JPH02204613A - Treatment device for nitrogen oxide in engine exhaust gas - Google Patents

Treatment device for nitrogen oxide in engine exhaust gas

Info

Publication number
JPH02204613A
JPH02204613A JP2454189A JP2454189A JPH02204613A JP H02204613 A JPH02204613 A JP H02204613A JP 2454189 A JP2454189 A JP 2454189A JP 2454189 A JP2454189 A JP 2454189A JP H02204613 A JPH02204613 A JP H02204613A
Authority
JP
Japan
Prior art keywords
ammonia
exhaust
exhaust gas
catalyst device
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2454189A
Other languages
Japanese (ja)
Other versions
JPH068605B2 (en
Inventor
Yoshiaki Aihara
粟飯原 喜昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINNENSHIYOU SYST KENKYUSHO KK
Nippon Shokubai Co Ltd
Original Assignee
SHINNENSHIYOU SYST KENKYUSHO KK
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINNENSHIYOU SYST KENKYUSHO KK, Nippon Shokubai Co Ltd filed Critical SHINNENSHIYOU SYST KENKYUSHO KK
Priority to JP2454189A priority Critical patent/JPH068605B2/en
Publication of JPH02204613A publication Critical patent/JPH02204613A/en
Publication of JPH068605B2 publication Critical patent/JPH068605B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To reduce NOx effectively, so as to prevent ammonia from being emitted to the atmosphere by changing over opening/closing valves provided respectively on inlet/outlet of a catalyst device so as to invert the flowing direction of exhaust. CONSTITUTION:At first, opening/closing valves 36, 37 are located on solid lines and exhaust gas and ammonia flowing from an exhaust upper course pipe 31 into a housing 30 flow inside a catalyst device 20 in the direction from an inlet/outlet 35a to an inlet/outlet 35b as solid line arrows show and discharged from an exhaust lower course pipe 32. After a prescribed time, the opening/closing valves 36, 37 are switched in the locations shown by dotted lines on the basis of control of an electronic control device, and the exhaust gas and ammonia flowing from the exhaust upper course pipe 31 into the housing 30 flow inside the catalyst device 20 in the direction from the inlet/outlet 35b to the inlet/outlet 35a as the dotted line arrows show and discharged from the exhaust lower course pipe 32. This control is repeated subsequently. Since an exhaust lower course side in the catalyst device 20 is switched to an upper course side, it is possible to reduce NOx effectively, and to prevent ammonia from being emitted to the atmosphere.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エンジン、好適にはディーゼルエンジンの排
気中の窒素酸化物(以下、NOXという)を車両上で処
理する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for treating nitrogen oxides (hereinafter referred to as NOX) in the exhaust of an engine, preferably a diesel engine, on a vehicle.

〔従来の技術〕[Conventional technology]

一般に、ガソリンエンジン排気中のNo、処理は、その
排気を触媒床に導入することにより、通常行われている
が、車両用ディーゼルエンジンの場合には、排気中の酸
素量が多いために触媒が使用できず、専ら燃焼改善によ
り排気中のNOxを低減させている。
Generally, NO in gasoline engine exhaust is treated by introducing the exhaust into a catalyst bed, but in the case of vehicle diesel engines, the catalyst is not activated due to the large amount of oxygen in the exhaust. It cannot be used, and NOx in exhaust gas is reduced solely by improving combustion.

一方、定置用ボイラーおよびディーゼルエンジンの分野
においては、排気中のNO8処理にあたって、No、処
理触媒床にディーゼルエンジンの排気と共にアンモニア
ボンベからアンモニアを導入させ、下記反応によりNO
Xを還元処理する方式(SCR法)が採用されている。
On the other hand, in the field of stationary boilers and diesel engines, in order to treat NO8 in exhaust gas, ammonia is introduced from an ammonia cylinder into the NO treatment catalyst bed together with the diesel engine exhaust gas, and the following reaction is performed to reduce NO8.
A method of reducing X (SCR method) is adopted.

2NH* + 2NO+(1/2) Ox = 2N 
! + 3HzO〔発明が解決しようとする課題〕 しかしながら、上記従来の定置用ボイラおよびディーゼ
ルエンジン排気中のNOx処理方式では、アンモニアボ
ンベを定期的に充填、或いは交換をしなければならない
という問題を有しており、重量、メンテナンス等の点で
車両用としては不向きであり、実用化には到っていない
、一方、従来のアンモニア製造方法は、大規模設備を用
い高圧下で製造するものであり、しかもガス精製に冷凍
方法を使用するなど、車両に搭載することが困難である
2NH* + 2NO+(1/2) Ox = 2N
! +3HzO [Problem to be Solved by the Invention] However, the conventional stationary boiler and diesel engine exhaust NOx treatment methods described above have the problem that the ammonia cylinder must be regularly filled or replaced. However, it is unsuitable for use in vehicles due to its weight and maintenance, and has not yet been put into practical use.On the other hand, conventional ammonia production methods use large-scale equipment and produce under high pressure. Moreover, it is difficult to install it on a vehicle because it uses a freezing method for gas purification.

この問題を解決するために、本出願人は、特願昭63−
142401号により、燃料と空気から水素と窒素を生
成しこれを原料として車両上でアンモニア合成を行い、
排気ガス中の窒素酸化物を選択還元する触媒床に前記ア
ンモニアを導入する窒素酸化物処理システムを出願して
いる。
In order to solve this problem, the present applicant filed a patent application filed in 1983-
No. 142401, hydrogen and nitrogen are generated from fuel and air, and ammonia is synthesized on the vehicle using these as raw materials.
The patent application is for a nitrogen oxide treatment system in which the ammonia is introduced into a catalyst bed that selectively reduces nitrogen oxides in exhaust gas.

上記システムにおいては、エンジン排気中のNOつを還
元する場合、アンモニアの量が多すぎるとアンモニアそ
のものが大気に放出されて公害となり、一方、アンモニ
アの量が少なすぎるとN。
In the above system, when reducing NO in the engine exhaust, if the amount of ammonia is too large, the ammonia itself will be released into the atmosphere and cause pollution, whereas if the amount of ammonia is too small, the NO will be reduced.

8が十分に低減されないことになるから、必然的にアン
モニアの量はNO8量に比例して供給することになる。
Since NO8 will not be sufficiently reduced, the amount of ammonia will inevitably be supplied in proportion to the amount of NO8.

しかし、NOよとアンモニアの反応は、触媒の温度分布
、エンジンの運転条件の変化によって安定せず、触媒の
中でアンモニアの吸着、放出が繰り返されることになる
。すなわち、触媒の温度分布は、触媒床の下流側が上流
側よりも低いので、アンモニアの吸着量は触媒床の下流
側で多くなり、その部分が飽和状態に達するとアンモニ
アが大気中に放出されてしまうという問題を有している
However, the reaction between NO and ammonia is not stable due to changes in the temperature distribution of the catalyst and engine operating conditions, and ammonia is repeatedly adsorbed and released within the catalyst. In other words, the temperature distribution of the catalyst is lower on the downstream side of the catalyst bed than on the upstream side, so the amount of ammonia adsorbed is greater on the downstream side of the catalyst bed, and when that part reaches saturation, ammonia is released into the atmosphere. It has the problem of being stored away.

本発明は上記問題を解決するものであって、触媒装置中
の排気の流れを下流側と上流側とで切り換えることによ
り、効率的にNOつを還元し、かつ、アンモニアの大気
への放出を防止することを目的とする。
The present invention solves the above problem, and by switching the flow of exhaust gas in the catalyst device between the downstream and upstream sides, NO is efficiently reduced and ammonia is prevented from being released into the atmosphere. The purpose is to prevent.

〔課題を解決するための手段〕[Means to solve the problem]

この目的を達成するために、本発明は、燃料と空気から
水素と窒素を生成しこれを原料として車両上でアンモニ
ア合成を行い、排気ガス中の窒素酸化物を選択還元する
触媒装置に前記アンモニアを導入する窒素酸化物処理装
置において、前記触媒装置の出入口に開閉弁を設け、該
開閉弁を切換えることにより前記触媒装置内の排気の流
れ方向を逆転可能にすることを特徴とするものである。
In order to achieve this object, the present invention generates hydrogen and nitrogen from fuel and air, synthesizes ammonia on the vehicle using the hydrogen and nitrogen as raw materials, and supplies the ammonia to a catalyst device that selectively reduces nitrogen oxides in exhaust gas. A nitrogen oxide treatment device introducing a nitrogen oxide treatment device is characterized in that an on-off valve is provided at the entrance and exit of the catalyst device, and by switching the on-off valve, the flow direction of exhaust gas in the catalyst device can be reversed. .

ところで、車両上でアンモニアを合成するためGごは、
■窒素があること、■水素があること、■CO濃度が少
ないこと、■高圧で反応させることが必要である。この
うち、■窒素は空気中の窒素を利用し、■水素は軽油(
C,tba)を空気により部分酸化して水素を発生させ
、■co濃度を減少させるため、水素分離膜を利用して
COを除去し、■高圧で反応させるためには加圧ポンプ
を使用することにより実現するものである。
By the way, in order to synthesize ammonia on the vehicle,
■ It is necessary to have nitrogen, ■ to have hydrogen, ■ to have a low concentration of CO, and ■ to carry out the reaction at high pressure. Of these, ■Nitrogen uses nitrogen in the air, and ■Hydrogen uses light oil (
Partially oxidize C, tba) with air to generate hydrogen; ■ To reduce the CO concentration, use a hydrogen separation membrane to remove CO; ■ Use a pressure pump to react at high pressure. This is achieved by

[作用〕 燃料を空気により部分酸化した反応生成ガスは、−酸化
炭素、水素、窒素等からなるが、アンモニア合成原料で
ある水素、および窒素を反応生成ガスから分離する手段
として、例えば芳香族ポリイミド製水素分離膜を使用す
ることにより、好適に部分酸化反応ガスから分層するこ
とができるので、車両上においてもアンモニア合成を行
うことを可能とするものである。
[Function] The reaction product gas obtained by partially oxidizing fuel with air consists of -carbon oxide, hydrogen, nitrogen, etc., but as a means to separate hydrogen and nitrogen, which are raw materials for ammonia synthesis, from the reaction product gas, for example, aromatic polyimide can be used. By using a manufactured hydrogen separation membrane, it is possible to suitably separate the layers from the partially oxidized reaction gas, making it possible to perform ammonia synthesis even on a vehicle.

〔実施例〕〔Example〕

以下、図面を参照しつつ実施例を説明する。 Examples will be described below with reference to the drawings.

第1図は本発明のエンジン排気中の窒素酸化物処理装置
の1実施例を示す断面図、第2図は本発明が適用される
エンジン排気中の窒素酸化物処理システムの1実施例を
示す構成図である。
FIG. 1 is a sectional view showing an embodiment of the apparatus for treating nitrogen oxides in engine exhaust gas according to the present invention, and FIG. 2 shows an embodiment of the system for treating nitrogen oxides in engine exhaust gas to which the present invention is applied. FIG.

第2図において、10はディーゼルエンジン、11は軽
油タンク、12はバルブ、13は接触分解反応器、21
は水素分離膜、14はコンプレッサーエアタンク、15
は酸化反応器、16はアンモニア合成反応器、22は生
成したアンモニアを吸着脱離するための固体酸槽、17
はアンモニアボンベ、18は濃度センサ、19はバルブ
、20はNOX処理用触媒床を示す。
In FIG. 2, 10 is a diesel engine, 11 is a light oil tank, 12 is a valve, 13 is a catalytic cracking reactor, 21
is a hydrogen separation membrane, 14 is a compressor air tank, 15 is
16 is an oxidation reactor, 16 is an ammonia synthesis reactor, 22 is a solid acid tank for adsorbing and desorbing the generated ammonia, 17
18 is an ammonia cylinder, 18 is a concentration sensor, 19 is a valve, and 20 is a catalyst bed for NOx treatment.

ディーゼルエンジン10の燃料である軽油タンク11か
ら軽油をバルブ12を経て、適宜の加熱手段を設けた接
触分解反応1i13へ導入すると共に、8気圧程度に保
たれたブレーキ用コンプレッサーエアタンク14から高
圧空気を導入して軽油を接触分解反応を行わせ、水素、
軽沸点炭化水素、窒素、酸素を排出する。
Light oil, which is the fuel for the diesel engine 10, is introduced from a light oil tank 11 through a valve 12 into a catalytic cracking reaction 1i13 equipped with an appropriate heating means, and high-pressure air is introduced from a brake compressor air tank 14 maintained at about 8 atmospheres. The gas oil is introduced to perform a catalytic cracking reaction, producing hydrogen,
Emit light boiling hydrocarbons, nitrogen, and oxygen.

次に水素骨!iiI膜21で分離した水素とエアタンク
14からの窒素、酸素を酸化反応器15に導入して分解
ガス中の酸素を除去させ、次いで窒素、水素を含有する
ガスをアンモニア合成反応器16に導入してアンモニア
とし、生成したアンモニアを固体酸槽22で分離してア
ンモニアボンベ17に貯蔵する。アンモニア合成反応器
16において、未反応の窒素、水素は再びアンモニア合
成反応器16に循環させる。
Next is hydrogen bone! iii The hydrogen separated by the membrane 21 and nitrogen and oxygen from the air tank 14 are introduced into the oxidation reactor 15 to remove oxygen from the cracked gas, and then the gas containing nitrogen and hydrogen is introduced into the ammonia synthesis reactor 16. The generated ammonia is separated in a solid acid tank 22 and stored in an ammonia cylinder 17. In the ammonia synthesis reactor 16, unreacted nitrogen and hydrogen are circulated to the ammonia synthesis reactor 16 again.

そして、センサ18によりディーゼルエンジン排気中の
No、@度を検出し、電子制御装置28の制御に基づい
てその濃度に応じてバルブ19をフィードバック制御し
、アンモニアボンベ17から所定量のアンモニアを排気
ガス中に混合し、NO8処理触媒床20によりNOWを
分解して排気する。なお、エンジン回転数および負荷を
検出してバルブ19を制御するようにしてもよい、一方
、水素分離膜21で分離された軽沸点炭化水素は、エン
ジン吸気管内に導入され、シリンダ内にて先立ち燃焼を
行う、これにより排気黒煙の低減も図られる。
Then, the sensor 18 detects No. and @ degree in the diesel engine exhaust gas, and the valve 19 is feedback-controlled according to the concentration based on the control of the electronic control device 28, and a predetermined amount of ammonia is injected from the ammonia cylinder 17 into the exhaust gas. NOW is decomposed by the NO8 treatment catalyst bed 20 and exhausted. Note that the valve 19 may be controlled by detecting the engine rotation speed and load. On the other hand, the light boiling point hydrocarbons separated by the hydrogen separation membrane 21 are introduced into the engine intake pipe and are first introduced into the cylinder. Combustion is performed, which also reduces exhaust black smoke.

次に第1図により本発明のエンジン排気中の窒素酸化物
処理装置の1実施例について説明する。
Next, one embodiment of the apparatus for treating nitrogen oxides in engine exhaust gas according to the present invention will be described with reference to FIG.

前記NO,処理触媒装置20は、ハウジング30内に配
設され、該ハウジング30は、排気上流管31と排気下
流管32の間に接続されている。
The NO treatment catalyst device 20 is disposed within a housing 30, and the housing 30 is connected between an exhaust upstream pipe 31 and an exhaust downstream pipe 32.

触媒装置20とハウジング30の間には、空気流路33
が設けられ、触媒装置20には図で上下方向に排気ガス
の出入口35a、35bが形成されている。そして、出
入口35a、35bに対向して開閉弁36.37が回転
自在に設置されている。
An air flow path 33 is provided between the catalyst device 20 and the housing 30.
The catalyst device 20 is provided with exhaust gas inlets and outlets 35a and 35b in the vertical direction in the figure. Opening/closing valves 36 and 37 are rotatably installed opposite the entrances and exits 35a and 35b.

第3図は本発明の他の実施例を示している。上記実施例
と相違する点は、開閉弁36.37をソレノイドバルブ
39.40により摺動して開閉することにより、排気ガ
スの出入口35a、35bを開閉する点である。
FIG. 3 shows another embodiment of the invention. The difference from the above embodiment is that exhaust gas ports 35a and 35b are opened and closed by sliding opening and closing valves 36 and 37 using solenoid valves 39 and 40.

次に上記構成からなる窒素酸化物処理装置の作用につい
て説明すると、先ず当初は、開閉弁36.37は図示す
る如く実線の位置にあり、排気上流管31からハウジン
グ30に流入する排気ガスおよびアンモニアは、触媒装
置20内を実線矢印の如く出入口35a、35bの方向
に流れ排気下流管32から排出される。所定時間後、電
子制御装置28の制御に基づいて、開閉弁36.37は
図示する如く点線の位置に切換えられ、排気上流管31
からハウジング30に流入する排気ガスおよびアンモニ
アは、触媒装置20内を点線矢印の如く出入口35b、
35aの方向に流れ排気下流管32から排出される。以
下、この切換制御を繰り返す。
Next, the operation of the nitrogen oxide treatment apparatus having the above configuration will be explained. First, the on-off valves 36 and 37 are in the position shown by the solid line as shown in the figure, and the exhaust gas and ammonia flowing into the housing 30 from the exhaust upstream pipe 31 are removed. flows inside the catalyst device 20 in the direction of the entrances and exits 35a and 35b as shown by the solid line arrows, and is discharged from the exhaust downstream pipe 32. After a predetermined period of time, the on-off valves 36 and 37 are switched to the dotted line positions as shown in the figure under the control of the electronic control device 28, and the exhaust upstream pipe 31
Exhaust gas and ammonia flowing into the housing 30 from the inside of the catalyst device 20 as shown by the dotted line arrows include an inlet/outlet 35b,
35a and is discharged from the exhaust downstream pipe 32. Thereafter, this switching control is repeated.

なお、本発明は上記実施例に限定されるものではなく種
々の変更が可能である。
Note that the present invention is not limited to the above-mentioned embodiments, and various modifications can be made.

例えば、上記実施例においては、所定時間毎に電子制御
装置28の制御に基づいて、開閉弁36.37を切換え
ているが、排気下流管32にアンモニア濃度センサを設
け、アンモニア濃度が所定値以上になった場合に開閉弁
36.37を切換えてもよい。また、時間とアンモニア
濃度とを組み合わせて切換制御するようにしてもよい。
For example, in the embodiment described above, the on-off valves 36 and 37 are switched at predetermined intervals based on the control of the electronic control device 28, but an ammonia concentration sensor is provided in the exhaust downstream pipe 32, and an ammonia concentration sensor is provided in the exhaust downstream pipe 32 to ensure that the ammonia concentration exceeds a predetermined value. The on-off valves 36 and 37 may be switched when this occurs. Alternatively, switching control may be performed by combining time and ammonia concentration.

以上、本発明を車両用ディーゼルエンジンの排気の場合
について説明したが、ガソリンエンジン、メタノールエ
ンジンおよび水素エンジンの排気にも適用しうる。この
場合には、軽油の代わりにガソリン、メタノール、水素
を原料としてアンモニアを合成する。
Although the present invention has been described above with respect to the exhaust gas of a vehicle diesel engine, it can also be applied to the exhaust gas of a gasoline engine, a methanol engine, and a hydrogen engine. In this case, ammonia is synthesized using gasoline, methanol, and hydrogen as raw materials instead of light oil.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、アンモニアの咬着量が触
媒装置20内の下流側で多くなり、その部分が飽和状態
に達しても、開閉弁36.37が切換えられるため、触
媒装置20内の排気下流側が上流側になり、効率的にN
O,を還元し、かつ、アンモニアの大気への放出を防止
することができる。
As described above, according to the present invention, even if the amount of ammonia stuck on the downstream side of the catalyst device 20 increases and that portion reaches a saturated state, the on-off valves 36 and 37 are switched. The downstream side of the exhaust inside becomes the upstream side, and the N
It is possible to reduce O, and prevent ammonia from being released into the atmosphere.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のエンジン排気中の窒素酸化物処理装置
の1実施例を示す断面図、第2図は本発明が適用される
エンジン排気中の窒素酸化物処理システムの1実施例を
示す構成図、第3図は本発明の他の実施例を示す断面図
である。 10・・・エンジン、20・・・NOx処理用触媒装置
、31・・・排気上流管、32・・・排気下流管、33
・・・空気流路、35a、35 b ・・・出入口、3
6.37−・・開閉弁。 第 図 第2図
FIG. 1 is a sectional view showing an embodiment of the apparatus for treating nitrogen oxides in engine exhaust gas according to the present invention, and FIG. 2 shows an embodiment of the system for treating nitrogen oxides in engine exhaust gas to which the present invention is applied. The configuration diagram and FIG. 3 are cross-sectional views showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 10... Engine, 20... NOx processing catalyst device, 31... Exhaust upstream pipe, 32... Exhaust downstream pipe, 33
... Air flow path, 35a, 35 b ... Entrance/exit, 3
6.37-...Opening/closing valve. Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)燃料と空気から水素と窒素を生成しこれを原料と
して車両上でアンモニア合成を行い、排気ガス中の窒素
酸化物を選択還元する触媒装置に前記アンモニアを導入
する窒素酸化物処理装置において、前記触媒装置の出入
口に開閉弁を設け、該開閉弁を切換えることにより前記
触媒装置内の排気の流れ方向を逆転可能にすることを特
徴とするエンジン排気中の窒素酸化物処理装置。
(1) In a nitrogen oxide treatment device that generates hydrogen and nitrogen from fuel and air, synthesizes ammonia on the vehicle using the hydrogen and nitrogen as raw materials, and introduces the ammonia into a catalyst device that selectively reduces nitrogen oxides in exhaust gas. An apparatus for treating nitrogen oxides in engine exhaust gas, characterized in that an on-off valve is provided at the entrance and exit of the catalyst device, and by switching the on-off valve, the flow direction of exhaust gas in the catalyst device can be reversed.
JP2454189A 1989-02-02 1989-02-02 Nitrogen oxide treatment device in engine exhaust Expired - Lifetime JPH068605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2454189A JPH068605B2 (en) 1989-02-02 1989-02-02 Nitrogen oxide treatment device in engine exhaust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2454189A JPH068605B2 (en) 1989-02-02 1989-02-02 Nitrogen oxide treatment device in engine exhaust

Publications (2)

Publication Number Publication Date
JPH02204613A true JPH02204613A (en) 1990-08-14
JPH068605B2 JPH068605B2 (en) 1994-02-02

Family

ID=12141011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2454189A Expired - Lifetime JPH068605B2 (en) 1989-02-02 1989-02-02 Nitrogen oxide treatment device in engine exhaust

Country Status (1)

Country Link
JP (1) JPH068605B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2852057A1 (en) * 2003-03-06 2004-09-10 Bosch Gmbh Robert Vehicle fitted with device that treats exhaust gas with ammonia, used to reduce nitrogen oxides to water and nitrogen, where the ammonia is generated from hydrogen and nitrogen
WO2004099076A3 (en) * 2003-05-05 2005-05-12 Eaton Corp Methods and apparatus for small-scale synthesis of ammonia
DE102016120928A1 (en) * 2016-11-03 2018-05-03 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr SCR catalyst and method of operating an SCR catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2852057A1 (en) * 2003-03-06 2004-09-10 Bosch Gmbh Robert Vehicle fitted with device that treats exhaust gas with ammonia, used to reduce nitrogen oxides to water and nitrogen, where the ammonia is generated from hydrogen and nitrogen
WO2004099076A3 (en) * 2003-05-05 2005-05-12 Eaton Corp Methods and apparatus for small-scale synthesis of ammonia
DE102016120928A1 (en) * 2016-11-03 2018-05-03 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr SCR catalyst and method of operating an SCR catalyst
DE102016120928B4 (en) 2016-11-03 2022-09-29 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr SCR catalytic converter and method for operating an SCR catalytic converter

Also Published As

Publication number Publication date
JPH068605B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
US6955042B1 (en) CPO regenerated lean NOx trap with no moving parts
US20060201139A1 (en) Emission abatement systems and methods
WO1997022794A3 (en) A method and apparatus for reducing pollutants and contaminants in exhaust gases of an engine
RU2004120435A (en) SYSTEM AND METHODS FOR MANAGING THE CONTENT OF HARMFUL COMPONENTS IN EXHAUST GASES OF INTERNAL COMBUSTION ENGINES AND FUEL TREATMENT UNIT
WO2006022213A1 (en) Exhaust gas purification apparatus
JPH03124909A (en) Exhaust gas cleaning device for lean burn engine
US8429901B2 (en) Exhaust gas purification device
KR102373610B1 (en) Exhaust gas aftertreatment system for a vehicle operated by means of a combustion engine, in particular for a watercraft
US20100326057A1 (en) Exhaust Gas Purification Device
US5375414A (en) Automotive engine exhaust aftertreatment system including hydrocarbon adsorber with internal engine purge flow control
JPH09287435A (en) Exhaust emission control device of internal combustion engine
JPH02204613A (en) Treatment device for nitrogen oxide in engine exhaust gas
WO2005078250A1 (en) Engine exhaust emission control system
JP2010065702A (en) Plant for processing pollutant contained in exhaust gas of internal combustion engine and method using the same
JPH06212952A (en) Exhaust emission control device
JPH01280617A (en) Processing system of nitrogen oxides in exhaust emission of engine
US11686236B1 (en) Device for the reduction of ammonia and nitrogen oxides emissions
JP2008045445A (en) Exhaust emission control device
KR102623977B1 (en) Methane oxidation catalyst regeneration device and regeneration method
JP2001140630A (en) Exhaust emission control device for internal combustion engine
JP2009275686A (en) Exhaust gas treatment method and exhaust gas treatment device
JP2003161143A (en) Exhaust emission control device for gas engine
JPH11197455A (en) Method and apparatus for treating organo-halogenous gas
KR102164367B1 (en) Selective Catalytic Reduction System for Energy Savings During the Catalyst Regeneration
JPH0626329A (en) Catalytic converter and exhaust emission control device