JPH02205324A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02205324A
JPH02205324A JP1026196A JP2619689A JPH02205324A JP H02205324 A JPH02205324 A JP H02205324A JP 1026196 A JP1026196 A JP 1026196A JP 2619689 A JP2619689 A JP 2619689A JP H02205324 A JPH02205324 A JP H02205324A
Authority
JP
Japan
Prior art keywords
integrated circuit
electron beam
lithography
fets
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1026196A
Other languages
Japanese (ja)
Inventor
Naoyoshi Ishizaka
石坂 直惠
Koichi Kobayashi
孝一 小林
Tetsuo Izawa
哲夫 伊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1026196A priority Critical patent/JPH02205324A/en
Publication of JPH02205324A publication Critical patent/JPH02205324A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a semiconductor integrated circuit having a high degree of integration and excellent operating characteristics by collecting the threshold voltage of MOS type elements in one integrated circuit within a tolerance even when electron beam lithography is adopted for forming an internal wiring, etc. CONSTITUTION:The internal wirings of an integrated circuit including MOS type elements (FETs) 1 are formed through lithography selectively applying a high energy beam such as an electron beam, ion beam, x-rays, gamma-rays or the like, and a high energy beam is applied only by quantity collecting the distribution of the threshold voltage Vth of the FETs 1 within a range required for imparting specified characteristics into an integrated circuit region containing a region not exposed to a high energy beam in a lithography process. The Vth of the FETs 1 after heat treatment can be converged within a tolerance regarding the Vth of the FETs 1 in the integrated circuit of a lot at that time when dosage is brought to 5X10<-4>C/cm<2> or more. Accordingly, the dispersion of Vth can be eliminated, thus further improving the degree of integration of the integrated circuit.

Description

【発明の詳細な説明】 〔概 要〕 本発明はMOS型集積回路に於けるMOS型素子の閾値
分布を調整する処理方法に関し、高エネルギ線リソグラ
フィにより生ずるMOS型素子の閾値電圧のばらつき範
囲を狭めて集積回路の所定の特性を実現することを目的
とし、本発明の第1は MOS型素子を含む集積回路の内部配線の形成を、電子
線、イオン線、X線もしくはγ線などの高エネルギ線を
選択的に照射するリソグラフィによって行った後、 前記リソグラフィ工程で前記高エネルギ線に被曝しなか
った領域を含む集積回路領域に高エネルギ線を照射する
ことによって、前記MOS型素子の閾値電圧の分布を、
前記集積回路に所定の特性を付与するために要求される
範囲内に収束せしめることを含む構成であり、 本発明の第2は MOS型素子を含む集積回路の内部配線の形成を、前記
高エネルギ線を選択的に照射するリソグラフィによって
行う場合、 前記高エネルギ線の照射/非照射により生ずる前記MO
5型素子の閾値電圧の分散を補償するように、前記高エ
ネルギ線被曝量に合わせて前記集積回路の素子領域に予
め不純物を導入しておくことを含む構成である。
[Detailed Description of the Invention] [Summary] The present invention relates to a processing method for adjusting the threshold voltage distribution of a MOS type element in a MOS type integrated circuit, and the present invention relates to a processing method for adjusting the threshold voltage distribution of a MOS type element in a MOS type integrated circuit. The first aspect of the present invention is to narrow down and realize predetermined characteristics of an integrated circuit, and the first aspect of the present invention is to form internal wiring of an integrated circuit including MOS type elements using high-frequency radiation such as electron beams, ion beams, X-rays, or γ-rays. The threshold voltage of the MOS type device is determined by irradiating an integrated circuit area including a region not exposed to the high-energy beam in the lithography process with the high-energy beam after performing lithography in which energy beams are selectively irradiated. The distribution of
The second aspect of the present invention is a configuration including convergence within a range required for imparting predetermined characteristics to the integrated circuit. When carried out by lithography that selectively irradiates radiation, the MO generated by irradiation/non-irradiation with the high-energy radiation
This configuration includes introducing impurities in advance into the element region of the integrated circuit in accordance with the amount of high-energy radiation exposure so as to compensate for the dispersion of the threshold voltage of the type 5 element.

