JPH02204354A - Refractory - Google Patents

Refractory

Info

Publication number
JPH02204354A
JPH02204354A JP1021933A JP2193389A JPH02204354A JP H02204354 A JPH02204354 A JP H02204354A JP 1021933 A JP1021933 A JP 1021933A JP 2193389 A JP2193389 A JP 2193389A JP H02204354 A JPH02204354 A JP H02204354A
Authority
JP
Japan
Prior art keywords
refractory
thermal stress
particles
aggregate
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1021933A
Other languages
Japanese (ja)
Inventor
Seijiro Tanaka
征二郎 田中
Tatsuo Kawakami
川上 辰男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Refractories Corp
Original Assignee
Kawasaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Refractories Co Ltd filed Critical Kawasaki Refractories Co Ltd
Priority to JP1021933A priority Critical patent/JPH02204354A/en
Publication of JPH02204354A publication Critical patent/JPH02204354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a refractory having corrosion resistance, wear resistance and thermal spalling resistance by constituting aggregate of such raw material particles that fine cracks are allowed to exist in the inside by exerting thermal stress. CONSTITUTION:Fine cracks are allowed to exist in the inside of raw material particles by previously exerting thermal stress. These raw material particles having the fine cracks are utilized as one part or total quantities of aggregate which consists of the coarse and intermediate particles of refractory having a particle structure in a range of fine particles from the coarse particles. Thereby propagation of a crack 3 resulting from thermal stress in refractory is progressed through the matrix 2 made of the fine particles and absorbed by the aggregate 1 and distance of propagation is made long. When the thermal stress is weak, this thermal stress is absorbed in refractory. Therefore such refractory obtained that corrosion resistance and wear resistance are equipped and also thermal spalling resistance is equipped.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は工業用炉等に用いられる耐火物、特に耐熱衝撃
性に研れた性質を有する耐火物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a refractory used in industrial furnaces and the like, and particularly to a refractory having improved thermal shock resistance.

〔従来技術とその課題〕[Conventional technology and its issues]

耐火物は周知の如く、3つの大きな損傷原因により損耗
していく、即ち、溶損、磨耗、熱スポーリングの3損傷
で、このいずれにも優れる耐火物を得ることが、本分野
の究極の目標となっているが現実においては不可能な状
態である。例えば、MgO焼成れんがのように溶損に強
い性質を付与すれば、耐熱スポーリング性に著しく劣り
、剥離損耗により寿命の低下をきたしている。唯一、最
近、その使用量が増しているMg0−C系等のカーボン
含有れんがの場合には、その目標に一歩近づいた耐火物
とは言えるが、まだ、そのトータル寿命に対してユーザ
ーからの強い不満があることは否定できない事実である
As is well known, refractories are subject to wear and tear due to three major causes of damage: melting, abrasion, and thermal spalling, and the ultimate challenge in this field is to obtain refractories that are excellent in all of these areas. This is a goal, but in reality it is impossible. For example, when MgO fired bricks are imparted with properties that are resistant to melting damage, they are significantly inferior in heat spalling resistance, and their lifespan is shortened due to peeling and wear. In the case of carbon-containing bricks such as Mg0-C, whose usage has been increasing recently, it can be said that the refractories have come one step closer to achieving this goal, but there are still strong concerns from users regarding their total service life. It is an undeniable fact that there is dissatisfaction.

また、特公昭57−27058号公報に開示されている
ように、耐火物そのものに冷熱応力を与えて耐熱スポー
リング性を向上させようとする方法もある。この方法で
は、一応、満足できる結果が得られているが、大量処理
、高温処理が要求される近年の状況からは、未だ、不満
足が残る。その原因は耐火物のマトリックス自体にクラ
ックを生じさせているためであり、耐食性、耐磨耗性の
低下は避けられない。
Furthermore, as disclosed in Japanese Patent Publication No. 57-27058, there is a method of applying cold stress to the refractory itself to improve its heat spalling resistance. Although satisfactory results have been obtained with this method, it is still unsatisfactory due to the recent situation in which large-scale processing and high-temperature processing are required. The reason for this is that cracks are generated in the refractory matrix itself, and a decrease in corrosion resistance and abrasion resistance is unavoidable.

本発明は上記従来の事情に鑑みて提案されたものであっ
て、耐食性、耐磨耗性を備えるとともに、耐熱スポーリ
ング性をも備えた耐火物を提供することを目的とする。
The present invention was proposed in view of the above-mentioned conventional circumstances, and an object of the present invention is to provide a refractory having corrosion resistance, abrasion resistance, and heat spalling resistance.

〔問題を解決するための手段〕[Means to solve the problem]

この発明は上記目的を達成するために、あらかじめ熱応
力を加えることにより、内部に微小クラックを存在せし
めた原料粒を骨材として一部又は全量使用するようにし
ている。
In order to achieve the above object, the present invention uses part or all of the raw material grains, which have been subjected to thermal stress in advance so as to have minute cracks inside, as the aggregate.

〔作 用〕[For production]

耐火物の粒子構造はいずれも粗粒子から微粒子にわたっ
ており、その内の骨材と言われる粗〜中粒子は、特に、
密度の向上に伴う耐食性の向上に幾分寄与しているだけ
で、強度(耐磨耗性)、耐熱スポーリング性にはほとん
ど、寄与していないと言える。一方、微粒子より構成さ
れるマトリックスは耐食性、耐磨耗性、耐スポーリング
性の3つの要素のいずれにも関与している。即ち、マト
リックスがポーラスで結合の弱い状態では当然、耐食性
、そして耐磨耗性に弱いものとなり、又、熱応力の発生
も耐火物中の骨材を起点として起こるのではなく、マト
リックスの熱勾配から起こることから考えると、マトリ
ックスの構成状態は上記、3要素を支配していると言え
る。
The particle structure of all refractories ranges from coarse particles to fine particles, and the coarse to medium particles, which are called aggregate, are especially
It can be said that it only contributes to some extent to the improvement in corrosion resistance that accompanies the improvement in density, and hardly contributes to strength (wear resistance) or heat spalling resistance. On the other hand, the matrix composed of fine particles is involved in all three elements: corrosion resistance, abrasion resistance, and spalling resistance. In other words, if the matrix is porous and has weak bonds, it will naturally have poor corrosion resistance and wear resistance, and the generation of thermal stress will not originate from the aggregate in the refractory, but from the thermal gradient of the matrix. Considering what happens from , it can be said that the configuration state of the matrix controls the above three elements.

ここで、マトリックスを強固にして、耐食性、耐磨耗性
を上げれば、耐熱スポーリング性が劣化するのは明らか
であるが、この耐熱スポーリング性は耐食性、耐磨耗性
には、はとんど影響を及ぼさない骨材の状態にも影響さ
れる。
It is clear that if the matrix is strengthened to improve corrosion resistance and abrasion resistance, the heat spalling resistance will deteriorate, but this heat spalling resistance has a significant effect on corrosion resistance and abrasion resistance. It is also affected by the condition of the aggregate, which does not affect most of the time.

即ち、第1図に示すように耐火物の中での熱応力による
クラック3の伝播はマトリックス2をつきすすみ大きな
割れとなって、最終的に剥離となるが、この際、第2図
に示すように骨材粒子1はよほど大きな熱応力がかから
ない限り、割れずにそのままの形で残存する。このこと
は、通常、マトリックス2内で伝播しているクラックが
骨材の所で、曲がって選択的にマトリックスのみを伝播
していることを示すものである。当然、このクラック3
の伝播距離が短かければ、短い程、耐火物のクラック3
による剥離が早くなることにっながることは明白である
That is, as shown in Fig. 1, the crack 3 propagates in the refractory due to thermal stress, penetrates the matrix 2, becomes a large crack, and finally peels off. As such, the aggregate particles 1 remain as they are without cracking unless a very large thermal stress is applied to them. This indicates that cracks that normally propagate within the matrix 2 bend at the aggregate and selectively propagate only through the matrix. Of course, this crack 3
The shorter the propagation distance, the more cracks in the refractory3
It is clear that this leads to faster peeling.

ここで、この骨材1にあらかじめ、内部クラックを存在
せしめ、マトリックス2から伝播して来た新たな熱応力
によるクラック3を吸収させれば、第3図に示すように
、伝播距離が長くなり、その熱応力の弱い場合には耐火
物内にて、熱応力を吸収することになる。
Here, if internal cracks are made to exist in the aggregate 1 in advance and the cracks 3 due to new thermal stress propagated from the matrix 2 are absorbed, the propagation distance becomes longer as shown in Fig. 3. If the thermal stress is weak, the thermal stress will be absorbed within the refractory.

ここで、骨材粒に内在させる微小クシツクの量、及び大
きさは可能なかぎり多く、かつ、小さい程好ましいこと
は明らかであるが、それを機械的な応力でもって発生さ
せることは不可能に近いため、比較的コントロールのし
易い熱応力を使用する。
Here, it is clear that it is preferable that the amount and size of microscopic clumps contained in the aggregate grains be as large as possible and as small as possible, but it is impossible to generate them using mechanical stress. Thermal stress is used because it is relatively easy to control.

即ち、耐火物原料は使用前に粉砕、整粒して使用するこ
とがほとんどであるが、その際の機械的粉砕では粒は割
れるが、その粒内に、クラックを残存せしめることはで
きない。一方、使用前の骨材粒をある温度に一旦加熱し
、冷却するとその時の温度差の大小によって、骨材粒内
に肉眼では認められない微小クラックが多く発生する。
That is, in most cases, refractory raw materials are crushed and sized before use, and although the grains break when mechanically crushed, cracks cannot remain within the grains. On the other hand, when aggregate particles before use are heated to a certain temperature and then cooled, many microcracks that cannot be seen with the naked eye occur within the aggregate particles depending on the magnitude of the temperature difference at that time.

従って、クラックの量、大きさはこの加熱、冷却の温度
差をコントロールすることにより、可能となり、目的に
応じて熱処理すれば良いことになる。又、耐火物中に含
まれる上記微小クラックを内在せしめた骨材量は、その
耐火物に必要な耐スポーリング性を付与させる量のみで
十分であるが、もちろん、全量、当該粒に置き換えても
問題はない。 なお、対象となる耐火物、及び、原料粒
は上記理由により現存する全てに適用できることは言う
までもない。
Therefore, the amount and size of cracks can be controlled by controlling the temperature difference between heating and cooling, and heat treatment can be performed depending on the purpose. In addition, the amount of aggregate containing the microcracks contained in the refractory is sufficient to impart the necessary spalling resistance to the refractory, but of course, the entire amount can be replaced with the particles. There is no problem. It goes without saying that the present invention can be applied to all existing refractories and raw material grains for the above reasons.

C実施例〕 本発明を実施例にて示す。C Example] The present invention will be illustrated by examples.

なお、基本配合は次の例で以て行った。The basic formulation was carried out in the following example.

ここで、使用したMg0粒の組成は である。Here, the composition of the Mg0 grains used is It is.

基本配合に用いた粒子の内、5〜1m、m、1〜0. 
5rr+rn粒をそれぞれ、あらかじめ、温度差が50
0〜700℃ある、第4図に示すような小型のロータリ
ーキルン10にて処理した。この粒子は外観上、クラッ
ク等は全く認められないが、顕微鏡にて観察すると数μ
巾のクラックが1粒子内に数十〜数百本内在しているこ
とが認められた。
Among the particles used in the basic formulation, 5 to 1 m, 1 to 0.
Each of the 5rr+rn grains was prepared in advance with a temperature difference of 50%.
The process was carried out in a small rotary kiln 10 as shown in FIG. 4, which has a temperature of 0 to 700°C. These particles do not show any cracks or the like, but when observed under a microscope, they are several μm thick.
It was observed that tens to hundreds of wide cracks were present in one particle.

なお、比重を計ると、3.27で処理前とは、はとんど
変化していないことを確認した。当処理済み骨材を基本
配合に置き換えて常法どおり、ロールミキサーにて混合
後、65X114X230mmの形状に成形した。成形
圧は800 k g f / cm2であった。
When the specific gravity was measured, it was found to be 3.27, which was found to be almost unchanged from before the treatment. The treated aggregate was replaced with the basic mixture and mixed in a roll mixer in the usual manner, and then molded into a shape of 65 x 114 x 230 mm. The molding pressure was 800 kgf/cm2.

その後、110℃X24Hr乾燥し、1700℃で10
Hr焼成した。このれんがの物性を実施別品■として第
1表に示す。
After that, it was dried at 110°C for 24 hours, and then dried at 1700°C for 10 hours.
Fired for hr. The physical properties of this brick are shown in Table 1 as Example 3.

また、実施別品■の配合物中Mg05〜1mmの40w
t%のみを処理粉とし残りは未処理粒とし、以下の工程
は実施例1と同じとした実施別品■の物性を第1表に示
す。
In addition, 40w of Mg05-1mm in the formulation of the implementation product ■
Table 1 shows the physical properties of Example 2, in which only t% was treated powder and the rest was untreated powder, and the following steps were the same as in Example 1.

