JPH02204305A - Method for purifying gaseous hydride - Google Patents
Method for purifying gaseous hydrideInfo
- Publication number
- JPH02204305A JPH02204305A JP1022685A JP2268589A JPH02204305A JP H02204305 A JPH02204305 A JP H02204305A JP 1022685 A JP1022685 A JP 1022685A JP 2268589 A JP2268589 A JP 2268589A JP H02204305 A JPH02204305 A JP H02204305A
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- gas
- hydride
- hydride gas
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000004678 hydrides Chemical class 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims abstract description 19
- QDWJUBJKEHXSMT-UHFFFAOYSA-N boranylidynenickel Chemical compound [Ni]#B QDWJUBJKEHXSMT-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000007789 gas Substances 0.000 claims description 59
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 31
- 239000001301 oxygen Substances 0.000 claims description 31
- 229910052760 oxygen Inorganic materials 0.000 claims description 31
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract description 57
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 abstract description 12
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 abstract description 11
- 229910000073 phosphorus hydride Inorganic materials 0.000 abstract description 6
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract description 4
- 239000011261 inert gas Substances 0.000 abstract description 4
- 229910000077 silane Inorganic materials 0.000 abstract description 4
- 229910015346 Ni2B Inorganic materials 0.000 abstract 1
- WRLJWIVBUPYRTE-UHFFFAOYSA-N [B].[Ni].[Ni] Chemical compound [B].[Ni].[Ni] WRLJWIVBUPYRTE-UHFFFAOYSA-N 0.000 abstract 1
- 229910052759 nickel Inorganic materials 0.000 description 24
- 238000000746 purification Methods 0.000 description 17
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 12
- 239000003054 catalyst Substances 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- 229910000480 nickel oxide Inorganic materials 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000012535 impurity Substances 0.000 description 9
- 238000007670 refining Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 5
- 238000012856 packing Methods 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000005909 Kieselgur Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910021536 Zeolite Inorganic materials 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002309 gasification Methods 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- SPVXKVOXSXTJOY-UHFFFAOYSA-N selane Chemical compound [SeH2] SPVXKVOXSXTJOY-UHFFFAOYSA-N 0.000 description 3
- 229910000058 selane Inorganic materials 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- -1 OI)2 Chemical class 0.000 description 2
- JLDSOYXADOWAKB-UHFFFAOYSA-N aluminium nitrate Chemical compound [Al+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O JLDSOYXADOWAKB-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- MYZAXBZLEILEBR-RVFOSREFSA-N (2S)-1-[(2S,3R)-2-[[(2R)-2-[[2-[[(2S)-2-[(2-aminoacetyl)amino]-5-(diaminomethylideneamino)pentanoyl]amino]acetyl]amino]-3-sulfopropanoyl]amino]-3-hydroxybutanoyl]pyrrolidine-2-carboxylic acid Chemical compound C[C@@H](O)[C@H](NC(=O)[C@H](CS(O)(=O)=O)NC(=O)CNC(=O)[C@H](CCCN=C(N)N)NC(=O)CN)C(=O)N1CCC[C@H]1C(O)=O MYZAXBZLEILEBR-RVFOSREFSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 101000654316 Centruroides limpidus Beta-toxin Cll2 Proteins 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000003682 fluorination reaction Methods 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 150000002816 nickel compounds Chemical class 0.000 description 1
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 1
- 229910021508 nickel(II) hydroxide Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 108700002400 risuteganib Proteins 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Landscapes
- Separation Of Gases By Adsorption (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Silicon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は水素化物ガスの精製方法に間し、さらに詳細に
は水素化物ガス中に不純物として含有される酸素を極低
濃度まで除去しうる水素化物ガスの精製方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for purifying hydride gas, and more specifically, to a method for purifying hydride gas, and more specifically, to a method for removing oxygen contained as an impurity in hydride gas to an extremely low concentration. This invention relates to a method for purifying hydride gas.
アルシン、ホスフィン、セレン化水素およびシランなど
の水素化物ガスはガリウム−砒素(GaAs )などの
化合物半導体などを製造するための原料およびイオン注
入用ガスなどとして重要なものであり、その使用量が年
々増加しつつあると同時に半導体の高度集積化に伴い、
不純物の含有量の極めて低いものが要求されている。Hydride gases such as arsine, phosphine, hydrogen selenide, and silane are important as raw materials and ion implantation gases for manufacturing compound semiconductors such as gallium-arsenide (GaAs), and the amount used is increasing year by year. With the increasing integration of semiconductors,
Extremely low impurity content is required.
