JPH02205623A - Cooling method for material to be treated in vacuum furnace and vacuum furnace - Google Patents

Cooling method for material to be treated in vacuum furnace and vacuum furnace

Info

Publication number
JPH02205623A
JPH02205623A JP2636789A JP2636789A JPH02205623A JP H02205623 A JPH02205623 A JP H02205623A JP 2636789 A JP2636789 A JP 2636789A JP 2636789 A JP2636789 A JP 2636789A JP H02205623 A JPH02205623 A JP H02205623A
Authority
JP
Japan
Prior art keywords
temperature
cooling gas
workpiece
cooling
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2636789A
Other languages
Japanese (ja)
Other versions
JP2808632B2 (en
Inventor
Hideaki Matsuo
英明 松尾
Masashi Makino
牧野 昌志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP1026367A priority Critical patent/JP2808632B2/en
Publication of JPH02205623A publication Critical patent/JPH02205623A/en
Application granted granted Critical
Publication of JP2808632B2 publication Critical patent/JP2808632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE:To cool a metallic member heated for the purpose of a heat treatment down to a target temp. in a short period of time at a specified linear cooling rate by continuously measuring the temp. of the metallic member and controlling the flow velocity and pressure of a cooling gas by the measured value thereof at the time of cooling the metallic member by the cooling gas. CONSTITUTION:After the metallic member 12 to be heated is put into a heating furnace 1, the inside of the furnace is evacuated to a vacuum by a vacuum pump 22 and a heater 7 is energized to heat the material 12 to be treated to a prescribed temp., by which the material is heat treated. When the material is cooled, a control valve 17 provided in a pipeline 21 of a cooling gas source 20 is opened to introduce the cooling gas, such as Ar, into the furnace and the cooling gas is circulated, as shown by arrows 31, by rotation of a fan 10 to cool the material 12 to be treated. The pressure of the cooling gas is set by a pressure setter 30 in this case and the temp. decreasing rate and the control range thereof are previously set by a controller 26. The temp. in the furnace is continuously detected by a temp. detector 15 and a flow means 8 for the cooling gas is controlled by a controller 27 in accordance with the detected temp.; in addition, the pressure of the cooling gas in the furnace is controlled by regulating the opening degree of a control valve 19 in a pipeline 24 communicating with the furnace body, by which the material 12 to be treated is linearly cooled down to the desired temp. in a short period of time.

Description

【発明の詳細な説明】 〔産業上の利用分野) この発明は被処理物の熱処理を行なう為の真空炉におい
て、加熱された被処理物を冷却する方法及びその冷却手
段が備わっている真空炉に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for cooling a heated workpiece in a vacuum furnace for heat-treating a workpiece, and a vacuum furnace equipped with a means for cooling the heated workpiece. Regarding.

〔従来の技術〕[Conventional technology]

この種の真空炉において、加熱された被処理物を冷却す
る場合、例えば被処理物を炉内に放置して自然冷却する
ことが行われている。
In this type of vacuum furnace, when a heated workpiece is cooled, the workpiece is left in the furnace and allowed to cool naturally.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この冷却方法では、被処理物を所望の低温度まで冷却す
る場合に非常に長い時間がかかる問題点があった。その
問題点の解決の為に、炉内に冷却用ガスを送り込み、そ
れを流通手段によって被処理物の存置空間に連続的に流
通させることが行われている。しかしこの方法では、被
処理物が高温から中温に至る過程では速い降温速度で温
度が低下し、中温から低温度に至る過程では降温速度が
遅くなり、例えば第2図に2点鎖線で示されるようなカ
ーブを描いて被処理物の温度が低下していた。即ち前者
の過程と後者の過程とでは被処理物の冷却条件が相違す
る問題点があった。
This cooling method has the problem that it takes a very long time to cool the object to a desired low temperature. In order to solve this problem, cooling gas is fed into the furnace and is continuously circulated through a space in which the workpiece is kept by a distribution means. However, in this method, the temperature of the object to be processed decreases at a fast rate during the process from high to medium temperature, and slows down during the process from medium to low temperature. The temperature of the object to be processed decreased as shown in the curve below. That is, there is a problem in that the cooling conditions for the object to be processed are different between the former process and the latter process.

