日では製造工程上必須のプロ
セスとされている。ところが、このプロセスは煩
雑な作業と長期の処理のを必要とし、製造原価を
高める要因ともなつている。 〔発明が解決しようとする問題点〕 本来、黒鉛電極の品質特性を支配する機械的強
度は、フイラーコークスおよびバインダーピツチ
の固有強度に大きく左右される。したがつて、フ
イラーコークスの成分が同一の場合には、可及的
に強度性能の優れたバインダーを用いることが電
極強度の向上を図る決め手となる。 一般にバインダー成分に要求される性質は、粘
結力が強く、フイラーに対する濡れが良好で、焼
成後の炭化収率が高いこと等で、これらはピツチ
の特性として軟化点と固定炭素量が高いものほど
適合性がよい。このため、黒鉛電極の製造には85
℃以上の軟化点を有する硬ピツチが汎用されてい
るが、硬ピツチ化の進行は粘性の増大傾向をもた
らし捏合および成形工程における温度条件を上昇
しなければ適度な粘度の保持ができなくなる。し
かし、上記工程における処理温度の極端な上昇は
ピツチ組成の激しい変質を招き、結果的に安定し
た操業を阻害する問題点がある。 このような事情から、軟化点の極度に高い超硬
質のピツチは効用性は十分認められながらもバイ
ンダーとして使用されておらず、現状では軟化点
105℃程度が使用可能なコールタールピツチの限
界とされている。 〔問題点を解決するための手段〕 本発明は、従来の製造工程を大巾に改変するこ
となしに軟化点150℃以上のコールタールピツチ
のバインダーを使用を可能にした新規な人造黒鉛
電極の製造方法を提供するものである。 すなわち本発明の構成は、フイラーコークスに
バインダー成分の一部として軟化点150℃以上、
固定炭素65〜75%の微粉状コールタールピツチ
(以下、「副次バインダー」という。)を予め混合
し、該混合物をバインダー成分の残部にあたる軟
化点85〜105℃、固定炭素55〜60%のコールター
ルピツチ(以下、「定常バインダー」という。)と
共に捏合したのち押出成形し、次いで常法により
焼成および黒鉛化処理することを特徴とする。 本発明のバインダー成分は、副次バインダーと
定常バインダーとからなり、前者は先行技術で使
用不可能とされていた軟化点150℃以上、固定炭
素65〜75%の超硬系ピツチ、後者は従来から定常
的に用いられている特性範囲の硬ピツチである。 副次バインダーは、粉砕、分級および粒度配合
されたフイラーコークスの粉粒体に微粉状で予め
混合する。微粉の粒度範囲は、100メツシユ以下、
望ましくは全体の50%以上が200メツシユの篩目
を通過する程度に調製する。 フイラーコークスと副次バインダーの混合物
は、定常バインダーとともに捏合したのち押出成
形する。 副次バインダーと定常バインダーの使用割合
は、捏合および成形工程の条件とを考慮して適宜
決定されるが、とくに副次バインダーの量をバイ
ンダー成分の総量に対する比率として50〜70重量
%の範囲に設定すると強度改善効果が顕著とな
る。 この際、副次バインダーの使用比率を増大する
に伴つて押出成形に必要な粘性が不足傾向となる
が、このような場合には潤滑油などの成形助剤を
若干増量するか、もしくは成形温度を制御する等
の手段により支障を回避することができる。 所定のサイズに押出成形された生成形体は、つ
いで常法により焼成炭化(800〜1200℃)し、さ
らに黒鉛化炉に移して黒鉛化(2500〜3000℃)し
て黒鉛電極を得る。 〔作用〕 本発明によれば、捏合工程(130〜140℃)の段
階において、副次バインダーは固形安定状態を保
つたままで融解液化した定常バインダーによりフ
イラーコークスと十分に混練される。副次バイン
ダーは、引続く押出成形(100〜135℃)の過程で
も熱影響を受けることはないが、焼成工程に至つ
て軟化点以上の昇温段階で漸次液化し、フイラー
コークス粉粒を覆つて相互間結合を形成した状態
で急速に炭化する。 上記のバインダー結合は、定常バインダーと比
べて炭化歩留りが高い関係で著しく緻密強固であ
り、この作用によつて最終的に得られる黒鉛電極
の強度特性が効果的に増大する。 〔実施例〕 粒度配合した石油コークスををフイラーとし、
これに軟化点150℃、固定炭素70%の副次バイン
ダーの微粉末(200メツシユ篩通過分、55%)を
5〜20重量%の範囲で段階的に配合量を変えて配
合し、撹拌混合機で混合した。 上記の原料混合物を軟化点98℃、固定炭素58%
の定常バインダーと共にウエルナー捏合機に投入
した。定常バインダーの使用量は、フイラーコー
クスに対するバインダー成分の添加総量が30重量
%になるように調整した。 捏合温度140℃で十分混捏したのち、各捏合物
を押出プレスに移し、50Kg/cm2の加圧力で直径
500mmのノズルから押出し、長さ1800mmの円柱成
形体を得た。その他の成形条件〔成形助剤(潤滑
油)の量、成形温度〕をバインダー成分の配合比
率と併せて表に示した。
[Industrial Application Field] The present invention relates to a method of manufacturing an artificial graphite electrode for use in an electric steelmaking furnace. [Prior art] Artificial graphite electrodes are made by crushing, classifying, and blending coke with a predetermined ratio of particle sizes as a filler, mixing this with a pitch binder, and then extruding it.
It is manufactured through various processes such as firing and graphitization,
In electrode manufacturing for UHP (Ultra High Power Operation),
A step of forcibly impregnating tar pitch into the material after the above-mentioned firing treatment and re-firing is added. This pitch impregnation and re-firing process has the effect of densifying the structure of the final graphite electrode and improving its strength and other physical properties, so it is an essential process in today's manufacturing process where UHP operations are the mainstream. It is said that However, this process requires complicated work and long processing time, which is a factor that increases manufacturing costs. [Problems to be Solved by the Invention] Originally, the mechanical strength that governs the quality characteristics of graphite electrodes is greatly influenced by the inherent strength of filler coke and binder pitch. Therefore, when the components of filler coke are the same, the key to improving electrode strength is to use a binder with as good strength performance as possible. In general, properties required of binder components include strong cohesive strength, good wettability to fillers, and high carbonization yield after firing. The more suitable it is, the better the compatibility. For this reason, the production of graphite electrodes requires 85
Hard pitches having a softening point of .degree. However, there is a problem in that an extreme increase in processing temperature in the above process leads to severe deterioration of the pitch composition, which ultimately impedes stable operation. Due to these circumstances, ultra-hard pitch, which has an extremely high softening point, is not used as a binder, although its effectiveness is well recognized;
Approximately 105℃ is considered the limit for coal tar pitch that can be used. [Means for Solving the Problems] The present invention provides a novel artificial graphite electrode that makes it possible to use a coal tar pitch binder with a softening point of 150°C or higher without significantly modifying the conventional manufacturing process. A manufacturing method is provided. That is, the structure of the present invention is such that the filler coke has a softening point of 150°C or higher as part of the binder component.
Finely powdered coal tar pitch containing 65 to 75% fixed carbon (hereinafter referred to as "secondary binder") is mixed in advance, and the mixture is mixed with the remainder of the binder component, which has a softening point of 85 to 105°C and has a fixed carbon content of 55 to 60%. It is characterized in that it is kneaded with coal tar pitch (hereinafter referred to as a "steady binder"), extruded, and then fired and graphitized by a conventional method. The binder component of the present invention consists of a secondary binder and a stationary binder. This is a hard pitch with a characteristic range that is regularly used from . The secondary binder is mixed in advance in the form of a fine powder with the filler coke powder that has been crushed, classified, and mixed in particle size. The particle size range of fine powder is 100 mesh or less,
Preferably, the preparation should be such that at least 50% of the total amount passes through a 200-mesh sieve. The mixture of filler coke and secondary binder is kneaded with a constant binder and then extruded. The proportion of the secondary binder and the steady binder to be used is determined as appropriate in consideration of the conditions of the kneading and molding processes, but in particular the amount of the secondary binder should be in the range of 50 to 70% by weight relative to the total amount of binder components. When set, the strength improvement effect becomes noticeable. At this time, as the ratio of secondary binder used increases, the viscosity necessary for extrusion molding tends to be insufficient. The problem can be avoided by controlling the The formed body extruded to a predetermined size is then fired and carbonized (800 to 1200°C) in a conventional manner, and then transferred to a graphitization furnace and graphitized (2500 to 3000°C) to obtain a graphite electrode. [Function] According to the present invention, in the kneading step (130 to 140°C), the secondary binder is sufficiently kneaded with the filler coke by the melted and liquefied stationary binder while maintaining a stable solid state. The secondary binder is not affected by heat during the subsequent extrusion molding process (100 to 135°C), but it gradually liquefies as the temperature rises above the softening point in the firing process, covering the filler coke powder. Then, it rapidly carbonizes while forming mutual bonds. The binder bond described above is extremely dense and strong due to its high carbonization yield compared to a steady binder, and this effect effectively increases the strength characteristics of the graphite electrode finally obtained. [Example] Petroleum coke with a particle size blend is used as a filler,
Add to this a fine powder of a secondary binder with a softening point of 150℃ and 70% fixed carbon (passed through a 200 mesh sieve, 55%) in varying amounts in stages from 5 to 20% by weight, and mix with stirring. Mixed in a machine. The above raw material mixture has a softening point of 98℃ and a fixed carbon content of 58%.
The mixture was put into a Werner kneading machine together with a constant binder. The amount of constant binder used was adjusted so that the total amount of binder components added to the filler coke was 30% by weight. After sufficiently kneading at a kneading temperature of 140°C, each kneaded product was transferred to an extrusion press, and the diameter was
It was extruded from a 500 mm nozzle to obtain a cylindrical molded body with a length of 1800 mm. Other molding conditions [amount of molding aid (lubricating oil), molding temperature] are shown in the table together with the blending ratio of the binder component.

【表】 ついで成形体を焼成炉で1000℃まで焼成したの
ち、黒鉛化炉に移し3000℃で黒鉛化処理をおこな
つた。 成形時の見掛比重および得られた人造黒鉛電極
の諸特性を表に示した。 なお、従来例による製造工程において、焼成後
の素材にタールピツチを含浸して再焼成したのち
黒鉛化処理したものについても同様に特性測定
し、比較例として表に併載した。
[Table] The compact was then fired in a firing furnace to 1000°C, then transferred to a graphitization furnace and graphitized at 3000°C. The apparent specific gravity during molding and various properties of the obtained artificial graphite electrode are shown in the table. In addition, in the manufacturing process according to the conventional example, the properties of the material after firing were impregnated with tar pitch, re-fired, and graphitized were also measured in the same manner, and are also listed in the table as a comparative example.

【表】 上表の結果から、副次バインダーを併用した本
発明の実施例は、従来例に比べて組織密度、弾性
率、曲げ強さ等の特性がいずれも向上しているこ
とが判明する。とくに、副次バインダー量をバイ
ンダー成分総量に対し50重量%とした実施例3の
曲げ強さは大巾に増大し、ピツチ含浸−再焼成処
理を適用した比較例と同等となることが認められ
た。 〔発明の効果〕 本発明は、従来、バインダーとしての使用が不
可能視されていた軟化点150℃以上のコールター
ルピツチを巧みな製法改良を介して使用可能を実
現し、定常バインダーとの併用によつて現在
UHP電極製造プロセスの必須工程とされている
ピツチ含浸−再焼成処理を施さなくてもこの適用
時と同等の強度向上の付与に成功したものである
から、産業上の効果は頗る大である。
[Table] From the results in the table above, it is clear that the examples of the present invention that use a secondary binder in combination have improved properties such as tissue density, elastic modulus, and bending strength compared to the conventional examples. . In particular, it was observed that the bending strength of Example 3, in which the amount of secondary binder was 50% by weight based on the total amount of binder components, increased significantly and became equivalent to that of the comparative example in which pitch impregnation and re-firing treatment was applied. Ta. [Effects of the Invention] The present invention has made it possible to use coal tar pitch, which has a softening point of 150°C or higher, which was conventionally considered impossible to use as a binder, through skillful improvement of the manufacturing method, and has made it possible to use it in combination with a stationary binder. by current
The industrial effect is extremely large, as it has succeeded in imparting the same strength improvement as when this method is applied without performing pitch impregnation and re-firing treatment, which is an essential step in the UHP electrode manufacturing process.

Claims (1)

【特許請求の範囲】 1 フイラーコークスに、バインダー成分の一部
として軟化点150℃以上、固定炭素65〜75%の微
粉状コールタールピツチ(副次バインダー)を予
め混合し、該混合物をバインダー成分の残部にあ
たる軟化点85〜105℃、固定炭素55〜60%のコー
ルタールピツチ(定常バインダー)と共に捏合し
たのち押出成形し、次いで常法により焼成および
黒鉛化処理することを特徴とする人造黒鉛電極の
製造方法。 2 バインダー成分の総量に対する副次バインダ
ー量の比率を、50〜70重量%に設定する特許請求
の範囲第1項記載の人造黒鉛電極の製造方法。
[Scope of Claims] 1. Finely powdered coal tar pitch (secondary binder) with a softening point of 150°C or higher and 65 to 75% fixed carbon is mixed in advance with filler coke as part of the binder component, and the mixture is used as the binder component. An artificial graphite electrode characterized by being kneaded with coal tar pitch (stationary binder) with a softening point of 85 to 105°C and 55 to 60% fixed carbon (stationary binder), which corresponds to the remainder of manufacturing method. 2. The method for producing an artificial graphite electrode according to claim 1, wherein the ratio of the amount of secondary binder to the total amount of binder components is set to 50 to 70% by weight.
JP61219255A 1986-09-19 1986-09-19 Manufacture of artificial graphitic electrode Granted JPS6374961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61219255A JPS6374961A (en) 1986-09-19 1986-09-19 Manufacture of artificial graphitic electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61219255A JPS6374961A (en) 1986-09-19 1986-09-19 Manufacture of artificial graphitic electrode

Publications (2)

Publication Number Publication Date
JPS6374961A JPS6374961A (en) 1988-04-05
JPH0220591B2 true JPH0220591B2 (en) 1990-05-09

Family

ID=16732652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61219255A Granted JPS6374961A (en) 1986-09-19 1986-09-19 Manufacture of artificial graphitic electrode

Country Status (1)

Country Link
JP (1) JPS6374961A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159769A1 (en) 2016-03-17 2017-09-21 新日鉄住金化学株式会社 Method for manufacturing artificial graphite electrode
CN110668819A (en) * 2019-10-28 2020-01-10 焦作市中州炭素有限责任公司 Short-flow high-power graphite electrode and production process

Also Published As

Publication number Publication date
JPS6374961A (en) 1988-04-05

Similar Documents

Publication Publication Date Title
CA2494161C (en) Process of making graphite articles
US4534951A (en) Manufacture of high quality graphite electrodes using calcined anthracite coal as raw material
EP1261549B1 (en) Pin for connecting carbon electrodes and process therefor
KR20170006005A (en) Method of manufacturing Carbon Paste and Method of manufacturing Ferro Alloy using Carbon Paste for Self-baking Electrode
JPH0220591B2 (en)
JPH0372004B2 (en)
US3505090A (en) Process for the production of carbon articles
JP2910002B2 (en) Special carbon material kneading method
JPS5978914A (en) Manufacture of special carbonaceous material
US7544316B2 (en) Process for making graphite articles
JPH0123405B2 (en)
JPH0764528B2 (en) Method for producing high-quality carbonaceous compact
JPH01305859A (en) Production of high-density carbon material
JPH04228412A (en) Composition for specific carbon material
JPH04285189A (en) Production of artificial graphite electrode
JPH0288464A (en) Production of density and high strength carbon material and graphite electrode material for electric spark machining
KR20230037888A (en) Composition for needle cokes and carbon electrode
KR100217850B1 (en) Process for production of active carbon
JPH04228411A (en) Composition for specific carbon material
JPH0329001B2 (en)
JPS59232906A (en) Manufacture of gas impermeable carbonaceous material
JPS61293720A (en) Manufacture of carbon electrode for electric discharge machining
JPH0649567B2 (en) High-density carbon material manufacturing method
JPS63242911A (en) Production of raw material for carbon material
DE2414449B1 (en) Shaped carbon body prodn - with two mixing and comminuting steps and inter heating to improve physico-mechanical props