JPH02205495A - Articulated robot - Google Patents

Articulated robot

Info

Publication number
JPH02205495A
JPH02205495A JP2494789A JP2494789A JPH02205495A JP H02205495 A JPH02205495 A JP H02205495A JP 2494789 A JP2494789 A JP 2494789A JP 2494789 A JP2494789 A JP 2494789A JP H02205495 A JPH02205495 A JP H02205495A
Authority
JP
Japan
Prior art keywords
contact
attitude
robot
actuator
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2494789A
Other languages
Japanese (ja)
Inventor
Hironobu Yamakawa
浩延 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2494789A priority Critical patent/JPH02205495A/en
Publication of JPH02205495A publication Critical patent/JPH02205495A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the artificial work of an obstruction information input, to simplify a sensing device and to simplify an evasion procedure, by setting a passing impossible zone whenever a robot movable part is brought into contact with an obstruction and re-deciding the route so as to avoid the zone. CONSTITUTION:A robot is rotated with joints 3, 4 as the axis by an actuator, the hand 5 of the arm 2 terminal holds and transfers the body to be transferred and the movable part surface is covered by a contact sensor. The start attitude and target attitude of the robot are given by the coordinates data with one point of the joint angle space inside, i.e., (n) pieces of the positions of actuators as the element, the actuator is changed with the straight line connecting the start and target attitudes as the route and stopped when the contact sensor is operated or reaches the target attitude. At the contact stoppage time the positional data of the actuator is read, the coordinates are stored as contact attitude, returned to start attitude by reversing, (n) dimensional space is recognized as a quasi-contact space with the coordinate of the contact attitude as the center and the actuator is varied by finding the curve connecting the start attitude and target attitude without passing through any quasi-contact space.

Description

【発明の詳細な説明】 イ) 産業上の利用分野 本発明は多関節ロボット動作時の障害物回避経路を決定
するための経路の決定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a path determination method for determining an obstacle avoidance path during the operation of an articulated robot.

口) 従来の技術 従来の多関節ロボットが障害物を回避しながらハンドの
移動を行う場合、障害物の正確な情報を外部から入力し
てもらうか、又は、視覚センサ等で完全に認識した後、
障害物を回避する経路を探索していた。このような多関
節型ロボットは例えば特開昭53−43369号に示さ
れている。このため、入力作業等の煩雑な作業や、視覚
認識装置等の複雑なセンシング装置が必要になると云う
不都合があった。
(Example) Conventional technology When conventional articulated robots move their hands while avoiding obstacles, they either have to input accurate information about the obstacles from the outside, or after they have completely recognized them using a visual sensor, etc. ,
I was searching for a route to avoid obstacles. Such an articulated robot is shown, for example, in Japanese Patent Laid-Open No. 53-43369. For this reason, there are disadvantages in that complicated operations such as input operations and complicated sensing devices such as visual recognition devices are required.

ハ) 発明が解決しようとする課題 本発明はこのような点に鑑みて為されたものであって、
障害物情報を入力する人為作業の削除、センシング装置
の複雑化の肪止、及び障害物回避経路探索の処理手順の
簡略化を図ろうとするものである。
c) Problems to be solved by the invention The present invention has been made in view of the above points.
This aims to eliminate the manual work of inputting obstacle information, prevent the sensing device from becoming more complex, and simplify the processing procedure for searching for an obstacle avoidance route.

二) 課題を解決するための手段 本発明では、予め決められた経路に従ってロボットアー
ムを動作きせる手段と、ロボット可動部に設けられた接
触センサと、この接触センサでの検出があったとき、該
地点における近傍を通過不能領域として設定する設定手
段と、上記通過不能領域を聾けて始点から終点まで移動
する経路を再決定する経路決定手段と、を有している。
2) Means for Solving the Problems The present invention includes a means for moving a robot arm along a predetermined path, a contact sensor provided on the movable part of the robot, and a means for solving the problem when detected by the contact sensor. It has a setting means for setting a vicinity of a point as an impassable area, and a route determining means for re-determining a route to travel from a start point to an end point while ignoring the impassable area.