本発明は以上のような点に鑑みてなされたもので、その
目的とするところは、被処理物を短時間で冷却できるは
熱論のこと、被処理物を予め定めた直線的な降温速度で
冷却することができるようにした真空炉における被処理
物の冷却方法及び真空炉を提供することである。
The present invention has been made in view of the above points, and its purpose is to cool the object to be processed in a short time based on thermal theory, and to cool the object to be processed at a predetermined linear cooling rate. An object of the present invention is to provide a method for cooling a workpiece in a vacuum furnace and a vacuum furnace.

〔課題を解決する為の手段〕[Means to solve problems]

上記目的を達成する為に、本願発明は前記請求の範囲記
載の通りの手段を講じたものであって、その作用は次の
通りである。
In order to achieve the above object, the present invention takes the measures as described in the claims above, and its effects are as follows.

〔作用〕[Effect]

被処理物存置空間に冷却用ガスが流通せられ、そのガス
によって被処理物が冷却される。冷却過程においては被
処理物の温度が継続的に検出される。その検出温度に基
づき上記冷却用ガスの流速及び圧力が制御され、被処理
物は予め定めた直線的な降温速度で冷却される。
Cooling gas is passed through the workpiece storage space, and the workpiece is cooled by the gas. During the cooling process, the temperature of the object to be processed is continuously detected. The flow rate and pressure of the cooling gas are controlled based on the detected temperature, and the object to be processed is cooled at a predetermined linear temperature drop rate.

〔実施例〕〔Example〕

以下本願の実施例を示す図面について説明する。 The drawings showing the embodiments of the present application will be described below.

第1図において、符号l乃至11は真空炉における周知
の部材を示し、1は中空の炉体、2は断熱室で開閉自在
の断熱蓋3,4を有する。該断熱室2の内部空間は被処
理物12の存置空間5となっている。7はヒータ、8は
冷却用ガスの流通手段で、モータ9とそれによって回さ
れるファン10とから成るプロア゛が用いである。11
はガス冷却用のターラで、冷却水が矢印で示すように流
通されるようになっている。
In FIG. 1, numerals 1 to 11 indicate well-known members in a vacuum furnace; 1 is a hollow furnace body; 2 is a heat insulating chamber having heat insulating lids 3 and 4 which can be opened and closed; The interior space of the heat insulating chamber 2 serves as a storage space 5 for the object 12 to be processed. 7 is a heater, 8 is a cooling gas distribution means, and a prototype consisting of a motor 9 and a fan 10 rotated by the motor is used. 11
is a gas cooling colander, and the cooling water is distributed as shown by the arrow.

次に真空炉の制御系について説明する。15は温度検出
手段で、被処理物12の温度の検出用である。
Next, the control system of the vacuum furnace will be explained. A temperature detection means 15 is used to detect the temperature of the object 12 to be processed.

本例では上記存置空間5の温度を検出することによって
、それと対応関係にある被処理物12の温度を間接的に
検出するようにしてあり、例えば熱電対が用いられる。
In this example, by detecting the temperature of the storage space 5, the temperature of the object to be processed 12 corresponding thereto is indirectly detected, and for example, a thermocouple is used.