更に、未処理粒を使って、基本配合の通りれんがを作り
、比較例品としてその物性を第1表に示す。
Furthermore, bricks were made using the untreated grains according to the basic formulation, and their physical properties are shown in Table 1 as a comparative example.

第1表(物性値) 第1表から明らかなよう、実施別品■、■は比重、曲げ
強さ(耐磨耗性)、耐食性ともに従来と遜色ないにもか
かわらず、耐熱スポーリング性が格段に優れている。
Table 1 (Physical property values) As is clear from Table 1, although the specific gravity, bending strength (abrasion resistance), and corrosion resistance of the processed products ■ and ■ are comparable to conventional products, they have poor heat spalling resistance. It's extremely good.

〔発明の効果〕〔Effect of the invention〕

本発明によるれんがは骨材にのみ熱応力を与えているの
で、優れた耐熱スポーリング性を示し、いずれの工業用
炉にも適用できる。
Since the brick according to the present invention applies thermal stress only to the aggregate, it exhibits excellent heat spalling resistance and can be applied to any industrial furnace.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は耐火物中でのクラックの伝播
状況を示す図であり、第4図は本願耐火物に使用する原
料粒の製造工程を示す図である。
FIGS. 1, 2, and 3 are diagrams showing the propagation of cracks in the refractory, and FIG. 4 is a diagram showing the manufacturing process of raw material grains used in the refractory of the present invention.

Claims (1)

【特許請求の範囲】 〔1〕あらかじめ熱応力を加えることにより、内部に微
小クラックを存在せしめた原料粒を骨材として一部又は
全量使用することを特徴とする耐火物。
[Scope of Claims] [1] A refractory characterized by using part or all of the raw material grains, which have been subjected to thermal stress in advance to form microcracks therein, as aggregate.
JP1021933A 1989-01-30 1989-01-30 Refractory Pending JPH02204354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1021933A JPH02204354A (en) 1989-01-30 1989-01-30 Refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1021933A JPH02204354A (en) 1989-01-30 1989-01-30 Refractory

Publications (1)

Publication Number Publication Date
JPH02204354A true JPH02204354A (en) 1990-08-14

Family

ID=12068851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1021933A Pending JPH02204354A (en) 1989-01-30 1989-01-30 Refractory

Country Status (1)

Country Link
JP (1) JPH02204354A (en)

Similar Documents

Publication Publication Date Title
CN108484138A (en) A kind of sliding plate brick and preparation method thereof adding composite alumina micro mist and carbon source
JPS6024068B2 (en) Method for producing spalling-resistant dense refractories
CN101323530A (en) Fused quartz block for coke oven hot repair
CN111362676A (en) High-wear-resistance quick-drying refractory castable and preparation method thereof
CN1050591C (en) Fired microporous carbon-aluminium brick
JPH0925137A (en) High-strength rock wool and its production
Zaichuk et al. Patterns in the Synthesis Processes, the Microstructure and Properties of Strontium Anorthite Ceramics Modified by Glass of Spodumene Composition
KR102351893B1 (en) Siliceous composition and method for obtaining same
CN106278314A (en) A kind of intermediate frequency furnace coil clay and preparation method thereof
EP2792656A1 (en) Method for producing silicon carbide whisker-reinforced refractory composition
CN110627484A (en) Refractory brick and preparation method thereof
CN107434404A (en) A kind of zirconium composite high-performance electric smelting magnesia calcium zirconium brick and its manufacture method
NO116890B (en)
Aslanoğlu Performance of a ceramic frit anti-oxidation coating on a MgO–C refractory brick
US3365318A (en) Low temperature burned refractory brick and method of making the same
JPH02204354A (en) Refractory
JPH0138073B2 (en)
CN107382345A (en) A kind of MgO MA aggregate processing methods of micro-nano spinelle toughness reinforcing
US5180698A (en) Method of preparing refractory chromium-containing material
JP2004508271A (en) Refractory
US4334858A (en) Prevention of thermal spalling in ceramic products
JPH01305851A (en) Production of unfired mgo-c brick
CN108610072A (en) A kind of composite refractory material and preparation method thereof
JP3143666B2 (en) Refractory materials for steelmaking furnaces
KR20130015707A (en) Ceramic welding composition