ホ) 作用 障害物に接触する度に通過不可能領域を設定し、該通過
不可能領域をさけるように経路を再決定しているので、
簡単な構成で経路決定が為される。
E) Each time the vehicle comes into contact with an active obstacle, an impassable area is set and the route is redetermined to avoid the impassable area.
Route determination is made with a simple configuration.

へ)実施例 第2図は本発明多関節型ロボットの1例を示し、(1)
(2)はアームであって、夫々図示しないアクチュエー
タにより関節(3)(4)を軸として回転する。(5)
はアーム(2)先端部のハンドを示し、被搬送物を把持
して搬送する。こうしたアーム(1)(2)、ハンド(
5)等の可動部の表面は接触センサで被われている。(
6)はこのロボットの駆動を行うようアクチュエータを
制御する制御部を示し、上記接触センサからの信号も受
ける。こうしたロボットは第3図のような作業空間を有
する。
f) Embodiment Figure 2 shows an example of the articulated robot of the present invention, (1)
(2) is an arm, which is rotated around joints (3) and (4) by respective actuators (not shown). (5)
indicates a hand at the tip of arm (2), which grasps and transports the object to be transported. These arms (1) (2), hands (
The surface of the movable part such as 5) is covered with a contact sensor. (
6) indicates a control unit that controls the actuators to drive the robot, and also receives signals from the contact sensor. Such a robot has a work space as shown in FIG.

第1図は本発明多関節型ロボットの動作を説明する流れ
図であり、第2図の多関節型ロボットを一般化したn自
由度のものについて示している。
FIG. 1 is a flowchart for explaining the operation of the articulated robot of the present invention, and shows a generalized version of the articulated robot shown in FIG. 2 with n degrees of freedom.

また、各アクチュエータの位置を軸としたn次元空間を
そのロボットの関節角空間と呼び、2次元間節角空間を
第4図に示1゛。
The n-dimensional space centered around the position of each actuator is called the robot's joint angle space, and the two-dimensional joint angle space is shown in FIG.

ロボットの開始姿勢と目標姿勢が、各々関節角空間内の
1点すなわちn個のアクチュエータの位置を要素とする
座標データで与えられていて、障害物に関する情報は何
ら与えられていないものとして、その動作を説明する。
Assuming that the robot's starting posture and target posture are each given by coordinate data whose elements are one point in the joint angle space, that is, the positions of n actuators, and no information about obstacles is given, then Explain the operation.

最初ロボットは開始姿勢にあり、目標姿勢が与えられた
ならば、まず関節角空間内で開始姿勢と目標姿勢を結ぶ
直線を求め、その直線の軌跡を、アクチュエータが変化
すべき軌跡すなわち経路とする(STEP a ) 、
経路通りにロボットのアクチュエータを実際に変化許せ
て行き、ハンド(5)を第5図のように移動させる。こ
の状態で、ロボットの一部が障害物に接触し、接触セン
サが動作するか、ロボットが目標姿勢に到達した時にロ
ボットの動作を停止する(STEP b ) 、目標姿
勢へ到達した場合は、弁動作して来た経路が紛れもなく
障害物回避経路である(STEP c 、 d )。
Initially, the robot is in the starting posture, and if the target posture is given, first find a straight line connecting the starting posture and the target posture in the joint angle space, and set the trajectory of that straight line as the trajectory or path along which the actuator should change. (STEP a),
The actuators of the robot are actually allowed to change along the route, and the hand (5) is moved as shown in FIG. In this state, when a part of the robot comes into contact with an obstacle and the contact sensor operates or the robot reaches the target posture, the robot's operation is stopped (STEP b). If the target posture is reached, the valve is activated. The route that has been taken is definitely an obstacle avoidance route (STEP c, d).