尚温度検出手段15を被処理物12に結合させて被処理
物12の温度を直接に検出してもよい、16は圧力調節
手段を示し、炉体lの内部空間における冷却用ガスの圧
力を調節する為のもので、本例では、三つの制御弁17
〜19を用いて構成しである。制御弁17は炉体1と冷
却用ガスの供給源20とを結ぶ管路21に介設してあり
、制御弁18は炉体lと真空ポンプ22とを結ぶ管路2
3に介設してあり、制御弁19は一端が炉体lに接続さ
れ他端が開放されている管路24に介設しである。25
は制御手段を示し、符号26〜30で示される部材によ
って構成しである。26はコントローラで、被処理物1
2の降温速度及び降温速度の制御範囲(偏差)を予め設
定しておくことのできるプログラムコントローラが用い
である。27は流通手段の作動強度を調節する為の調節
器で、−例としてモータ9の回転速度を調節するように
したインバータが用いである。28はヒータ7の発熱量
調節器で、−例としてサイリスタを利用した回路が用い
である。29は圧力発信器で、炉体1内の圧力を検出し
て検出信号を出力するようにしである。 30は圧力設
定器で、炉体1内の圧力を設定する為のものである。
The temperature detection means 15 may be connected to the object 12 to directly detect the temperature of the object 12. 16 indicates a pressure adjustment means, which adjusts the pressure of the cooling gas in the internal space of the furnace body l. In this example, there are three control valves 17.
It is configured using ~19. The control valve 17 is installed in the pipe line 21 that connects the furnace body 1 and the cooling gas supply source 20, and the control valve 18 is installed in the pipe line 21 that connects the furnace body l and the vacuum pump 22.
3, and the control valve 19 is interposed in a conduit 24 whose one end is connected to the furnace body l and the other end is open. 25
indicates a control means, which is composed of members indicated by numerals 26 to 30. 26 is a controller, which controls the object to be processed 1;
A program controller is used in which the temperature decreasing rate and the control range (deviation) of the temperature decreasing rate can be set in advance. Reference numeral 27 denotes a regulator for regulating the operating strength of the flow means, and an inverter for regulating the rotational speed of the motor 9 is used, for example. Reference numeral 28 denotes a heat generation amount regulator for the heater 7, for example, a circuit using a thyristor is used. A pressure transmitter 29 is designed to detect the pressure within the furnace body 1 and output a detection signal. 30 is a pressure setting device for setting the pressure inside the furnace body 1.

上記真空炉による被処理物12の熱処理について説明す
る0周知の如く炉体1内が真空排気されると共に断熱蓋
3.4が閉じられ、その状態においてヒータ7に通電さ
れ、存置空間5に置かれた被処理物12が所定の温度に
加熱される。
Describing the heat treatment of the workpiece 12 using the vacuum furnace 0 As is well known, the inside of the furnace body 1 is evacuated and the insulating lid 3.4 is closed. In this state, the heater 7 is energized and placed in the storage space 5. The treated object 12 is heated to a predetermined temperature.

上記のようにして行う加熱工程又は加熱と均熱工程が終
了後、次のようにして冷却工程が行なわれる。即ち、断
熱蓋3.4が開かれると共に、制御弁17が開かれ、冷
却用ガス例えば窒素、アルゴン等の不活性ガスが炉体1
内に導入される。導入された冷却用ガスはブロア8の作
動により矢印31で示されるように循環され、存置空間
5を流通する。
After the heating step or the heating and soaking step performed as described above is completed, the cooling step is performed as follows. That is, the heat insulating lid 3.4 is opened, the control valve 17 is opened, and a cooling gas, such as an inert gas such as nitrogen or argon, is supplied to the furnace body 1.
be introduced within. The introduced cooling gas is circulated as shown by an arrow 31 by the operation of the blower 8 and flows through the storage space 5 .

この冷却用ガスの流通によって、存置空間5にある被処
理物12が冷却される。
The object to be processed 12 in the holding space 5 is cooled by the circulation of the cooling gas.