〔産業上の利用分野〕[Industrial application field]

本発明はMOS型集積回路に於けるMOS型素子の閾値
分布を調整する処理法に関わり、特に高エネルギ線を用
いるリソグラフィが原因で生じるMOS素子の閾値電圧
の分散に対処して、その分布範囲を狭める処理法に関わ
る。
The present invention relates to a processing method for adjusting the threshold voltage distribution of a MOS type element in a MOS type integrated circuit, and in particular, to deal with the dispersion of the threshold voltage of the MOS element caused by lithography using high energy radiation, and to adjust the distribution range of the threshold voltage of the MOS element. It is related to the processing method that narrows the

集積回路の高集積化には素子や配線の微細化が必須であ
り、これ等の微細パターンを実現するには電子線やX線
など短波長のエネルギ線を用いるリソグラフィに依らな
ければならないことは当業者に広く認識されているとこ
ろである。
The miniaturization of elements and wiring is essential for higher integration of integrated circuits, and it is necessary to rely on lithography that uses short wavelength energy beams such as electron beams and X-rays to realize these fine patterns. This is widely recognized by those skilled in the art.

ところが、集積回路が電界効果型の素子(典型的にはM
OSトランジスタ、以下FETと記す)によって構成さ
れる場合、リソグラフィ処理に於いて高エネルギ線の照
射を受けたFETとそうでないFETとの間に素子の動
作特性、特に閾値電圧や相互コンダクタンスに差異が生
ずるという問題がある。
However, integrated circuits are made using field-effect devices (typically M
When constructed using OS transistors (hereinafter referred to as FETs), there is a difference in device operating characteristics, especially threshold voltage and mutual conductance, between FETs that have been irradiated with high-energy rays during lithography processing and FETs that have not. There is a problem that occurs.

この状況は第5図(a)、 (b)に模式的に示される
通りで、同図(a)の如く、FETの形成された基板5
1に絶縁層52を介してAN層53、レジスト層54を
堆積し、選択的に電子線が照射される。レジストがn型
の場合、これを現像すると電子線を照射された領域だけ
が残されるので、これをマスクとしてA2層を選択エツ
チングすると、同図[有])のようにA1.配線53′
が形成される。
This situation is schematically shown in FIGS. 5(a) and 5(b). As shown in FIG. 5(a), the substrate 5 on which the FET is formed
An AN layer 53 and a resist layer 54 are deposited on the substrate 1 with an insulating layer 52 interposed therebetween, and are selectively irradiated with an electron beam. If the resist is n-type, developing it will leave only the area irradiated with the electron beam, so if you use this as a mask to selectively etch the A2 layer, the A1. Wiring 53'
is formed.

以上の処理で電子線被曝FET22と無被曝FET23
との間に特性の差異が生ずる。1個の集積回路内でFE
Tの閾値などにばらつきがあると、素子相互間でオン、
オフのタイミングが不揃いとなり、回路を遅延させたり
誤動作させることになる。
With the above processing, the electron beam exposed FET22 and non-irradiated FET23
There are differences in characteristics between the two. FE within one integrated circuit
If there are variations in the T threshold, etc., elements may turn on or off.
The off timing becomes uneven, causing circuit delays and malfunctions.

この問題は特に電子線リソグラフィに於いて顕著である
が、これはFET形成基板であるSt単結晶に電子線照
射による結晶欠陥が発生し、そのエネルギ準位がFET
の動作閾値に影響を及ぼすものと見られている。
This problem is particularly noticeable in electron beam lithography, where crystal defects occur in the St single crystal that is the FET forming substrate due to electron beam irradiation, and the energy level of the crystal defects is
It is believed that this affects the operating threshold of

このような準位を解消する処理として水素雰囲気中で集
積回路基板を加熱することがおこなわれており、例えば
Hz  Nz中で1000°Cに加熱することにより、
は〜゛完全前記準位は消滅する。しかしながら、このよ
うな高温の処理はA2配線が形成された後には実施不可
能であり、基板を高温に曝すことな(欠陥準位を解消す
る処理法が求められている。
As a treatment to eliminate such levels, the integrated circuit board is heated in a hydrogen atmosphere. For example, by heating the integrated circuit board to 1000°C in Hz Nz,
~ The above level completely disappears. However, such high-temperature processing cannot be performed after the A2 wiring is formed, and there is a need for a processing method that eliminates defect levels without exposing the substrate to high temperatures.

〔従来の技術〕[Conventional technology]

電子線被曝損傷を回復するのに、A1.配線形成後の基
板をHz  Nz雰囲気中で400〜500°Cに加熱
することが行われている。この低温処理は欠陥準位を完
全に解消するものではないが、実用上差し支えない程度
に素子特性を回復すると考えられてきた。
To recover from damage caused by exposure to electron beams, A1. The substrate after wiring formation is heated to 400 to 500° C. in an Hz Nz atmosphere. Although this low-temperature treatment does not completely eliminate defect levels, it has been thought that it restores device characteristics to an extent that is acceptable for practical use.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、本発明者等が精細に試験、検討した結果
、上記の低温熱処理ではFETの相互コンダクタンスは
はり完全に回復するが、閾値電圧(vtb)には無視し
得ない程度の差異が残ることが判明した。
However, as a result of detailed tests and studies conducted by the inventors, it has been found that although the mutual conductance of the FET is completely recovered by the above-mentioned low-temperature heat treatment, a non-negligible difference remains in the threshold voltage (vtb). found.