障害物との接触により停止した場合は、まず接触時のn
@のアクチュエータの位置データを読み取り、関節角空
間内のその座標を接触姿勢として記憶する。すでに別の
座標を記憶している場合もそれらに併わせて記憶する(
STEPe)、その後、経路を逆行させることによりロ
ボットを開始姿勢にまで戻す(STEP f )、記憶
した接触姿勢の座標を中心として、周辺のある大きさを
持ったn次元空間を経路として使用出来ない単接触空間
として認識する。接触回数が複数回になり、接触姿勢を
複数個記憶している場合には、その各々の点に関して、
同じ大きさの単接触空間を定める(STEP g )。
If the vehicle stops due to contact with an obstacle, first
Read the position data of the @ actuator and store its coordinates in the joint angle space as the contact posture. If you have already memorized other coordinates, also memorize them (
STEPe), and then return the robot to the starting posture by reversing the path (STEP f). An n-dimensional space with a certain size around the memorized coordinates of the contact posture cannot be used as a path. Recognized as a single-touch space. If the number of contacts is multiple times and multiple contact postures are memorized, for each point,
A single contact space of the same size is determined (STEP g).

単接触空間を定める際には、記憶している接触姿勢の数
が1つの場合に空間の大きさが最大となり、増大rるに
従って空間の大きさが小さくなり、接触姿勢の数が無限
大の時に空間の大きさが0になるよう、つまり接触姿勢
の数の増加に対して単接触空間の大きさは単調に減少す
るよう定める。これにより、障害物回避経路の探索を始
めて、最初のうちは障害物を大きく回避することを試み
、障害物の回避に失敗する度に障害物情報の認識をより
精密なものに改めていく学習作用が効果的に得られる。
When defining a single contact space, the size of the space is maximum when the number of memorized contact postures is one, and as the number of contact postures increases, the size of the space becomes smaller, and when the number of contact postures is infinite. The size of the space is set to be 0 at some times, that is, the size of the single contact space is set to decrease monotonically as the number of contact postures increases. This creates a learning effect in which the user starts searching for an obstacle avoidance route, tries to largely avoid the obstacle at first, and each time the obstacle avoidance fails, the recognition of the obstacle information becomes more precise. can be obtained effectively.

記憶している全接触姿勢に大して単接触空間を求め終え
ると、第6図のように、関節角空間内で、どの単接触空
間も通過せずに開始姿勢(S)と目標姿勢(G)を結ぶ
曲線を得て、その軌跡を新たに経路とする(STEP 
h )、新たに得られた経路に従ってアクチュエータを
変化させ、繰り返し5丁テbから実行する。
After finding the single contact space for all the memorized contact postures, as shown in Fig. 6, the starting posture (S) and target posture (G) are created in the joint angle space without passing through any single contact space. Obtain a curve connecting the , and use that trajectory as a new route (STEP
h), change the actuator according to the newly obtained path and repeat from step b).

尚5TEP hにおいて、開始姿勢と目標姿勢を結ぶ曲
線が得られなかった場合は、単接触空間の大きさを曲線
が得られるまで減少する。
Note that in 5TEP h, if a curve connecting the starting attitude and the target attitude cannot be obtained, the size of the single contact space is reduced until a curve is obtained.

ト)発明の効果 以上述べた如く、本発明多関節型ロボットは、ロボット
可動部が障害物に接触する度に通過不可能領域を設定し
、該通過不可能領域をさけるように経路を再決定してい
るのでハード面、ソフト面で簡単な構成で経路決定が行
なわれ、全体としてのコストダウンが望める。
G) Effects of the Invention As described above, the articulated robot of the present invention sets an impassable area every time the robot movable part comes into contact with an obstacle, and re-determines the route to avoid the impassable area. As a result, route determination can be performed with a simple configuration in terms of hardware and software, and overall cost reduction can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明多関節型ロボットの動作を示す流れ図、
第2図は本発明多関節型ロボットの側面図、第3図、第
5図は多関節型ロボットの作業空間の状態説明図、第4
図、第6図はは多関節型ロボットの関節角空間の状態説
明図である。 (1)(2)・・・アーム、(3)(4>・・・関節、
(5)・・・ハンド、(6)・・・制御部。
FIG. 1 is a flowchart showing the operation of the articulated robot of the present invention;
Fig. 2 is a side view of the articulated robot of the present invention, Figs. 3 and 5 are explanatory diagrams of the state of the working space of the articulated robot, and Fig. 4
FIG. 6 is a state explanatory diagram of a joint angle space of an articulated robot. (1) (2)... Arm, (3) (4>... Joint,
(5)...hand, (6)...control unit.