半導体製造時に使用される水素化物ガスは一般的には純
水素化物ガスの他、水素ガスまたは不活性ガスで稀釈さ
れた形態で市販されている。Hydride gases used in semiconductor manufacturing are generally commercially available in diluted form with hydrogen gas or inert gas, in addition to pure hydride gas.
これらの水素化物ガス中には不純物として酸素および水
分などが含有されており、このうち水分は合成ゼオライ
トなどの脱湿剤により除去することが可能である。These hydride gases contain impurities such as oxygen and moisture, of which moisture can be removed using a dehumidifying agent such as synthetic zeolite.
市販の精製水素化物ガス中の酸素含有量は通常はlOp
pm以下であるが、最近のボンベ入りの水素化物ガスな
どでは、その酸素含有量は0.1〜0.5ppm+と比
較的低いものも市販されている。The oxygen content in commercially available purified hydride gas is usually lOp
pm or less, but recent hydride gases in cylinders are commercially available with relatively low oxygen contents of 0.1 to 0.5 ppm+.
水素化物ガス中に含有される酸素を効率よく除去する方
法についての公知技術は殆ど見当たらないが、アルシン
に対して吸着能を有する物質として活性炭、合成ゼオラ
イトにアルシンを接触させて酸素をippm以下まで除
去するアルシンの精製方法が提案されている(特開昭6
2−78116号公報)。There are almost no known techniques for efficiently removing oxygen contained in hydride gas, but activated carbon is a substance that has an adsorption capacity for arsine, and synthetic zeolite is brought into contact with arsine to reduce oxygen to below ippm. A purification method for removing arsine has been proposed (Japanese Unexamined Patent Application Publication No. 1989-1999)
2-78116).
しかしながら、酸素含有量がlppmを切る程度では最
近の半導体製造プロセスにおける要求に充分に対応する
ことはできず、さらに、0.lppm以下とすることが
強く望まれている。However, an oxygen content of less than 1 ppm cannot sufficiently meet the demands of recent semiconductor manufacturing processes; It is strongly desired to reduce the amount to 1 ppm or less.
また、これらのガスはボンベの接続時や配管の切替時な
ど半導体製造装置への供給過程において空気など不純物
の混入による汚染もあるため、装置の直前で不純物を最
終的に除去することが望ましい。In addition, these gases can be contaminated by impurities such as air during the supply process to semiconductor manufacturing equipment, such as when connecting cylinders or switching piping, so it is desirable to finally remove impurities immediately before the equipment.
本発明者らは、水素化物ガス中に含有される酸素を極低
濃度まで効率よく除去するべく鋭意研究を重ねた結果、
水素化物ガスをニッケルのほう素化物と接触させること
により、酸素濃度を0.1ppgu以下、さらには0.
01ppm以下まで除去しうろことを見い出し、本発明
を完成した。As a result of intensive research to efficiently remove oxygen contained in hydride gas to an extremely low concentration, the present inventors found that
By bringing the hydride gas into contact with nickel boride, the oxygen concentration can be reduced to 0.1 ppgu or less, or even 0.1 ppgu.
The present invention was completed by discovering a scale that can be removed to 0.01 ppm or less.
すなわち本発明は、粗水素化物ガスをニッケルのほう素
化物と接触させて、該粗水素化物ガス中に含有される酸
素を除去することを特徴とする水素化物ガスの精製方法
である。That is, the present invention is a method for purifying a hydride gas, which comprises bringing the crude hydride gas into contact with a nickel boride to remove oxygen contained in the crude hydride gas.
本発明は水素化物ガス単独、水素(水素ガスペース)お
よび窒素、アルゴンなどの不活性ガス(不活性ガスペー
ス〉で稀釈された水素化物ガス(以下総称して粗水素化
物ガスと記す)中に含有される酸素の除去に適用される
。The present invention can be applied to hydride gas alone, hydrogen (hydrogen gas space), and hydride gas diluted with an inert gas (inert gas space) such as nitrogen or argon (hereinafter collectively referred to as crude hydride gas). Applicable for removing contained oxygen.
水素化物ガスはアルシン、ホスフィン、セレン化水素お
よびシランなとであり、主に半導体製造プロセスなどで
使用される水素化物ガスである。Hydride gases include arsine, phosphine, hydrogen selenide, and silane, and are mainly used in semiconductor manufacturing processes.
本発明においてニッケルのほう素化物とはNt2Bなど
としてどとして一般的に知られているほう化ニッケルお
よびニッケルにほう素がその他の種々な形態で結合した
ものである。In the present invention, nickel boride refers to nickel boride commonly known as Nt2B, and nickel combined with boron in various other forms.