具体的に例示すれば、ゲート長0.8μmのFETで構
成される集積回路に於いて、A!配線のパターニングで
電子線を照射されたFETと照射されなかったFETと
の間には、約0.1■のVいの差が生ずるのである。
To give a specific example, in an integrated circuit composed of FETs with a gate length of 0.8 μm, A! During wiring patterning, there is a difference in V of about 0.1 .mu. between FETs that are irradiated with electron beams and FETs that are not irradiated with electron beams.

この差は素子の寸法が大であれば、素子設計の段階で予
め補正しておくことが可能であるが、サブミクロン素子
のような微細な素子の場合は、■1.そのものが小であ
り、上記の程度のVいのばらつきであっても、相対的な
比率は大となり、素子設計に於ける面積上の許容範囲も
小であるため、かかる処理のみでは対処し切れないもの
となる。
If the device size is large, this difference can be corrected in advance at the device design stage, but in the case of a minute device such as a submicron device, 1. Even if the variation in V is small and the above degree is large, the relative ratio is large and the area tolerance in device design is also small, so it cannot be dealt with by such processing alone. It becomes something that does not exist.

本発明の目的はMOS型素子を含む集積回路の形成に於
いて、内部配線などの形成に電子線リソグラフィを採用
した場合にも、1個の集積回路内のMOS型素子のVい
を許容範囲内に集合せしめる処理法を提供することであ
り、それによって、集積度がより高く且つ動作特性の優
れた半導体集積回路を実現することである。
An object of the present invention is to maintain the V voltage of MOS type elements in one integrated circuit within an allowable range even when electron beam lithography is adopted for forming internal wiring etc. in the formation of integrated circuits including MOS type elements. The object of the present invention is to provide a processing method for integrating semiconductor devices into semiconductor devices, thereby realizing a semiconductor integrated circuit with a higher degree of integration and excellent operating characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明の第1に於いては、 MOS型素子を含む集積回路の内部配線の形成を、電子
線、イオン線、X線もしくはγ線などの高エネルギ線を
選択的に照射するリソグラフィによって行った後、 前記リソグラフィ工程で前記高エネルギ線に被曝しなか
った領域を含む集積回路領域に、前記集積回路に所定の
特性を付与するために要求される範囲内に、前記MOS
型素子の閾値電圧の分布を集合せしめる量だけ前記高エ
ネルギ線を照射することが行われ、 また、本発明の第2に於いては、 MOS型素子を含む集積回路の内部配線の形成を、前記
高エネルギ線を選択的に照射するリソグラフィによって
行う場合、 前記高エネルギ線の照射/非照射により生ずる前記MO
S型素子の閾値電圧の変移を補償するように、前記高エ
ネルギ線被曝量に応じた量の不純物を前記集積回路の素
子領域に予め導入しておくことが行われる。
In order to achieve the above object, the first aspect of the present invention is to selectively use high-energy beams such as electron beams, ion beams, X-rays, or γ-rays to form internal wiring of integrated circuits including MOS type elements. irradiating the integrated circuit area, including areas not exposed to the high-energy radiation in the lithography process, to the extent required to impart the desired properties to the integrated circuit. M.O.S.
The high-energy beam is irradiated in an amount that aggregates the distribution of the threshold voltage of the MOS type element. When carried out by lithography that selectively irradiates the high-energy beam, the MO generated by irradiation/non-irradiation with the high-energy beam
In order to compensate for variations in the threshold voltage of the S-type element, impurities are introduced in advance into the element region of the integrated circuit in an amount corresponding to the amount of exposure to the high-energy radiation.

〔作 用〕[For production]

第4図はMOS型集積回路に選択的に電子線を照射した
場合に、FETのVtkが照射前と照射後、更にその後
の熱処理で変動する状況を、実測値により例示したもの
である。この測定は、nチャネルのFETを形成し、基
板表面の状態をA!配線形成時に類似させた同一ロット
の3枚のウェハに後述の如くドーズ量を異ならせて電子
線照射を行った後、H,−N、中で450℃の熱処理を
施して行われた。
FIG. 4 is a diagram illustrating the situation in which the Vtk of the FET changes before and after the irradiation, as well as during subsequent heat treatment, when a MOS type integrated circuit is selectively irradiated with an electron beam, using actual measured values. This measurement forms an n-channel FET and determines the state of the substrate surface as A! Three wafers from the same lot, which were similar during wiring formation, were irradiated with electron beams at different doses as described later, and then heat treated at 450° C. in H, -N.

図中、・印は電子線照射前のFETのVLhであって、
ドーズ量の異なる3枚のウェハの全てに於いて、0.5
2V前後の極めて狭い範囲に分布していることから、ウ
ェハ毎の■いのばらつきは無視してもよい程度である。
In the figure, the mark is the VLh of the FET before electron beam irradiation,
For all three wafers with different doses, 0.5
Since the voltage is distributed in an extremely narrow range of around 2V, the variation in voltage from wafer to wafer can be ignored.

第1のウエハニ対しI Xl0−’C/cmz(7) 
t’−ズ量で電子線を照射したところ、同図中にX印で
示したように、Vthは略0.08Vを中心とするや\
広い範囲の値に変移したが、これに上記の熱処理を施す
ことにより、図中に○印で示したように、0.46■を
中心とするや−広い範囲の値に回復した。
I Xl0-'C/cmz (7) for the first wafer
When the electron beam was irradiated with an amount of t'-z, Vth was centered around approximately 0.08V, as shown by the X mark in the figure.
The value varied over a wide range, but by applying the heat treatment described above, the value recovered to a value within a rather wide range centered around 0.46 square, as indicated by the circle in the figure.

第2のウェハに対する電子線のドーズ量は5×10− 
’ C/cm”であるが、この場合照射後(7) V 
t hは0.02V程度に変移し、熱処理によって0.
43V程度に回復している。更に、第3のウェハに対す
る電子線のドーズ量はI Xl0−’C/cm”である
が、二の場合照射後のVいは0.02V程度に変移し、
熱処理によって0.44 V程度に回復している。
The dose of the electron beam to the second wafer is 5×10−
'C/cm'', but in this case after irradiation (7) V
t h changes to about 0.02V and decreases to 0.02V by heat treatment.
It has recovered to around 43V. Furthermore, the dose of the electron beam for the third wafer is IXl0-'C/cm'', but in the second case the V after irradiation changes to about 0.02V,
It was restored to about 0.44 V by heat treatment.

以上の実測データから、該ロフトの集積回路に於いてF
ETのvいは、ドーズ量が5X10−’C/cn+”以
上であれば、熱処理後のFETの■いは略一定値に収束
することが判る。また、ドーズ量がI Xl0−’C/
cm”程度の場合、回復後のVthは初期値により近い
ものであり、電子線照射の影響はドーズ量に比例して残
るものと推定される。
From the above actual measurement data, F
It can be seen that when the dose of ET is 5X10-'C/cn+'' or more, the value of FET after heat treatment converges to a substantially constant value.
cm'', the Vth after recovery is closer to the initial value, and it is estimated that the influence of electron beam irradiation remains in proportion to the dose.

本発明は上述の新規な知見に基づくものであり、第1の
発明に於いては、例えば電子線である高エネルギ線によ
るリソグラフィ処理を行った後、該処理で電子線照射を
受けなかった素子形成領域にも追加的に電子線照射を行
うことによって、熱処理後のFETの■いを許容範囲に
収束せしめている。
The present invention is based on the above-mentioned novel findings, and in the first invention, after performing a lithography process using a high-energy beam, for example, an electron beam, an element that has not been irradiated with an electron beam in the process. By additionally irradiating the formation region with an electron beam, the damage of the FET after heat treatment is brought to an acceptable range.

その際、最初の電子線非照射領域のみに選択的に電子線
を照射してもよいが、ウェハ全域に電子線を追加的に照
射してもよい、何れの場合も該処理では、電子線被曝量
が特定値を越えると変移後のVいの値は比較的狭い範囲
に収束することを利用している。
At this time, the electron beam may be selectively irradiated only to the area not irradiated with the electron beam at the beginning, but the entire wafer may be additionally irradiated with the electron beam. This method utilizes the fact that when the amount of exposure exceeds a specific value, the value of V after the change converges to a relatively narrow range.

また第2の発明は電子線の照射が比較的弱く、FETの
Vいが被曝量に比例して分布する場合に有効な処理であ
って、電子線被曝量によって異なる■いの変移量を予測
し、該予測値に合わせてFETのチャネルドープ量を増
減することにより最終的に■いを所定範囲に収束させて
いる。
The second invention is a process that is effective when the electron beam irradiation is relatively weak and the V of the FET is distributed in proportion to the exposure, and it is possible to predict the amount of change in V that varies depending on the electron beam exposure. However, by increasing or decreasing the channel doping amount of the FET in accordance with the predicted value, the flaw is finally converged to a predetermined range.

FETの■いがチャネル領域の不純物濃度の影響を受け
ることは当業者に周知のことであり、前記チャネルドー
プとはVthを所定値に合わせるために、イオン注入な
どの方法によってチャネル領域に不純物を導入すること
である。通常nチャネルのFETに対してはボロン(B
)をドープすることが行われ、Bドープ量を増せば■い
は正側に移行する。
It is well known to those skilled in the art that the strength of a FET is affected by the impurity concentration in the channel region, and channel doping is the process of adding impurities to the channel region by a method such as ion implantation in order to adjust Vth to a predetermined value. It is to introduce. Usually boron (B) is used for n-channel FETs.
) is doped, and if the amount of B doped is increased, ① shifts to the positive side.

上述の如く、電子線の照射量が増した場合にはVいは負
側に移行するから、電子線被曝量がより大である領域で
は、Bドープ量を多くすることによって、ウェハ全体の
FETの■いの分布をより狭い範囲に収束せしめること
が出来る。
As mentioned above, when the amount of electron beam irradiation increases, V shifts to the negative side, so in regions where the amount of electron beam irradiation is greater, increasing the amount of B doping reduces the FET of the entire wafer. It is possible to converge the distribution of the current to a narrower range.

〔実施例〕〔Example〕

第1図は請求項(1)に相当する第1の発明の処理を示
す模式図である。同図に於いて記号1を付与された長方
形はFETを示し、集積回路を構成するnチャネルFE
Tが図示の如くマトリックス状に配置されているものと
する。
FIG. 1 is a schematic diagram showing the processing of the first invention corresponding to claim (1). In the same figure, the rectangle with symbol 1 indicates an FET, which is an n-channel FE that constitutes an integrated circuit.
Assume that T is arranged in a matrix as shown in the figure.

同図(a)に斜線で示す如く、Af配線形成のバターニ
ングに於ける電子線被曝領域2が生じた場合、これに追
加的に電子線照射を施す照射領域3は同図(b)に斜線
で示すように、同図(a)の斜線領域に対して相補的な
領域であってもよ(、また同図(C)に示すようにウェ
ハ全域であってもよい。
As shown by diagonal lines in Figure (a), when an electron beam exposure area 2 occurs during patterning for forming Af wiring, the irradiation area 3 to which electron beam irradiation is additionally applied is shown in Figure (b). As shown by diagonal lines, the area may be complementary to the shaded area in FIG.

同図(ロ)の如く相補的に電子線の追加照射を行うには
、リソグラフィ用の電子線照射データを反転して使用す
ることが可能であり、同図(C)の如く、全域に追加照
射する場合はX線照射で代用することも可能である。何
れの処理を採用するにしても新たにマスクを用意する必
要はない。
In order to perform additional electron beam irradiation in a complementary manner as shown in the figure (B), it is possible to invert and use the electron beam irradiation data for lithography. In the case of irradiation, it is also possible to use X-ray irradiation instead. No matter which process is adopted, there is no need to prepare a new mask.

上記実施例の効果を明らかにするため以下の実験を行っ
た。
The following experiment was conducted to clarify the effects of the above example.

電子線リソグラフィによるAn配線形成を含む通常の工
程でチャネル長1μmのFETを含むMOS型集積回路
を形成し、そのチップを2群に分けて一方の群のチップ
に対し加速電圧30KeV、ドーズ量I Xl0−’C
/cm”の全面電子線照射を施し、他の群のチップには
追加照射を施すことなく、いずれもHz  Nz中、4
50°Cの熱処理を行った。
A MOS type integrated circuit including a FET with a channel length of 1 μm is formed using a normal process including An wiring formation by electron beam lithography, and the chips are divided into two groups and one group of chips is subjected to an acceleration voltage of 30 KeV and a dose of I. Xl0-'C
/cm", and the other groups of chips were irradiated with an electron beam of 4 cm in Hz Nz without additional irradiation.
Heat treatment was performed at 50°C.

その結果、各チップに於けるFETのVい分布は第2図
のヒストグラムに示すようなものとなった。該図に於い
て、(a)図は追加照射を行わなかったチップのFET
の■い分布を示しており、ぼり0、 I Vの差を有す
る2群に分かれた分布が見られるのに対し、追加照射を
行ったチップのFETの■い分布は、(b)図の如く、
全てのFETが比較的狭い範囲に集中しているの。
As a result, the V distribution of FETs in each chip was as shown in the histogram of FIG. 2. In the figure, (a) shows the FET of the chip without additional irradiation.
In contrast, the FET of the chip subjected to additional irradiation has a narrow distribution as shown in (b). as,
All FETs are concentrated in a relatively small area.

上記の結果は、電子線の追加照射によってFETのvt
b分布を所定範囲に収束し得ることを示している。
The above results show that by additional irradiation with the electron beam, the FET's vt
This shows that the b distribution can be converged within a predetermined range.

次に請求項(2)に相当する第2の実施例について述べ
る。本実施例の処理はFETの形成工程にも関わるもの
であるから、第3図(a)〜(e)に示されるnチャネ
ルFETの製造工程に従って説明する。
Next, a second embodiment corresponding to claim (2) will be described. Since the process of this embodiment also relates to the process of forming an FET, it will be explained according to the process of manufacturing an n-channel FET shown in FIGS. 3(a) to 3(e).

第3図(a)では、P型のSt基板11には選択酸化に
よる0、8μmのS i Oz膜12と熱酸化による2
0rvのゲート絶縁膜13が形成されており、更に選択
的にレジスト層14が選択的に設けられている。これに
Bを40 K e V、 3 XIO”cm−”の条件
でイオン注入すると、前記レジスト層14がマスクとな
り、一部の素子領域には該工程ではBはイオン注入され
ず、その他の素子領域には注入される。
In FIG. 3(a), a P-type St substrate 11 has a 0.8 μm SiOz film 12 formed by selective oxidation and a 0.8 μm thick SiOz film 12 formed by thermal oxidation.
A gate insulating film 13 of 0 rv is formed, and a resist layer 14 is further selectively provided. When B is ion-implanted into this under the conditions of 40 K e V and 3 The area is injected.

次いでレジスト層14を剥離し、同図ら)に示す如(、
基板全面に40 K e V、  l XIO”cm−
”の条件で再度Bをイオン注入する。該イオン注入工程
は通常のチャネルドープに相当するものであるが、先行
するイオン注入によって後に電子線照射を受ける素子領
域にはより高濃度のBがドープされたことになる。
Next, the resist layer 14 is peeled off, and as shown in FIG.
40 K e V, l XIO"cm-
B is ion-implanted again under the conditions of ``.This ion-implantation process corresponds to normal channel doping, but as a result of the previous ion implantation, a higher concentration of B is doped into the device region that will later be irradiated with an electron beam. It means that it was done.

続いて同図(C)の如く、通常の工程により、ポリSi
ゲート15の形成、n型不純物のイオン注入によるS/
D領域16の形成と熱処理、第1の絶縁層17の堆積と
コンタクト窓開け、コンタクト電極18の形成を行い、
FETを完成させる。
Next, as shown in the same figure (C), poly-Si
Formation of gate 15, S/ by ion implantation of n-type impurity
Formation and heat treatment of D region 16, deposition of first insulating layer 17 and opening of contact window, formation of contact electrode 18,
Complete the FET.

その後、同図(d)の如く、第2の絶縁層19、/1層
20、レジスト層21を形成し、選択的に電子線を照射
を行って現像処理する。電子線照射の条件は20 K 
e V、 5 Xl0−bC/cm”である。得られた
レジストパターンをマスクとする選択エツチングにより
Af層をバターニングし、同図(e)の如<A1配線2
0′を形成する。
Thereafter, as shown in FIG. 4(d), a second insulating layer 19, a /1 layer 20, and a resist layer 21 are formed and developed by selectively irradiating with an electron beam. The conditions for electron beam irradiation are 20 K.
e V, 5
0' is formed.

該基板を保護用酸化膜(図示せず)で被覆し、H,−N
、中、450″Cで熱処理を行うことにより、電子線被
曝領域のFET22と低チャネルドープ領域のFET2
3とは■いのばらつきが±0.OIV以内の、特性が近
位した素子として形成される。これに対しチャネルドー
プ量を均一とした場合にはVいのばらつきは±0.04
Vにも達する。
The substrate was coated with a protective oxide film (not shown), and H, -N
, by performing heat treatment at 450''C, FET22 in the electron beam exposed region and FET2 in the low channel doped region
3 and ■The variation is ±0. It is formed as an element with close characteristics within the OIV. On the other hand, when the channel doping amount is made uniform, the variation in V is ±0.04
It also reaches V.

上層配線を2層有する集積回路を形成する場合には、即
ち2回の電子線照射が必要な場合には、重ねて電子線照
射を受ける素子領域には上記処理に加えて更にI XI
O”cm−”のBイオン注入を施しておくことにより、
上記実施例と同様、Vいのばらつきを±0.OIV以内
に抑えることができた。2回の電子線照射に対し、チャ
ネルドープを2段階に変えた場合の■いのばらつきは±
0.02V、変化させなかった場合のVいのばらつきは
±0.05Vであった。
When forming an integrated circuit having two layers of upper wiring, that is, when electron beam irradiation is required twice, in addition to the above treatment, I
By performing B ion implantation of O"cm-",
As in the above embodiment, the variation in voltage was ±0. We were able to keep it within OIV. When the channel doping is changed to two stages for two times of electron beam irradiation, the variation in
0.02V, and the variation in V was ±0.05V when no change was made.

既に述べたように、電子線被曝に伴うVいの変移量は飽
和する傾向を示すので、チャネルドープ量の調整は3段
階程度とすることで、実用上十分な範囲内にFETの■
いを収束させることが出来る。
As already mentioned, the amount of change in V due to exposure to electron beams tends to be saturated, so by adjusting the amount of channel doping in about three steps, the FET's
It is possible to converge the problem.

FETがpチャネルの場合の処理条件の1例は次の通り
である。基板はn型、ゲート酸化膜の厚さを20nm、
ゲート電極をn型ポリStとすると、チャネルドープと
してBのイオン注入を40KeV、5 XIO”cm−
”の条件で実施し、リソグラフィで電子線照射を受ける
領域には更に40KeV、3 XIO”cm−”の追加
注入を施す。この処理によってnチャネルの場合と同様
の良好な結果が得られた。
An example of processing conditions when the FET is a p-channel is as follows. The substrate is n-type, the thickness of the gate oxide film is 20 nm,
When the gate electrode is made of n-type polySt, B ion implantation is performed as a channel dope at 40KeV, 5XIO"cm-
An additional implantation of 40 KeV, 3 XIO cm - was performed in the region subjected to electron beam irradiation in the lithography. This process yielded good results similar to those of the n-channel case.

また、リソグラフィを電子線ではな(X線によって行う
場合の処理例は次の通りである。X線はバラヂウム・タ
ーゲット、電子線衝撃電力10KWのものを線源とし、
露光条件を500 mJ/cm”とした場合、上記実施
例と同様Bのイオン注入により、lXl0”cm−”(
7)チ+ネルF−フトX’lA被lB領域への3×10
目cn+−”の追加ドープを行うことで、■いのばらつ
きは±0.01 V以下となる。追加ドープを行わない
場合のVtkのばらつきは±0.035Vである。
In addition, an example of processing when lithography is performed using X-rays instead of electron beams is as follows.The X-rays are sourced from a baradium target and an electron beam impact power of 10KW.
When the exposure condition is 500 mJ/cm", B ion implantation as in the above example results in lXl0"cm-" (
7) Channel F-ft X'lA to area covered by 3x10
By performing additional doping of "cn+-", the variation in Vtk becomes ±0.01 V or less.When no additional doping is performed, the variation in Vtk is ±0.035 V.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によればリソグラフィ処理
に於ける高エネルギ線被曝に起因する■いのばらつきを
解消することが出来るので、より微細なパターンを使用
し、集積回路の集積度をより向上させることが可能とな
る。
As explained above, according to the present invention, it is possible to eliminate the variations in density caused by exposure to high-energy radiation during lithography processing, so finer patterns can be used and the degree of integration of integrated circuits can be increased. It becomes possible to improve the performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の発明の処理を示す模式図、第2図は第1
の発明の効果を示す図、 第3図は第2の発明の工程を例示する図、第4図はFE
Tの■い変移状況を示す図、第5図はFETの電子線被
爆状況を示す図であって、 図に於いて 1はFET。 2は電子線被曝領域、 3は追加照射領域、 11はp型St基板、 12はSi0g膜、 13はゲート絶縁膜、 14はレジスト、 15はポリSiゲート、 16はS/D領域、 17は絶縁層、 18はコンタクト電極、 19は絶縁層、 20は/1層、 20′はA2配線、 21はレジスト、 22は被曝FET。 23は無被曝FET。 51はSi基板、 52は絶縁層、 53は/1層、 54はレジスト である。 第1の発明の効果を示す図 第2図 FETのVL&変移状況を示す図 第4図 第1の発明の処理を示す模式図 第1図 11si基板 16 S/D領域 第2の発明の工程を例示する図 第 3 図(その1)
Figure 1 is a schematic diagram showing the process of the first invention, and Figure 2 is a schematic diagram showing the process of the first invention.
Figure 3 is a diagram illustrating the process of the second invention, Figure 4 is a diagram showing the effect of the invention of FE.
Figure 5 is a diagram showing the state of change in T, and Figure 5 is a diagram showing the electron beam exposure state of FET. In the figure, 1 is the FET. 2 is an electron beam exposure area, 3 is an additional irradiation area, 11 is a p-type St substrate, 12 is a SiOg film, 13 is a gate insulating film, 14 is a resist, 15 is a poly-Si gate, 16 is an S/D area, 17 is a Insulating layer, 18 is contact electrode, 19 is insulating layer, 20 is /1 layer, 20' is A2 wiring, 21 is resist, 22 is exposed FET. 23 is a non-irradiated FET. 51 is a Si substrate, 52 is an insulating layer, 53 is a /1 layer, and 54 is a resist. Fig. 2 shows the effect of the first invention Fig. 4 shows the VL & transition situation of FET Fig. 4 A schematic diagram showing the processing of the first invention Fig. 1 Illustrative diagram Figure 3 (Part 1)

Claims (2)

【特許請求の範囲】[Claims] (1)MOS型素子を含む集積回路の内部配線の形成を
、電子線、イオン線、X線もしくはγ線などの高エネル
ギ線を選択的に照射するリソグラフィによって行った後
、 前記リソグラフィ工程で前記高エネルギ線に被曝しなか
った領域を含む集積回路領域に、前記MOS型素子の閾
値電圧の分布を前記集積回路に所定の特性を付与するた
めに要求される範囲内に集合せしめる量だけ、前記高エ
ネルギ線を照射することを特徴とする半導体装置の製造
方法。
(1) After forming internal wiring of an integrated circuit including a MOS type element by lithography that selectively irradiates with high-energy rays such as electron beams, ion beams, X-rays, or γ-rays, In an integrated circuit area including a region not exposed to high-energy radiation, the amount of said MOS type elements is concentrated to be within the range required to impart predetermined characteristics to said integrated circuit. A method for manufacturing a semiconductor device, characterized by irradiating it with high-energy radiation.
(2)MOS型素子を含む集積回路の内部配線の形成を
前記高エネルギ線を選択的に照射するリソグラフィによ
って行う場合、 前記高エネルギ線の照射/非照射により生ずる前記MO
S型素子の閾値電圧の分散を補償するように、前記高エ
ネルギ線被曝量に応じた量の不純物を前記集積回路の素
子領域に予め導入しておくことを特徴とする半導体装置
の製造方法。
(2) When internal wiring of an integrated circuit including a MOS type element is formed by lithography that selectively irradiates the high-energy beam, the MO generated by irradiation/non-irradiation with the high-energy beam;
A method for manufacturing a semiconductor device, characterized in that an amount of impurity corresponding to the amount of high-energy radiation exposure is introduced into the element region of the integrated circuit in advance so as to compensate for the dispersion of the threshold voltage of the S-type element.
JP1026196A 1989-02-03 1989-02-03 Manufacture of semiconductor device Pending JPH02205324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1026196A JPH02205324A (en) 1989-02-03 1989-02-03 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1026196A JPH02205324A (en) 1989-02-03 1989-02-03 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02205324A true JPH02205324A (en) 1990-08-15

Family

ID=12186736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1026196A Pending JPH02205324A (en) 1989-02-03 1989-02-03 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02205324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7468304B2 (en) 2005-09-06 2008-12-23 Canon Kabushiki Kaisha Method of fabricating oxide semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7468304B2 (en) 2005-09-06 2008-12-23 Canon Kabushiki Kaisha Method of fabricating oxide semiconductor device
US7691715B2 (en) 2005-09-06 2010-04-06 Canon Kabushiki Kaisha Method of fabricating oxide semiconductor device
US7883934B2 (en) 2005-09-06 2011-02-08 Canon Kabushiki Kaisha Method of fabricating oxide semiconductor device

Similar Documents

Publication Publication Date Title
US7271041B2 (en) Method for manufacturing thin film transistor
JPS5999717A (en) Manufacture of semiconductor device
KR970018223A (en) Manufacturing Method of Semiconductor Integrated Circuit
JPS61263274A (en) Manufacture of semiconductor device
JPH02205324A (en) Manufacture of semiconductor device
Peckerar et al. Radiation effects introduced by X-ray lithography in MOS devices
JPH0689870A (en) Manufacture of semiconductor element
JPS582067A (en) Manufacture of semiconductor device
JPH06260607A (en) Semiconductor device and its manufacture
JPH01303727A (en) Impurity gettering process
JP2606457B2 (en) Method for manufacturing semiconductor device
JPS60253217A (en) Manufacture of semiconductor device
JP2744022B2 (en) Method for manufacturing semiconductor device
JPH042163A (en) Manufacture of mask rom
JPS59171162A (en) Manufacture of insulated gate field effect transistor
JPS6210033B2 (en)
JPS61198746A (en) Manufacture of semiconductor device
JPS63114129A (en) Manufacture of semiconductor device
JPH0391245A (en) Thin-film semiconductor device and manufacture thereof
JPH0689869A (en) Manufacture of semiconductor element
JPS62174915A (en) Manufacture of semiconductor device
JPH02291173A (en) Manufacture of mos transistor
Stover et al. High speed CMOS/SOS IC’s fabricated using x‐ray lithography
JPH02114514A (en) Formation of polycrystalline silicon film
JPS6295827A (en) Manufacture of semiconductor device