Claims (1)

【特許請求の範囲】[Claims] 1)予め決められた始点から終点までアームを移動させ
る多関節型ロボットにおいて、予め決められた経路に従
ってロボットアームを動作させる手段と、ロボット可動
部に設けられた接触センサと、この接触センサでの検出
があったとき、該地点における近傍を通過不能領域とし
て設定する設定手段と、上記通過不能領域をさけて始点
から終点まで移動する経路を再決定する経路決定手段と
、を有して成る多関節型ロボット。
1) In an articulated robot that moves an arm from a predetermined starting point to an end point, there is a means for moving the robot arm according to a predetermined path, a contact sensor provided on the movable part of the robot, and a means for moving the robot arm along a predetermined path, and a When a point is detected, a setting means for setting the vicinity of the point as an impassable area, and a route determining means for re-determining a route to travel from the starting point to the ending point while avoiding the impassable area. Articulated robot.
JP2494789A 1989-02-02 1989-02-02 Articulated robot Pending JPH02205495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2494789A JPH02205495A (en) 1989-02-02 1989-02-02 Articulated robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2494789A JPH02205495A (en) 1989-02-02 1989-02-02 Articulated robot

Publications (1)

Publication Number Publication Date
JPH02205495A true JPH02205495A (en) 1990-08-15

Family

ID=12152204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2494789A Pending JPH02205495A (en) 1989-02-02 1989-02-02 Articulated robot

Country Status (1)

Country Link
JP (1) JPH02205495A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109318244A (en) * 2017-07-31 2019-02-12 发那科株式会社 The control device of articulated robot

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109318244A (en) * 2017-07-31 2019-02-12 发那科株式会社 The control device of articulated robot
JP2019025604A (en) * 2017-07-31 2019-02-21 ファナック株式会社 Control device of multi-joint robot
US10759056B2 (en) 2017-07-31 2020-09-01 Fanuc Corporation Control unit for articulated robot
CN109318244B (en) * 2017-07-31 2021-02-12 发那科株式会社 Control device for articulated robot

Similar Documents

Publication Publication Date Title
Kofman et al. Teleoperation of a robot manipulator using a vision-based human-robot interface
US5371836A (en) Position teaching method and control apparatus for robot
US11654559B2 (en) Global arm path planning with roadmaps and precomputed domains
JP5108032B2 (en) Multi-joint structure teaching device
JPS6358505A (en) Robot controller
JP5220536B2 (en) Robot control method, robot control apparatus, and robot control system
JP2000084877A (en) Off-line teaching method of robot with traverse axis
Sriram et al. Mobile robot assistance for disabled and senior citizens using hand gestures
JP7160118B2 (en) Control device, control method, program
US5241249A (en) Process for controlling a robot arm by defining substitution paths
CN107735226B (en) By using a robot driving over a predetermined trajectory
Gridseth et al. On visual servoing to improve performance of robotic grasping
JPH02205495A (en) Articulated robot
Trahanias et al. Navigational support for robotic wheelchair platforms: an approach that combines vision and range sensors
JPH09314487A (en) Method for controlling manipulator having redundant axis
CN110545965A (en) Articulated robot and articulated robot system
JP2005335010A (en) Gripping control device
JPH11239988A (en) A singular point avoiding method in direct teaching of articulated robot
JPH0310781A (en) Articulated type robot
JPS5810197B2 (en) Enkatsu Souji Yuusouchi
JPH0797288B2 (en) Control method for articulated manipulator
JPH04171191A (en) Robot hand and control method for the same
JPS624471Y2 (en)
JP3196972B2 (en) Robot direct teaching device
JPH04152083A (en) Support system for operation program of articulated robot