ニッケルのほう素化物を得るには種々な方法があるが、
これらのうちでも簡便な方法として例えばニッケルにジ
ボランを接触させることによっても容易にほう素化物を
得ることができる。There are various methods to obtain nickel boride, but
Among these methods, a boronide can be easily obtained by, for example, bringing diborane into contact with nickel.
この場合のニッケルとしては金属ニッケルまたはニッケ
ルの酸化物など還元され易いニッケル化合物を主成分と
するものであればよい、また、ニッケル以外の金属成分
として銅、クロム、鉄、コバルトなどが少量含有されて
いていもよい
これらのニッケルは単独で用いてもよく、また、触媒単
体などに担持させた形で用いてもよいが、ニッケルの表
面とガスとの接触効率を高める目的などから、通常は触
媒担体などに担持させた形態が好ましい。In this case, the nickel may be one whose main component is metallic nickel or a nickel compound that is easily reduced, such as nickel oxide.Also, metal components other than nickel such as copper, chromium, iron, cobalt, etc. may be contained in small amounts. Nickel may be used alone or supported on a single catalyst, but for the purpose of increasing the contact efficiency between the nickel surface and the gas, it is usually used as a catalyst. Preferably, it is supported on a carrier or the like.
ニッケルを担体に担持させる方法としては、例えば、ニ
ッケル塩の水溶液中に珪藻土、アルミナ、シリカアルミ
ナ、アルミノシリケートおよびカルシウムシリケートな
どの担体粉末を分散させ、さらにアルカリを添加して担
体の粉末上にニッケル成分を沈着させ、次いで濾過し、
必要に応じて水洗して得たケーキを120〜150℃で
乾燥後、 300℃以上で焼成し、この焼成物を粉砕
する、あるいはNiCO3,Ni(OH)2.N1(N
OI)2などの無機塩、NiC2O4,N1(CH3C
OO)2などの有機塩を焼成し、粉砕した後、これに耐
熱性セメントを混合し、焼成するなどが挙げられる。As a method for supporting nickel on a carrier, for example, carrier powder such as diatomaceous earth, alumina, silica alumina, aluminosilicate, and calcium silicate is dispersed in an aqueous solution of a nickel salt, and then an alkali is added to deposit nickel on the carrier powder. depositing the ingredients and then filtering;
The cake obtained by washing with water as necessary is dried at 120 to 150°C, then baked at 300°C or higher, and the baked product is crushed, or NiCO3, Ni(OH)2. N1(N
Inorganic salts such as OI)2, NiC2O4, N1(CH3C
Examples include firing an organic salt such as OO)2, pulverizing it, mixing it with heat-resistant cement, and firing it.
これらは、通常は、押出し成型、打錠成型などで成型体
とされ、そのまま、または、必要に応じて適当な大きさ
に破砕して使用される。成型方法としては乾式法あるい
は湿式法を用いることができ、その際、少量の水、滑材
などを使用してもよい。These are usually made into molded bodies by extrusion molding, tablet molding, etc., and are used as they are or, if necessary, after being crushed into an appropriate size. A dry method or a wet method can be used as a molding method, and in this case, a small amount of water, a lubricant, etc. may be used.
また、ニッケル系触媒として例えば水蒸気変成触媒、
C11〜2−03 (Ni0−セメント) 、
C1l−2−06(NiO−耐火物) 、 Cll
−2(Nf−カルシウムlルミネート) 、 C1
19(Ni−フルミナ ) ; 水素化触媒、 C46
−5(Ni〜ミルシリカアルミナ 、 C46−6(N
i−カルシウムシリカ ) 、 C46−7(Ni
−珪藻土) 、 C46−8(Ni−シリカ)
、 C36(Ni−Co−Cr−フルミナ);ガス化触
媒、XC99(NiO) :水素化変成触媒、C211
7(Ni−Mo−アルミナ)〔以上、東洋CCI■製〕
および水素化触媒、N−111(Ni−珪藻土);ガス
化変成触媒、N−174(NiO);ガス化触媒、N−
185(NiO) C以上、日揮■製〕など種々のもの
が市販されているのでこれらの中からから適当なものを
選択して使用してもよい。In addition, examples of nickel-based catalysts include steam shift catalysts,
C11~2-03 (Ni0-cement),
C1l-2-06 (NiO-refractory), Cll
-2 (Nf-calcium luminate), C1
19 (Ni-Flumina); Hydrogenation catalyst, C46
-5(Ni~mil silica alumina, C46-6(N
i-calcium silica), C46-7(Ni
-diatomaceous earth), C46-8 (Ni-silica)
, C36 (Ni-Co-Cr-Flumina); gasification catalyst, XC99 (NiO): hydrogenation shift catalyst, C211
7 (Ni-Mo-Alumina) [All manufactured by Toyo CCI■]
and hydrogenation catalyst, N-111 (Ni-diatomaceous earth); gasification conversion catalyst, N-174 (NiO); gasification catalyst, N-
185 (NiO) C or higher, manufactured by JGC Corporation], various materials are commercially available, and an appropriate one may be selected from among these and used.