上記冷却の場合において流通手段8の作動強度又はその
作動強度と炉体l内の冷却用ガスの圧力が次のように調
節されて、被処理物12は予め設定された降温速度で冷
却される。即ち、先ず予め、圧力設定器30にて冷却用
ガスの圧力設定がなされ、またコントローラ26にて降
温速度と降温速度制御範囲(偏差)が設定しておかれる
。この設定状態において上記のように冷却工程が行なわ
れる場合、検出手段15が存置空間5の温度を例えば第
2図にAのグラフで示される如<m続的に検出する。コ
ントローラ26は上記検出による信号を得て被処理物1
2の実際の降温速度を演算し、それが設定降温速度を上
回っておれば流通手段8の作動強度を低下させる為の指
令を調節器27に与える。すると調節器27はモータ9
の回転速度を低下させる。その結果、存置空間5を流通
する冷却用ガスの流速は低下し、被処理物12の降温速
度が低下する。一方、反対の場合には、コントローラ2
Gは流通手段8の作動強度を上昇させる為の指令を出す
為、モータ9の回転速度は上昇し、その結果冷却用ガス
の流速は上昇して被処理物12の降温速度は上昇する。
In the case of the above cooling, the operating strength of the flow means 8 or its operating strength and the pressure of the cooling gas in the furnace body 1 are adjusted as follows, and the workpiece 12 is cooled at a preset temperature decreasing rate. . That is, first, the pressure of the cooling gas is set using the pressure setting device 30, and the temperature lowering rate and the temperature lowering rate control range (deviation) are set using the controller 26. When the cooling process is performed in this setting state as described above, the detection means 15 continuously detects the temperature of the holding space 5, for example, as shown by the graph A in FIG. The controller 26 receives the signal from the above detection and moves the object 1 to be processed.
The actual temperature decreasing rate of 2 is calculated, and if it exceeds the set temperature decreasing rate, a command is given to the regulator 27 to reduce the operating strength of the distribution means 8. Then, the regulator 27
Decrease the rotation speed. As a result, the flow rate of the cooling gas flowing through the retention space 5 decreases, and the rate of temperature drop of the object to be processed 12 decreases. On the other hand, in the opposite case, controller 2
Since G issues a command to increase the operating strength of the circulation means 8, the rotational speed of the motor 9 increases, and as a result, the flow rate of the cooling gas increases and the rate of temperature drop of the object to be processed 12 increases.

このようにして被処理物12は例えば第2図のBのグラ
フに示されるように予め設定された直線的な降温速度で
冷却される。向上記流通手段8の作動強度は、本例では
連続可変であるが、段階的な可変であってもよい、また
検出手段15による温度の継続的な検出態様は、連続的
な検出の他、間欠的な検出であってもよい0間欠的な検
出の場合、被処理物12の降温速度が速い場合には検出
間隔を短かくして必要充分な検出精度が得られるように
するとよい0反対に遅い場合には、検出間際を長くして
もよい。
In this way, the object to be processed 12 is cooled at a preset linear cooling rate, as shown, for example, in the graph B in FIG. Although the operating strength of the above-mentioned circulation means 8 is continuously variable in this example, it may be variable stepwise.Also, the continuous detection mode of the temperature by the detection means 15 is not limited to continuous detection. In the case of intermittent detection, if the temperature drop rate of the object 12 to be processed is fast, it is better to shorten the detection interval to obtain the necessary and sufficient detection accuracy. In some cases, the time just before detection may be extended.

上記の場合において、検出された被処理物12の降温速
度が上記流通手段8の作動強度の調節による降温速度の
制御範囲を越える場合には、コントローラ26からの指
令によって圧力設定器30の設定圧力が変更される0例
えば、検出された降温速度が小さすぎる場合は設定圧力
が上げられ、大きすぎる場合は設定圧力が下げられる。
In the above case, if the detected rate of temperature decrease of the object to be processed 12 exceeds the control range of the rate of temperature decrease by adjusting the operating strength of the flow means 8, the set pressure of the pressure setting device 30 is determined by a command from the controller 26. For example, if the detected temperature decreasing rate is too small, the set pressure is increased, and if it is too large, the set pressure is decreased.

その結果、存置空間5における冷却用ガスの圧力は夫々
上昇又は低下する為、被処理物12の降温速度は、前者
の場合には上昇し、後者の場合には低下して、いずれも
上記制御範囲に入る。従って、上記流通手段8の作動強
度の調節によって、被処理物12の冷却は予め設定され
た降温速度で行なわれる。
As a result, the pressure of the cooling gas in the storage space 5 rises or falls, respectively, so the temperature drop rate of the object to be processed 12 increases in the former case and decreases in the latter case, both of which are controlled by the above-mentioned control. fall within range. Therefore, by adjusting the operating strength of the circulation means 8, the object to be treated 12 is cooled at a preset temperature decreasing rate.

向上配設定圧力が変更された場合における圧力調節手段
の動作は次の通りである。先ず、設定圧力が上げられた
場合には、コントローラ26がらの指令に応じて制御弁
17が適宜開かれる。その結果、冷却用ガス供給源20
からの冷却用ガスが炉体1内に流入し、圧力が上昇する
。一方、設定圧力が下げられた場合には、次の二つの態
様の動作が選択的に行なわれる。炉体1内の圧力が大気
圧以上の場合には制御弁19が開かれ、炉体l内の冷却
用ガスが排出される0反対に大気圧以下の場合には制御
弁I8が開かれ、真空ポンプ22によって炉体I内の冷
却用ガスが引き抜かれる。これらの作用によって炉体1
内の圧力が低下する。
The operation of the pressure regulating means when the enhanced setting pressure is changed is as follows. First, when the set pressure is increased, the control valve 17 is opened as appropriate in response to a command from the controller 26. As a result, the cooling gas supply source 20
Cooling gas flows into the furnace body 1, and the pressure increases. On the other hand, when the set pressure is lowered, the following two modes of operation are selectively performed. When the pressure inside the furnace body 1 is above atmospheric pressure, the control valve 19 is opened, and the cooling gas inside the furnace body 1 is discharged. Conversely, when the pressure inside the furnace body 1 is below atmospheric pressure, the control valve I8 is opened. The cooling gas inside the furnace body I is drawn out by the vacuum pump 22 . Due to these actions, the furnace body 1
The internal pressure decreases.

次に種々の設定降温速度と、各々の場合における炉内冷
却用ガスの設定圧力の例を示せば第1表の通りである。
Next, Table 1 shows examples of various set temperature reduction rates and the set pressures of the furnace cooling gas in each case.

第  1  表 第1表において、例えば設定降温速度を100 ’C/
分とし、設定圧力を3の2250Torrとした場合に
おいては、被処理物12の実際の降温速度が100’C
/分となるよう先ず流通手段8の作動強度が制御される
。そして冷却中において検出された降温速度が前記制御
範囲を越えて小さすぎる場合には、設定圧力が4の30
00Torrと変更され、その状態で流通手段8の作動
強度が制御される。そしてそれさも不足の場合には次に
5の3750Torrと変更されて同様の制御が行われ
る0反対に大きすぎる場合には、2の1500Torr
、 1の760Torrと順次変更しながら上記と同様
の制御がなされる。
Table 1 In Table 1, for example, if the set cooling rate is 100'C/
If the set pressure is 2250 Torr, the actual temperature drop rate of the workpiece 12 is 100'C.
First, the operating strength of the flow means 8 is controlled so that the flow rate is 1/min. If the temperature drop rate detected during cooling is too small and exceeds the control range, the set pressure is set to 4/30.
The pressure is changed to 00 Torr, and the operating strength of the flow means 8 is controlled in that state. If it is still insufficient, the next step is changed to 3750 Torr in 5 and the same control is performed. 0 If it is too large, then 1500 Torr in 2
, 1 and 760 Torr, and the same control as above is performed.

次に第3図(A)〜(D)は上記真空炉における冷却工
程での温度制御パターンの種々異なる例を示すもので、
いずれもそのようなパターンを予めコントローラ26に
設定しておくことによって、被処理物の温度変化をその
ようなパターンに制御できる。
Next, FIGS. 3(A) to 3(D) show various examples of temperature control patterns in the cooling process in the vacuum furnace,
In either case, by setting such a pattern in the controller 26 in advance, the temperature change of the object to be processed can be controlled in such a pattern.

先ず(A)における(イ)  (ロ)は夫々設定降温速
度の異なる例を示す。
First, (a) and (b) in (A) respectively show examples of different set temperature decreasing rates.

(B)は冷却過程の途中の時点において設定降温速度を
変更する例を示す。この場合において、(ハ)及び(ホ
)の降温速度は例えば100’C/分であり、(ニ)の
降温速度は例えば15(1/分である。
(B) shows an example in which the set temperature decreasing rate is changed at a point in the middle of the cooling process. In this case, the temperature decreasing rate in (c) and (e) is, for example, 100'C/min, and the temperature decreasing rate in (d) is, for example, 15 (1/min).

(C)は冷却途中の(へ)の区間において被処理物を一
定の温度で保持する例を、(D)は(ト)及び(す)の
区間において被処理物を一定の温度で保持し、(チ)の
区間において被処理物の温度を上昇させる例を夫々示す
、上記(へ)(ト)(チ)  (す)の区間では流通手
段8の動作が停止されると共に、ヒータ7に通電されて
被処理物12の加熱が行なわれる。この場合、温度検出
手段15による検出値に基づき、コントローラ26から
の指令によってヒータ7への電力が発熱量調節器28に
より制御される0例えば区間(へ)(ト)(す)では自
然冷却を補うに足る電力が、また区間(チ)では被処理
物12の温度を所定の昇温速度で上昇させるに足る電力
が夫々供給される。その結果、被処理物12は設定され
た通りに温度制御される。
(C) is an example in which the workpiece is held at a constant temperature in the section (f) during cooling, and (D) is an example in which the workpiece is held at a constant temperature in the sections (g) and (su). , (H), the operation of the flow means 8 is stopped, and the heater 7 is Electricity is applied to heat the object 12 to be processed. In this case, based on the detected value by the temperature detection means 15, the electric power to the heater 7 is controlled by the heat generation amount regulator 28 in response to a command from the controller 26. For example, natural cooling is Sufficient electric power is supplied to compensate for this, and electric power sufficient to raise the temperature of the workpiece 12 at a predetermined temperature increase rate is supplied in the section (h). As a result, the temperature of the object 12 to be processed is controlled as set.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明にあっては、炉内において被処理物
12を冷却する場合、冷却用ガスの流通により速く被処
理物12の温度を下降させて、短時間で所望の低温度ま
で冷却できる効果がある。
As described above, in the present invention, when the workpiece 12 is cooled in the furnace, the temperature of the workpiece 12 is lowered quickly by the flow of cooling gas, and the workpiece 12 is cooled to a desired low temperature in a short time. There is an effect that can be done.

しかも冷却時における温度の下降状態は、直線的な降温
速度で冷却できるから、被処理物を高温から中温に至ら
せるときも、中温から低温に至らせるときも同じ温度低
下率で下降させることを可能にする特長がある。
Furthermore, since the temperature can be lowered at a linear rate during cooling, it is possible to lower the temperature at the same rate when bringing the object to be processed from a high temperature to a medium temperature or from a medium temperature to a low temperature. There are features that make it possible.

その上上記の如き直線的な!!!温速度となるように冷
却用ガスの流速を制御するものであるから、上記直線的
な降温速度(第2図のBの温度勾配)を種々に変更でき
る特長もある。
Moreover, it is linear like the one above! ! ! Since the flow rate of the cooling gas is controlled so as to achieve the temperature rate, it also has the advantage that the linear temperature drop rate (temperature gradient B in FIG. 2) can be varied in various ways.

これらのことは、例えば磁石用の粉末の焼結処理時の冷
却を行う場合、冷却のプロセスの違いによって品質の種
々異なるものを、反復繰り返して、しかも何時の場合に
おいても均質なものを得るようにすることができる利点
がある。
For example, when cooling powder for magnets during sintering, it is necessary to repeatedly produce products of varying quality depending on the cooling process, and to obtain uniform products at any time. There are advantages that can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本願の実施例を示すもので、第1図は真空炉の構
成を略示すると共にその制御系をブロックで示す図、第
2図は温度制御パターンの一例を示すグラフ、第3図(
A)〜(D)は夫々温度制御パターンの異なる例を示す
図。 l・・・炉体、5・・・存置空間、8・・・流通手段、
12・・・被処理物、15・・・温度検出手段、16・
・・圧力調節手段、25・・・制御手段。 第 図 時 間 第 図 (A) (D) 時 間
The drawings show an embodiment of the present application, and FIG. 1 schematically shows the configuration of a vacuum furnace and shows its control system in blocks, FIG. 2 is a graph showing an example of a temperature control pattern, and FIG.
A) to (D) are diagrams showing different examples of temperature control patterns. l... Furnace body, 5... Storage space, 8... Distribution means,
12... Workpiece, 15... Temperature detection means, 16.
. . . Pressure adjustment means, 25 . . . Control means. Figure Time Figure (A) (D) Time

Claims (1)

【特許請求の範囲】 1、真空炉内の被処理物存置空間に冷却用ガスを流通さ
せて、該空間に存置されている被処理物を冷却する方法
において、上記被処理物の温度を継続的に検出し、上記
被処理物の降温速度が予め定めた直線的な降温速度とな
るよう、上記空間における冷却用ガスの流速を制御する
ことを特徴とする真空炉における被処理物の冷却方法。 2、被処理物の降温速度が予め定めた直線的な降温速度
となるよう、上記空間における冷却用ガスの圧力と流速
とを制御することを特徴とする請求項1記載の真空炉に
おける被処理物の冷却方法。 3、予め定められた降温速度が冷却過程の中途の時点で
変更されていることを特徴とする請求項1又は2記載の
真空炉における被処理物の冷却方法。 4、内部に被処理物の存置空間を備える炉体には、上記
空間に冷却用ガスを流通させる為の流通手段が付設され
ている真空炉において、上記存置空間に存置された被処
理物の温度を検出する為の温度検出手段と、上記空間に
おける冷却用ガスの圧力を調節する為の圧力調節手段と
、上記検出手段によって検出された被処理物の温度に基
づいて、被処理物の降温速度が予め定めた直線的な降温
速度となるように、上記流通手段の作動強度と上記圧力
調節手段の設定圧力を制御するようにした制御手段とが
備えられていることを特徴とする真空炉。
[Claims] 1. A method for cooling the workpiece placed in the space by circulating cooling gas in a space for holding the workpiece in a vacuum furnace, wherein the temperature of the workpiece is maintained continuously. A method for cooling a workpiece in a vacuum furnace, characterized in that the flow rate of cooling gas in the space is controlled so that the temperature drop rate of the workpiece becomes a predetermined linear temperature fall rate. . 2. The workpiece in the vacuum furnace according to claim 1, wherein the pressure and flow rate of the cooling gas in the space are controlled so that the temperature drop rate of the workpiece becomes a predetermined linear temperature fall rate. How to cool things. 3. The method for cooling a workpiece in a vacuum furnace according to claim 1 or 2, wherein the predetermined temperature decreasing rate is changed midway through the cooling process. 4. In a vacuum furnace, the furnace body, which has a storage space for the workpiece inside, is equipped with a flow means for circulating cooling gas into the space, and the workpiece left in the storage space is A temperature detection means for detecting the temperature, a pressure adjustment means for adjusting the pressure of the cooling gas in the space, and a temperature reduction of the workpiece based on the temperature of the workpiece detected by the detection means. A vacuum furnace characterized by comprising: control means for controlling the operating strength of the flow means and the set pressure of the pressure adjustment means so that the speed becomes a predetermined linear temperature decreasing rate. .
JP1026367A 1989-02-03 1989-02-03 Method of cooling workpiece in vacuum furnace and vacuum furnace Expired - Fee Related JP2808632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1026367A JP2808632B2 (en) 1989-02-03 1989-02-03 Method of cooling workpiece in vacuum furnace and vacuum furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1026367A JP2808632B2 (en) 1989-02-03 1989-02-03 Method of cooling workpiece in vacuum furnace and vacuum furnace

Publications (2)

Publication Number Publication Date
JPH02205623A true JPH02205623A (en) 1990-08-15
JP2808632B2 JP2808632B2 (en) 1998-10-08

Family

ID=12191530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1026367A Expired - Fee Related JP2808632B2 (en) 1989-02-03 1989-02-03 Method of cooling workpiece in vacuum furnace and vacuum furnace

Country Status (1)

Country Link
JP (1) JP2808632B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721434B1 (en) * 2005-09-22 2007-06-04 신진로기계공업 주식회사 Thermostat for heat treatment process
KR101150650B1 (en) * 2010-04-15 2012-05-25 이화다이아몬드공업 주식회사 Cryogenic treatment apparatus by continuous cooling and method of treatment using the same
CN104785787A (en) * 2015-04-29 2015-07-22 宁波依司特加热设备有限公司 Powder metallurgy rapid cooling system
CN107165948A (en) * 2016-03-08 2017-09-15 精工电子有限公司 The manufacture method of pivot bearing, the manufacture method of pivot and manufacture device
CN109297308A (en) * 2018-10-30 2019-02-01 海盐中达金属电子材料有限公司 A kind of vacuum drying oven for capableing of fast cooling
CN112449453A (en) * 2020-12-08 2021-03-05 莱芜钢铁集团淄博锚链有限公司 Intermediate frequency heating temperature closed-loop control system for bar stock

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW544470B (en) 2001-02-22 2003-08-01 Chugai Ro Kogyo Kaisha Ltd A gas-cooled single-chamber type heat-treating furnace and a gas cooling process in the furnace

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135461U (en) * 1982-03-04 1983-09-12 本田技研工業株式会社 Burning furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135461U (en) * 1982-03-04 1983-09-12 本田技研工業株式会社 Burning furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721434B1 (en) * 2005-09-22 2007-06-04 신진로기계공업 주식회사 Thermostat for heat treatment process
KR101150650B1 (en) * 2010-04-15 2012-05-25 이화다이아몬드공업 주식회사 Cryogenic treatment apparatus by continuous cooling and method of treatment using the same
CN104785787A (en) * 2015-04-29 2015-07-22 宁波依司特加热设备有限公司 Powder metallurgy rapid cooling system
CN107165948A (en) * 2016-03-08 2017-09-15 精工电子有限公司 The manufacture method of pivot bearing, the manufacture method of pivot and manufacture device
CN109297308A (en) * 2018-10-30 2019-02-01 海盐中达金属电子材料有限公司 A kind of vacuum drying oven for capableing of fast cooling
CN112449453A (en) * 2020-12-08 2021-03-05 莱芜钢铁集团淄博锚链有限公司 Intermediate frequency heating temperature closed-loop control system for bar stock

Also Published As

Publication number Publication date
JP2808632B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
KR100282464B1 (en) Temperature control method and apparatus of heat treatment apparatus
CN107342244B (en) Heat treatment device
JPH02205623A (en) Cooling method for material to be treated in vacuum furnace and vacuum furnace
KR100559820B1 (en) Thermal treatment apparatus and thermal treatment method
US5211713A (en) Temperature control method with simultaneous heating and cooling near the set-point
US5926390A (en) Programmed temperature controller
JPH1081913A (en) Isothermal quenching apparatus by gas cooling
CN107957185B (en) Heating control system and method of drying equipment and drying equipment
US4620883A (en) Fluidized-bed heat-treatment method for metallic workpieces
JP3629325B2 (en) Sample temperature control method
JP2001318720A (en) Temperature control method and device
JPH09287881A (en) Temperature control method of heating furnace
JPH02245805A (en) Temperature controller
JPH0256587B2 (en)
JPH0379985A (en) Controlling method for temperature of electric furnace
JP2528170B2 (en) Temperature control method for heat treatment furnace
JP7384973B1 (en) heat treatment furnace
JPH01196310A (en) Heat medium flow rate control device for mold temperature controller
JPH018956Y2 (en)
JPH0510414B2 (en)
JPH0450894Y2 (en)
JPS6214937A (en) Method for controlling cooling temperature of autoclave
JP2005321181A (en) Temperature control method and heater
JPH05121344A (en) Vertical furnace and temperature control method
SU725277A1 (en) Method and device for control of thermal mode of induction holding equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees