JPH02205666A - Formation of sputtered film - Google Patents

Formation of sputtered film

Info

Publication number
JPH02205666A
JPH02205666A JP2076889A JP2076889A JPH02205666A JP H02205666 A JPH02205666 A JP H02205666A JP 2076889 A JP2076889 A JP 2076889A JP 2076889 A JP2076889 A JP 2076889A JP H02205666 A JPH02205666 A JP H02205666A
Authority
JP
Japan
Prior art keywords
sputtered film
substrate
target
reverse bias
electric power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2076889A
Other languages
Japanese (ja)
Inventor
Shuji Takeshita
修二 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2076889A priority Critical patent/JPH02205666A/en
Publication of JPH02205666A publication Critical patent/JPH02205666A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To prevent cracking due to the internal stress of a sputtered film and to form a thick sputtered film on a substrate by applying reverse bias electric power to a substrate 2 and increasing the above bias electric power according to sputtering time. CONSTITUTION:A substrate 2 is disposed in a manner to be opposed to a target 1. The target 1 is sputtered toward the substrate 2 to form a sputtered film 3. Reverse bias electric power is applied to the substrate 2 from a high-frequency electric power source 4 via a substrate fixture 8. Further, the reverse bias electric power is increased by means of a power controller 41 with the growth of the sputtered film 3. By this method, a difference in the internal stress of the sputtered film 3 can be removed and, as a result, the thick sputtered film 3 can be formed without causing cracking.

Description

【発明の詳細な説明】 〔概要〕 スパッタリングによって基板表面にスパッタ膜を形成す
る方法に関し、 スパッタ膜の内部応力によるクラックの発生をなくし、
基板上に厚いスパッタ膜を形成することのできるスパッ
タ膜の形成方法を提供することを目的とし、 ターゲットに対向して配置される基板の表面に、前記タ
ーゲットをスパッタしてスパッタ膜を形成する方法にお
いて、前記基板に電源より逆バイアス電力を印加すると
ともに、スパッタ時間に伴ってバイアス電力を増加させ
ることを特徴とする。
[Detailed Description of the Invention] [Summary] A method for forming a sputtered film on a substrate surface by sputtering, which eliminates the occurrence of cracks due to internal stress in the sputtered film.
The purpose of the present invention is to provide a method for forming a sputtered film that can form a thick sputtered film on a substrate, and a method for forming a sputtered film by sputtering the target on the surface of a substrate that is placed facing the target. The method is characterized in that reverse bias power is applied to the substrate from a power source and the bias power is increased with sputtering time.

〔産業上の利用分野〕[Industrial application field]

本発明はスパッタリングによって基板表面にスパッタ膜
を形成する方法に関する。
The present invention relates to a method for forming a sputtered film on a substrate surface by sputtering.

各種電子機器において例えば、モリブデン・タングステ
ン・チタン−タングステン合金等の高融点金属のスパッ
タ膜を表面に形成した基板が使用されるが、スパッタ膜
は厚く形成すると内部応力によってクラックが生じるた
め、3μ未満の厚さでスパッタ膜を形成している。
In various electronic devices, for example, substrates with a sputtered film of a high-melting point metal such as molybdenum, tungsten, or titanium-tungsten alloy formed on the surface are used, but if the sputtered film is formed too thick, cracks will occur due to internal stress, so the thickness is less than 3μ. A sputtered film is formed to a thickness of .

このような状況のもとで、電気抵抗が問題となるような
基板においては、スパッタ膜を厚く形成して、できるだ
け電気抵抗を小さくする必要があり、クラックを生じる
ことなく基板表面に3μ以上の厚さのスパッタ膜を形成
する方法が求められている。
Under these circumstances, for substrates where electrical resistance is a problem, it is necessary to form a thick sputtered film to reduce the electrical resistance as much as possible. There is a need for a method of forming a thick sputtered film.

〔従来の技術〕[Conventional technology]

従来、スパッタ膜の形成方法においては、スパッタ膜に
生じる引張り応力基板からスパッタ膜が剥離する方向に
作用する応力を制御するために、基板に一定の逆バイア
ス電力を印加することによってスパッタ膜の応力を圧縮
側(引張り応力とは逆方向に作用する応力)に変化させ
て、スパッタ膜自身の引張り応力によるクラックの発生
を防止するスパッタ膜の形成方法が行われていた。
Conventionally, in the method of forming a sputtered film, in order to control the tensile stress generated in the sputtered film that acts in the direction of peeling the sputtered film from the substrate, stress in the sputtered film is reduced by applying a constant reverse bias power to the substrate. A sputtered film forming method has been used in which the sputtered film is changed to a compressive side (stress acting in the opposite direction to the tensile stress) to prevent cracks from occurring due to the tensile stress of the sputtered film itself.

なぜならば、スパッタ膜を基板より引き剥がすとスパッ
タ膜は基板とは逆に表面側にカールすることから、スパ
ッタ膜内部において第2図にCで示すような応力分布が
あり、表面側と裏面側にはT2−TIに相当する応力の
差が生じているため、この応力差によって圧縮応力下に
おいてもクランクが発生する。
This is because when the sputtered film is peeled off from the substrate, the sputtered film curls toward the front surface in the opposite direction to the substrate, so there is a stress distribution inside the sputtered film as shown by C in Figure 2. Since there is a stress difference corresponding to T2-TI, this stress difference causes cranking even under compressive stress.

本発明は以上の欠点を解決すべくなされたものであって
、スパッタ膜の内部応力に、よるクランクの発生をな(
し、基板上に厚いスパッタ膜を形成することのできるス
パッタ膜の形成方法を捉供することを目的とする。
The present invention has been made to solve the above-mentioned drawbacks, and is designed to prevent the occurrence of cranks due to the internal stress of the sputtered film.
However, it is an object of the present invention to provide a method for forming a sputtered film that can form a thick sputtered film on a substrate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、スパッタ膜を3μ以上に厚く形成する場合には
、スパッタ膜の圧力を圧縮側に変化させるような一定の
逆バイアス電力(+イオンと逆の電位を持つ電力、つま
り一側の電位の電力)を基板に与えてもクランクの発生
を防ぐことができず、スパッタ膜を厚く形成することが
困難であった。
However, when forming a sputtered film thicker than 3μ, a constant reverse bias power (power with a potential opposite to that of + ions, i.e., power with a potential on one side) that changes the pressure of the sputtered film to the compression side is required. ) to the substrate, it was not possible to prevent the occurrence of cranking, and it was difficult to form a thick sputtered film.

[課題を解決するための手段] スパッタ膜を基板より引き剥がすとスパッタ膜は基板と
は逆に表面側にカールすることから、スパッタ膜内部に
おいて第2図にCで示すような応力分布があり、表面側
と裏面側にはT2−Tlに相当する応力の差が生じてい
るため、この応力差によって圧縮応力下においてもクラ
ックが発生するためである。
[Means for solving the problem] When the sputtered film is peeled off from the substrate, the sputtered film curls toward the surface side in the opposite direction to the substrate, so there is a stress distribution inside the sputtered film as shown by C in Figure 2. This is because there is a stress difference corresponding to T2-Tl between the front side and the back side, and this stress difference causes cracks to occur even under compressive stress.

上記目的を達成する為、第3図に示すようにターゲット
1に対向して配置される基板2の表面に、スパッタ膜を
形成する装置において、基板2に電源4より逆バイアス
電力を印加する際、スパッタ膜3の内部応力差を減少す
るように、スパッタ時間に伴ってバイアス電力を増加さ
せる。
In order to achieve the above object, in an apparatus for forming a sputtered film on the surface of a substrate 2 placed facing a target 1 as shown in FIG. 3, when applying reverse bias power to the substrate 2 from a power source 4, , the bias power is increased with sputtering time so as to reduce the internal stress difference in the sputtered film 3.

〔作用〕[Effect]

本発明においては、スパッタ膜3の表面側と裏面側との
内部応力差を減少するように設定されたプログラムに従
って電源4の出力を第1図のBに示すようにスパッタ時
間に対して増加させることによって、第2図のDに示す
ようにスパッタ膜の内部応力を各膜厚の位置で一定とな
るようにしてスパッタ膜を形成する。
In the present invention, the output of the power source 4 is increased with respect to the sputtering time as shown in B in FIG. 1 according to a program set to reduce the internal stress difference between the front side and the back side of the sputtered film 3. By doing this, the sputtered film is formed so that the internal stress of the sputtered film becomes constant at each film thickness position, as shown in FIG. 2D.

従って、スパッタ膜を厚く形成しても、表面側と裏面側
とに応力差がなく、応力差によるクランクの発生を防ぐ
ことができる。
Therefore, even if the sputtered film is formed to be thick, there is no stress difference between the front side and the back side, and it is possible to prevent cranking due to the stress difference.

〔実施例〕〔Example〕

以下、本発明の実施例を添付図面に基づいて詳細に説明
する。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第3図は本発明を実施するスパッタ装置の断面図である
。ターゲット1はモリブデン(MO)等の高融点金属で
あり、真空容器5内に絶縁状態で取付けられている。
FIG. 3 is a sectional view of a sputtering apparatus implementing the present invention. The target 1 is made of a high melting point metal such as molybdenum (MO), and is installed in a vacuum container 5 in an insulated state.

スパッタ膜3の形成される基板2はターゲット1に対向
するように配置され、前記ターゲット1と基板2との間
にはアルゴン(A r )等のスパッタ用ガス6が設定
された圧力で導入されている。
A substrate 2 on which a sputtered film 3 is formed is arranged to face a target 1, and a sputtering gas 6 such as argon (A r ) is introduced between the target 1 and the substrate 2 at a set pressure. ing.

ターゲット1には直流電源7が接続され、スパッタ電力
が印加される。そして真空容器5内で電離したスパッタ
用ガス6がターゲット1に衝突し、ターゲット1は基板
2ヘスバツタされスパッタ膜3を形成する。
A DC power supply 7 is connected to the target 1, and sputtering power is applied thereto. Then, the sputtering gas 6 ionized in the vacuum chamber 5 collides with the target 1, and the target 1 is blown against the substrate 2 to form a sputtered film 3.

このとき、形成されるスパッタ膜3は一般的に引張り応
力を持つが、この引張り応力を圧縮側に変えるために、
基板2には高周波電源4によって真空ポンプを用いた基
板固定用治具8を介して逆バイアス電力が印加される。
At this time, the sputtered film 3 formed generally has tensile stress, but in order to change this tensile stress to a compressive side,
Reverse bias power is applied to the substrate 2 by a high frequency power source 4 via a substrate fixing jig 8 using a vacuum pump.

さらに、高周波電源4はスパッタ膜3の成長に伴って逆
バイアス電力を増加させるようにパワーコントa−ラ4
1によって制御される。
Further, the high frequency power source 4 is connected to a power controller 4 so as to increase the reverse bias power as the sputtered film 3 grows.
1.

ここで、逆バイアス電力についてもう少し詳細に説明す
ると、真空容器5にアルゴン(Ar)等のガス6が充填
されている状態で高周波電源の出力(バイアス電力)が
印加されると、充填されたガス6自身の放電作用により
あたかも印加したバイアス電力が負側に整流された状態
となる。そして本願においては、この負側のバイアス電
力を逆バイアス電力として基板に印加する。
Here, to explain the reverse bias power in a little more detail, when the output (bias power) of a high frequency power source is applied in a state where the vacuum container 5 is filled with a gas 6 such as argon (Ar), the filled gas Due to the discharging action of 6 itself, it becomes as if the applied bias power was rectified to the negative side. In the present application, this negative bias power is applied to the substrate as reverse bias power.

更に、逆バイアス電力の制御は、スパッタ膜3の成長時
間、すなわちスパッタ時間に対して、スパッタ膜3の内
部応力が一定となるような逆バイアス電力を与えるよう
に予めパワーコントローラ41をプログラムして行われ
る。膜厚に対して適当な逆バイアス電力量は実験デ」夕
等から得られる値を参照して連続的または段階的に増加
するようにプログラムされる。
Furthermore, the control of the reverse bias power is carried out by programming the power controller 41 in advance to apply a reverse bias power such that the internal stress of the sputtered film 3 is constant with respect to the growth time of the sputtered film 3, that is, the sputtering time. It will be done. The amount of reverse bias power appropriate for the film thickness is programmed to increase continuously or stepwise with reference to values obtained from experimental data and the like.

第4図に実施例をさらに具体的に示す。FIG. 4 shows an example in more detail.

ターゲット1をモリブデン、スパッタ用ガス6をアルゴ
ンとして、3μのスパッタ膜3を形成する場合において
、ガス圧力0.5Pa、スパッタ電力4KWスパッタ時
間30分として、基板2に第4図に示すように逆バイア
ス電力を段階的に増加させながら印加する。この結果、
スパッタ膜はクラックを生じることなく形成された。
When forming a sputtered film 3 with a thickness of 3 μm using molybdenum as the target 1 and argon as the sputtering gas 6, the substrate 2 is inverted as shown in FIG. Apply bias power in increasing steps. As a result,
The sputtered film was formed without any cracks.

尚、本実施例においては、電源を高周波として説明した
が、直流電源でも良いことはいうまでもない。
Although the present embodiment has been described using a high frequency power source, it goes without saying that a DC power source may also be used.

〔発明の効果] 以上の説明から明らかなように、本発明によれば、スパ
ッタ膜の内部応力の差をなくすことによって、クラック
を発生することなく厚いスパッタ膜を形成することが可
能となり、スパッタ膜を厚く形成することにより電気抵
抗を小さくして性能を向上することができる。
[Effects of the Invention] As is clear from the above description, according to the present invention, by eliminating the difference in internal stress of the sputtered film, it is possible to form a thick sputtered film without generating cracks, and the sputtered film can be formed thickly without cracking. By forming a thick film, electrical resistance can be reduced and performance can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、 第2図は膜厚と応力の関係を示す図、 第3図は本発明を実施する装置の断面図、第4図は本発
明の実施例を示す図である。 図において、 はターゲット、 は基板、 はスパッタ膜、 は高周波電源である。
Fig. 1 is a diagram explaining the principle of the present invention, Fig. 2 is a diagram showing the relationship between film thickness and stress, Fig. 3 is a sectional view of an apparatus for carrying out the invention, and Fig. 4 is an embodiment of the invention. It is a diagram. In the figure, is the target, is the substrate, is the sputtered film, and is the high-frequency power source.

Claims (1)

【特許請求の範囲】[Claims] ターゲット(1)に対向して配置される基板(2)の表
面に、前記ターゲット(1)をスパッタしてスパッタ膜
(3)を形成する方法において、前記基板(2)に電源
(4)より逆バイアス電力を印加するとともに、スパッ
タ時間に伴ってバイアス電力を増加させることを特徴と
するスパッタ膜の形成方法。
In the method of sputtering the target (1) to form a sputtered film (3) on the surface of a substrate (2) disposed facing the target (1), the substrate (2) is connected to a power source (4). A method for forming a sputtered film, characterized by applying reverse bias power and increasing the bias power as the sputtering time increases.
JP2076889A 1989-02-01 1989-02-01 Formation of sputtered film Pending JPH02205666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2076889A JPH02205666A (en) 1989-02-01 1989-02-01 Formation of sputtered film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2076889A JPH02205666A (en) 1989-02-01 1989-02-01 Formation of sputtered film

Publications (1)

Publication Number Publication Date
JPH02205666A true JPH02205666A (en) 1990-08-15

Family

ID=12036352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2076889A Pending JPH02205666A (en) 1989-02-01 1989-02-01 Formation of sputtered film

Country Status (1)

Country Link
JP (1) JPH02205666A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7942111B2 (en) 1997-06-16 2011-05-17 Robert Bosch Gmbh Method and device for vacuum-coating a substrate
US8029875B2 (en) 2007-05-23 2011-10-04 Southwest Research Institute Plasma immersion ion processing for coating of hollow substrates
US8753725B2 (en) 2011-03-11 2014-06-17 Southwest Research Institute Method for plasma immersion ion processing and depositing coatings in hollow substrates using a heated center electrode
US9121540B2 (en) 2012-11-21 2015-09-01 Southwest Research Institute Superhydrophobic compositions and coating process for the internal surface of tubular structures
US9175381B2 (en) * 2008-07-09 2015-11-03 Southwest Research Institute Processing tubular surfaces using double glow discharge

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7942111B2 (en) 1997-06-16 2011-05-17 Robert Bosch Gmbh Method and device for vacuum-coating a substrate
US8029875B2 (en) 2007-05-23 2011-10-04 Southwest Research Institute Plasma immersion ion processing for coating of hollow substrates
US9175381B2 (en) * 2008-07-09 2015-11-03 Southwest Research Institute Processing tubular surfaces using double glow discharge
US8753725B2 (en) 2011-03-11 2014-06-17 Southwest Research Institute Method for plasma immersion ion processing and depositing coatings in hollow substrates using a heated center electrode
US9121540B2 (en) 2012-11-21 2015-09-01 Southwest Research Institute Superhydrophobic compositions and coating process for the internal surface of tubular structures
US9701869B2 (en) 2012-11-21 2017-07-11 Southwest Research Institute Superhydrophobic compositions and coating process for the internal surface of tubular structures
US9926467B2 (en) 2012-11-21 2018-03-27 Southwest Research Institute Superhydrophobic compositions and coating process for the internal surface of tubular structures

Similar Documents

Publication Publication Date Title
US5830330A (en) Method and apparatus for low pressure sputtering
JP3231900B2 (en) Film forming equipment
US6872289B2 (en) Thin film fabrication method and thin film fabrication apparatus
JPH0356671A (en) Sputtering device
JPH02205666A (en) Formation of sputtered film
JPH04174514A (en) Plasma processing equipment
JPH0799739B2 (en) Method for forming metal thin film
JP3659653B2 (en) Method for providing a layer on a substrate and sputtering apparatus used therefor
KR20040072728A (en) Permanent adherence of the back end of a wafer to an electrical component or subassembly
JP7262235B2 (en) Sputtering apparatus and sputtering method
JPS6222430A (en) Sputtering formation method for tungsten film
JPH11158621A (en) Production of semiconductor device and producing device
JPS634062A (en) Bias sputtering device
JP2613935B2 (en) Manufacturing method of ceramic circuit board
JPS62243765A (en) Method for relieving residual stress in stage of forming thin film
US6030510A (en) Hot reflow sputtering method and apparatus
KR100388294B1 (en) Evaporation method of metal thin film on polyimide for circuit board
JPH08203828A (en) Method and equipment for sputtering
JPS627263B2 (en)
JPS637364A (en) Bias sputtering device
JPH0360120A (en) Sputtering
JPS6017070A (en) Method and device for forming thin film
JP2002004037A (en) Manufacturing method of sputtering target, and sputtering apparatus
JPS62216228A (en) Growing method for film
JP2744505B2 (en) Silicon sputtering equipment