要は還元ニッケル、酸化ニッケルなどが微細に分散され
て、その表面積が大きくガスとの接触効率の高い形態の
ものであればよい。In short, it is sufficient that reduced nickel, nickel oxide, or the like is finely dispersed, has a large surface area, and has a high contact efficiency with gas.
触媒の比表面積としては通常は、BET法で10〜30
0 m” / Hの範囲のもの、好ましくは30〜25
0 m” / gの範囲のものである。The specific surface area of the catalyst is usually 10 to 30 by the BET method.
0 m”/H, preferably 30-25
It is in the range of 0 m”/g.
また、ニッケルの含有量は金属ニッケル換算で通常は、
5〜95wt%、好ましくは20〜95wt%である。In addition, the nickel content is usually calculated in terms of metallic nickel.
It is 5 to 95 wt%, preferably 20 to 95 wt%.
ニッケルの含有量が5wt%よりも少なくなると脱酸素
能力が低くなり、また、95wt%よりも高くなると水
素による還元の際にシンタリングが生じて活性が低下す
る虞れがある。If the nickel content is less than 5 wt%, the deoxidizing ability will be low, and if it is more than 95 wt%, sintering may occur during reduction with hydrogen, leading to a decrease in activity.
ニッケルのほう素化は通常は、還元ニッケル、酸化ニッ
ケルなどにジボランを接触させることによっておこなう
ことができるが、酸化ニッケルなどの場合には、あらか
じめ水素還元によって還元ニッケルとすることが好まし
い。Boronation of nickel can usually be carried out by bringing diborane into contact with reduced nickel, nickel oxide, etc., but in the case of nickel oxide, etc., it is preferable to convert nickel into reduced nickel by hydrogen reduction in advance.
水素還元に際しては、例えば350℃以下程度で水素−
窒素の混合ガスを空筒線速度(LV)1 cm/ se
c程度で通すことによっておこなえるが、発熱反応であ
るため温度が急上昇しないよう注意が必要である。また
、還元を水素ベースのジボランでおこなうことにより、
はう素化ら同時におこなうことができるので好都合であ
る。For hydrogen reduction, for example, hydrogen-
A mixed gas of nitrogen at a vacuum linear velocity (LV) of 1 cm/se
This can be done by passing the reaction at a temperature of approximately In addition, by performing the reduction with hydrogen-based diborane,
This is convenient because boronization can be carried out at the same time.
はう素化は通常は、ニッケルまたはこれらを担体に担持
させたものを精製筒などの簡に充填し、これにジボラン
またはジボラン含有ガスを通すことによっておこなわれ
る。Generally, boronation is carried out by simply filling a refining tube with nickel or nickel supported on a carrier, and passing diborane or a diborane-containing gas through the tube.
はう素化に用いるジボランの濃度は、通常は0.1%以
上、好ましくは1%以上のものが用いられる。ジボラン
濃度が0.1%よりも低くなると反応を終了させるまで
に時間を要し不経済である。The concentration of diborane used for boronation is usually 0.1% or more, preferably 1% or more. When the diborane concentration is lower than 0.1%, it takes time to complete the reaction, which is uneconomical.
はう素化は常温でおこなうことができるが、発熱反応で
あり、ジボラン濃度が高い程温度が上昇し易いため、通
常は250℃以下、好ましくは200℃以下に保たれる
ようガスの流速を調節しながらおこなうことが好ましい
。Boridination can be carried out at room temperature, but it is an exothermic reaction, and the higher the diborane concentration, the more likely the temperature will rise. It is preferable to do this while adjusting.
はう素化の終了は発熱量の減少および筒の出口からのジ
ボランの流出量の増加などによって知ることができる。Completion of boronation can be recognized by a decrease in calorific value and an increase in the amount of diborane flowing out from the outlet of the cylinder.
本発明において、はう素化されたニッケルをあらためて
別の精製筒に充填し、これに粗水素化物ガスを通して酸
素ゆ除去精製をおこなってもよいがほう素化合物は毒性
が強く取扱に細心の配慮を要することなどから、はう素
化は最初から水素化物ガスの精製筒でおこない、はう素
化終了後、引き続いて粗水素化物ガスを供給して酸素除
去精製をおこなうことが好ましい。In the present invention, the boronated nickel may be refilled in a separate refining cylinder and the crude hydride gas passed therethrough for oxygen removal purification, but boron compounds are highly toxic and must be handled with great care. Therefore, it is preferable to carry out the boronation from the beginning in a hydride gas purification column, and after the completion of the fluorination, to carry out oxygen removal purification by subsequently supplying the crude hydride gas.
水素化物ガスの精製は、通常は、ニッケルのほう素化物
が充填された精製筒に粗水素化物ガスを流すことによっ
ておこなわれ、粗水素化物ガスがニッケルのほう素化物
と接触することによって粗水素化物ガス中に不純物とし
て含有されるvI素が除去される。The purification of hydride gas is usually carried out by flowing the crude hydride gas through a purification column filled with nickel boron, and the crude hydride gas comes into contact with the nickel boron to produce crude hydrogen. vI element contained as an impurity in the compound gas is removed.
本発明に適用される粗水素化物ガス中の酸素濃度は通常
は1100pp以下である。酸素濃度がこれよりも高く
なると発熱量が増加するため条件によっては除熱手段が
必要となる。The oxygen concentration in the crude hydride gas applied to the present invention is usually 1100 pp or less. If the oxygen concentration is higher than this, the amount of heat generated increases, so depending on the conditions, heat removal means may be required.
精製筒に充填されるニッケルのほう素化物の充填長は、
実用上通常は50〜1500++uaとされる。The packing length of the nickel boride packed into the refining cylinder is:
In practice, it is usually 50 to 1500++ ua.
充填長が50n+mよりも短くなると酸素除去率が低下
する虞れがあ゛す、また、1500mmよりも長くなる
と圧力損失が大きくなり過ぎる虞れがある。If the filling length is shorter than 50n+m, there is a risk that the oxygen removal rate will decrease, and if it is longer than 1500mm, there is a risk that the pressure loss will become too large.
精製時の粗水素化物ガスの空筒線速度(LV>は供給さ
れる粗水素化物ガス中の酸素濃度および操作条件などに
よって異なり一概に特定はできないが、通常はlooc
m/ sec以下、好ましくは30cm/ see以下
である。The cylinder linear velocity (LV>) of the crude hydride gas during purification varies depending on the oxygen concentration in the supplied crude hydride gas and the operating conditions, etc., and cannot be unconditionally determined, but it is usually determined by LOOC.
m/sec or less, preferably 30 cm/see or less.
水素化物ガスとニッケルのほう素化物との接触温度は精
製筒の入口に供給されるガスの温度で、200℃以下程
度、好ましくは0〜100℃であり、通常は常温でよく
特に加熱や冷却は必要としない。The contact temperature between the hydride gas and the nickel boride is the temperature of the gas supplied to the inlet of the refining column, which is about 200°C or less, preferably 0 to 100°C, and usually room temperature is sufficient, especially when heated or cooled. is not required.
圧力にも特に制限はなく常圧、減圧、加圧のいずれでも
処理が可能であるが、通常は20Kg/cdJabs以
下、好ましくは0.1〜10Kg/ cnfabsであ
る。There is no particular restriction on the pressure, and treatment can be carried out under normal pressure, reduced pressure, or increased pressure, but it is usually 20 Kg/cdJabs or less, preferably 0.1 to 10 Kg/cnFabs.
また、水素化物ガス中に少量の水分が含有されていても
脱酸素能力には特に悪影響を及ぼすことはなく、さらに
担体などを用いている場合には、その種類によっては水
分も同時に除去される。Furthermore, even if a small amount of water is contained in the hydride gas, it does not have any particular negative effect on the deoxidizing ability, and if a carrier is used, depending on the type of carrier, water may also be removed at the same time. .
本発明においてニッケルのほう素化物による酸素除去工
程に、必要に応じて合成ゼオライトなどの脱湿剤による
水分除去工程を適宜組合せることも可能であり、これに
よって水分も完全に除去され、極めて高純度の精製水素
化物ガスを得ることができる。In the present invention, it is also possible to appropriately combine the oxygen removal process using nickel boronide with a moisture removal process using a dehumidifying agent such as synthetic zeolite, as required, so that moisture is completely removed, resulting in an extremely high Purified hydride gas of high purity can be obtained.
本発明によって、従来除去が困難であっな粗水素化物ガ
ス中の酸素を0.lppm以下、さらには0.01pp
m以下のような極低濃度まで除去することができ、半導
体製造工業などで要望されている超高純度の精製水素化
物ガスを得ることが可能となった。According to the present invention, oxygen in crude hydride gas, which has been difficult to remove in the past, can be reduced to zero. lppm or less, even 0.01pp
It has become possible to remove the hydride gas to an extremely low concentration of less than m, making it possible to obtain purified hydride gas of ultra-high purity, which is required in the semiconductor manufacturing industry.
実施例1〜4
にニッケルの還元処理)
市販のニッケル触媒(日揮■製、N−111)を用いた
。このものの組成はNt+NiOの形であり、Niとし
て45〜47wt%、Cr 2−3wt%、Cu2〜3
wt%、珪藻±27〜29wt%および黒鉛4〜5wt
、%であり、直径5mm、高さ4.5+u+の成型体で
ある。In Examples 1 to 4, a commercially available nickel catalyst (manufactured by JGC Corporation, N-111) was used. The composition of this material is in the form of Nt+NiO, with Ni being 45-47 wt%, Cr 2-3 wt%, Cu2-3
wt%, diatom ±27-29wt% and graphite 4-5wt
, %, and is a molded body with a diameter of 5 mm and a height of 4.5+u+.
このニッケル触媒を8〜10meshに破砕したもの8
5−を内径19mm+、長さ400mmの石英製の精製
筒に充填長300mm (充填密度1.0g/mQ)に
充填した。This nickel catalyst was crushed into 8 to 10 mesh 8
5- was packed into a quartz refining cylinder with an inner diameter of 19 mm+ and a length of 400 mm to a packing length of 300 mm (packing density of 1.0 g/mQ).
これに水素を常圧で温度150℃、流量595cc/
m1l(L V = 3.6cm / sec )で3
時間還元処理をおこなった後、常温に冷却した。Add hydrogen to this at normal pressure, temperature 150℃, flow rate 595cc/
3 in m1l (LV = 3.6cm/sec)
After performing the time reduction treatment, it was cooled to room temperature.
くニッケルのほう素化物)
この精製筒に3vo1%のジボランを含有する水素を5
10cc/ rim (L V = 3 cm / s
ee )で流してニッケルのほう素化をおこなった。こ
のときの室温は25℃であったが、はう素化による発熱
で筒の出口のガスの温度は約33゛℃に上昇した。nickel boride) Hydrogen containing 3 vol 1% diborane was added to this purification cylinder.
10cc/rim (LV=3cm/s
ee) to perform boronation of nickel. The room temperature at this time was 25°C, but the temperature of the gas at the outlet of the cylinder rose to about 33°C due to the heat generated by boronation.
その後出ロガスの温度は徐々に低下し、8時間後には室
温に戻り、はう素化処理を終了した。Thereafter, the temperature of the emitted log gas gradually decreased and returned to room temperature after 8 hours, and the boronization treatment was completed.
そのま!さらに3時間水素パージをおこない水素化物ガ
スの精製に備えた。同様にして計6本の精製筒を準備し
た。Just like that! Hydrogen purge was further performed for 3 hours to prepare for purification of hydride gas. A total of six purification cylinders were prepared in the same manner.
(各水素化物ガスの精製)
引き続いて、これらの精製筒のそれぞれに酸素を含有す
る水素ベースのアルシン、ホスフィン、セレン化水素ま
たはシランを1700cc/++m(L V = l0
CII/ sec )で流して買切発光式酸素分析計(
測定下限濃度0.01ppm >を用いて出口ガス中の
酸素濃度を測定したところ、酸素は検出されずいずれも
0.01ppm以下であった。精製を始めてから100
分後においても出口ガスの酸素濃度は0.01ppm以
下であった。それぞれの結果を第1表に示す。(Purification of each hydride gas) Subsequently, 1700 cc/++m (L V = 10
CII/sec) and a purchased luminescence oxygen analyzer (
When the oxygen concentration in the outlet gas was measured using a measurement lower limit concentration of 0.01 ppm, no oxygen was detected and all were below 0.01 ppm. 100 since starting refining
Even after 1 minute, the oxygen concentration in the outlet gas was 0.01 ppm or less. The results are shown in Table 1.
第1表
比較例1
活性炭(耶子殻炭)を8〜24+++eshに破砕した
ちの48gを実施例1におけると同じ精製筒に300m
+m(充填密度0.57g/d )充填し、ヘリウム気
流中270〜290℃で4時開加熱処理した後、室温に
冷却した。Table 1 Comparative Example 1 48 g of activated carbon (Yoshiki charcoal) crushed into 8 to 24 +++ esh was placed in the same refining tube as in Example 1 for a length of 300 m.
+m (packing density: 0.57 g/d), heated at 270 to 290° C. in a helium stream at 4 o'clock, and then cooled to room temperature.
この精製筒に実施例1で用いたと同じアルシン1Qvo
1%および不純物として0.17PP11の酸素を含有
する水素ベースの粗アルシンを1700cc/ruts
(L V = 10cm / sec )で流して出
口ガス中の酸素濃度を測定したところ0.17ppmで
ありそのまま2時間流し続けたが変化は見られながっな
。The same arsine 1Qvo as used in Example 1 was used in this purification cylinder.
1700cc/ruts of hydrogen-based crude arsine containing 1% and 0.17PP11 oxygen as impurity
(L V = 10 cm/sec) and the oxygen concentration in the outlet gas was measured and found to be 0.17 ppm. Although the flow continued for 2 hours, no change was observed.
実施例5〜6
実施例1で準備した残る2本の精製筒を用いて100%
アルシンまたはホスフィンの精製をおこなった。Examples 5-6 100% using the remaining two purification cylinders prepared in Example 1
Purification of arsine or phosphine was carried out.
この精製筒のそれぞれに不純物としてQ、05PP11
の酸素を含有する粗アルシンまたはホスフィン(100
%)を流速850cc/ mix (L V = 5C
Il /5ec)で流して出口ガス中の酸素濃度を測定
したところ、いずれもQ、0IPPIII以下であった
。この状態で10時間流し続けたが、出口ガス中の酸素
はQ、01PPID以下であった。結果を第2表に示す
。Each of these purification cylinders contains Q, 05PP11 as impurities.
of crude arsine or phosphine (100
%) at a flow rate of 850cc/mix (L V = 5C
When the oxygen concentration in the outlet gas was measured by flowing the gas at a rate of Il/5ec), it was found to be below Q, 0 IPPIII. Although the flow continued in this state for 10 hours, the oxygen in the outlet gas was below Q,01PPID. The results are shown in Table 2.
第2表
実施例7〜10
にニッケル触媒の調製)
lの水にAl(NO3)3・9820454gを溶解し
、水浴で5〜10°Cに冷却した。激しくかき混ぜなが
ら、これにNaOH200gを1gの水に溶解して5〜
10℃に冷却した溶液を2時間かけて滴下し、アルミン
酸ナトリウムとした。Table 2 Examples 7-10 Preparation of nickel catalyst) 9820454 g of Al(NO3)3 was dissolved in 1 liter of water and cooled to 5-10°C in a water bath. While stirring vigorously, dissolve 200g of NaOH in 1g of water and add 5~
The solution cooled to 10° C. was added dropwise over 2 hours to obtain sodium aluminate.
次に、N1(N03)z・6H20101gを600−
の水に溶解し、これに45−の濃硝酸を加えて5〜10
℃に冷却したものを、アルミン、酸ナトリウム溶液に激
しくかき混ぜながら1時間かけて加えた。Next, 600-
Dissolve in water and add 45-10% concentrated nitric acid to make 5-10%
The mixture was cooled to 0.degree. C. and added to the aluminium/sodium acid solution over 1 hour with vigorous stirring.
生じた沈殿を濾過し、得られた沈殿を2gの水中で15
分間かき混ぜて洗う操作を6回繰り返して中性とした。The resulting precipitate was filtered, and the resulting precipitate was dissolved in 2 g of water for 15 min.
The stirring and washing operation for 6 minutes was repeated 6 times to make the solution neutral.
得られたケーキを細分して空気洛中で105℃で16時
間乾燥してから粉砕し、これをふるい分けて12〜24
meshのものを集めた。The resulting cake was divided into pieces, dried in an air chamber at 105°C for 16 hours, then ground, and sieved to give a
I collected mesh items.
このものは29.5 vt%の酸化ニッケル(NiO)
を含有していた。This one is 29.5 vt% nickel oxide (NiO)
It contained.
にニッケルのほう素化物)
このものを実施例1で使用したと同じ精製筒に85d
(65g 、充填密度0.77g /d )充填し、こ
れに水素を常圧で温度150℃、流量595cc/wi
ts (L V = 3.6CIl / sec )で
3時間流してニッケルを還元した後、そのままの温度で
これに3vo1%のジボランを含有する窒素を510c
c/win(1,V=3cn+/sec )で8時間流
してニッケルのほう素化をおこない、同様の方法で計4
本の精製筒を準備した。Boronide of nickel) This product was placed in the same refining tube as used in Example 1.
(65 g, packing density 0.77 g/d), and hydrogen was added to it at normal pressure at a temperature of 150°C and a flow rate of 595 cc/wi.
ts (L V = 3.6 CIl/sec) for 3 hours to reduce nickel, and then nitrogen containing 3 vol 1% diborane was added to it at 510 c at the same temperature.
Boronization of nickel was carried out by flowing at c/win (1, V = 3cn+/sec) for 8 hours, and a total of 4
I prepared a book refining cylinder.
(水素化物ガスの精製)
この精製筒のそれぞれに不純物として酸素を含有する窒
素ベースのアルシン、ホスフィン、セレン化水素または
シランを1700cc/ min (L V= 10(
Jl / sec )で流して出口ガス中の酸素濃度を
測定したところ、0.01ppm以下であった。この状
態で100分流し続けたが、出口ガス中の酸素は常に0
.01ppm以下であった。それぞれの結果を第3表に
示す。(Purification of hydride gas) Nitrogen-based arsine, phosphine, hydrogen selenide, or silane containing oxygen as an impurity is added to each of these purification columns at 1700 cc/min (L V = 10 (
Jl/sec) and the oxygen concentration in the outlet gas was measured and found to be 0.01 ppm or less. The flow continued for 100 minutes in this state, but the oxygen in the outlet gas was always 0.
.. It was 0.01 ppm or less. The results are shown in Table 3.
第3表
特許出願人 日本バイオニクス株式会社代理人 弁理士
小 堀 貞 文Table 3 Patent Applicant Nippon Bionics Co., Ltd. Agent Patent Attorney Sadafumi Kobori
Claims (1)
該粗水素化物ガス中に含有される酸素を除去することを
特徴とする水素化物ガスの精製方法。Contacting crude hydride gas with nickel boride,
A method for purifying hydride gas, which comprises removing oxygen contained in the crude hydride gas.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1022685A JP2732277B2 (en) | 1989-02-02 | 1989-02-02 | Hydride gas purification method |
KR1019890013748A KR960010082B1 (en) | 1988-09-26 | 1989-09-25 | Method for purifying gaseous hydrides |
EP89117740A EP0361386B1 (en) | 1988-09-26 | 1989-09-26 | Method for purifying gaseous hydrides |
DE89117740T DE68911093T2 (en) | 1988-09-26 | 1989-09-26 | Process for the purification of gaseous hydrides. |
US07/412,750 US4976942A (en) | 1988-09-26 | 1989-09-26 | Method for purifying gaseous hydrides |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1022685A JP2732277B2 (en) | 1989-02-02 | 1989-02-02 | Hydride gas purification method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02204305A true JPH02204305A (en) | 1990-08-14 |
JP2732277B2 JP2732277B2 (en) | 1998-03-25 |
Family
ID=12089724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1022685A Expired - Fee Related JP2732277B2 (en) | 1988-09-26 | 1989-02-02 | Hydride gas purification method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2732277B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02129003A (en) * | 1988-11-10 | 1990-05-17 | Japan Pionics Co Ltd | Method for purifying diborane |
-
1989
- 1989-02-02 JP JP1022685A patent/JP2732277B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02129003A (en) * | 1988-11-10 | 1990-05-17 | Japan Pionics Co Ltd | Method for purifying diborane |
Also Published As
Publication number | Publication date |
---|---|
JP2732277B2 (en) | 1998-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5470555A (en) | Process for purification of gaseous organometallic compound | |
KR960010082B1 (en) | Method for purifying gaseous hydrides | |
JP2732262B2 (en) | How to purify arsine | |
JPH02204305A (en) | Method for purifying gaseous hydride | |
JP3410121B2 (en) | Ammonia purification method | |
JP3359928B2 (en) | Ammonia purification method | |
JPH02188408A (en) | Method for refining gaseous hydride | |
JP2651611B2 (en) | Hydride gas purification method | |
JP2700398B2 (en) | Hydride gas purification method | |
JP2640521B2 (en) | Hydrogen sulfide purification method | |
JP3522785B2 (en) | Purification method of carbon dioxide | |
JP2700412B2 (en) | Hydride gas purification method | |
JP2700401B2 (en) | Hydride gas purification method | |
JP2700402B2 (en) | Hydride gas purification method | |
JP3217854B2 (en) | Organic metal purification method | |
JPH02188409A (en) | Method for refining gaseous hydride | |
JP3154340B2 (en) | Method for purifying germanium hydride | |
JPH02129003A (en) | Method for purifying diborane | |
JP2592312B2 (en) | Phosphine purification method | |
JP2700413B2 (en) | Hydride gas purification method | |
JP2640517B2 (en) | Purification method of hydrogen selenide | |
JP3154339B2 (en) | Method for purifying germanium hydride | |
JPH04144910A (en) | Purification of disilane | |
JP2627324B2 (en) | Silane purification method | |
JP3279608B2 (en) | Steam purification method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |