JPH02203847A - Ultrasonic wave diagnostic device - Google Patents

Ultrasonic wave diagnostic device

Info

Publication number
JPH02203847A
JPH02203847A JP1023831A JP2383189A JPH02203847A JP H02203847 A JPH02203847 A JP H02203847A JP 1023831 A JP1023831 A JP 1023831A JP 2383189 A JP2383189 A JP 2383189A JP H02203847 A JPH02203847 A JP H02203847A
Authority
JP
Japan
Prior art keywords
probe
probes
image
displayed
real time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1023831A
Other languages
Japanese (ja)
Inventor
Ryuichi Shinomura
隆一 篠村
Kageyoshi Katakura
景義 片倉
Kazuo Takasugi
高杉 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1023831A priority Critical patent/JPH02203847A/en
Publication of JPH02203847A publication Critical patent/JPH02203847A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To enable the compatible connection of a plural-section image pick-up probe, a minor axis variable aperture prove, a minor axis focus probe and a two-dimensional array probe by making a plurality of connectors correspond to one probe arranged in plural lines. CONSTITUTION:As a probe 10, vibrator groups of plural lines are used as shown by 10a, 10b, with the vibrator group of each line being connected to an image pick-up device 2 by different connectors 3a, 3b, respectively, and in each vibrator line, beams are scanned in the major axial direction. At a result, the image of a fault plane 11B slightly shifted in the minor axial direction from a fault plane 11A can be picked up, and when two images are displayed, only one fault image is displayed at real time, and the other is made into the freeze state. In a device capable of switchingly displaying two probes at real time, fault planes 10A, 10B are displayed at real time, which is useful for image construction in the depth direction. The faults 10A and 10B may be successively displayed by one image display. Thus, when two-dimensional arranged probes, particularly, minor axis variable aperture and variable focus, are conducted, they can be realized at low cost and with satisfactory compatibility.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超音波診断装置における二次元探触子の走査
、撮像方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a scanning and imaging method of a two-dimensional probe in an ultrasonic diagnostic apparatus.

〔従来の技術〕[Conventional technology]

従来の装置は、第2図に示す様に複数の探触子を接続し
複数断面を表示できるが、探触子A、 Bどちらかが実
時間で撮像され、残りは、フリーズされている。また、
1987年11月発行2日本超音波医学会講演論文集に
はパイプレーン探触子が発表されているが、二断層は直
交するものである。また、短軸可変口径、可変フォーカ
スにつνAては、特開昭56−15864Elに示され
る様にクロス電極を用いるものや、特公昭62−498
8記載の様に振動子のビームを制御する遅延線のグルー
プ分番すを行なうものが知られている。
The conventional device connects a plurality of probes and can display a plurality of cross sections as shown in FIG. 2, but either probe A or B is imaged in real time, and the rest are frozen. Also,
A pipe lane probe was announced in the Proceedings of the Japanese Society of Ultrasonics in Medicine published in November 1987, but the two fault lines are perpendicular to each other. Regarding short axis variable aperture and variable focus νA, there are those using cross electrodes as shown in Japanese Patent Application Laid-Open No. 56-15864El, and those using a cross electrode as shown in Japanese Patent Publication No. 62-498
As described in No. 8, delay lines for controlling the beam of a vibrator are divided into groups.

[発明が解決しようとする課題〕 上記従来技術は、従来装置との接続に触れていないもの
、または、探触子−つとの間の接続にとどまっているも
の、または、直交する面の二断層撮像に限られており、
複数探触子接続コネクタと二次元アレー振動子の接続に
問題があった。
[Problems to be Solved by the Invention] The above-mentioned prior art does not touch on the connection with the conventional device, or only connects between the probe and the probe, or connects two layers in orthogonal planes. Limited to imaging,
There was a problem with the connection between the multiple probe connector and the two-dimensional array transducer.

本発明は、従来探触子を複数個接続できる診断装置にお
いて、複数断面撮像探触子、短軸可変口径探触子、短軸
フォーカス探触子、二次元アレー探触子等と互換性ある
接続方法を提供することにある。
The present invention is compatible with a multi-section imaging probe, a short-axis variable aperture probe, a short-axis focusing probe, a two-dimensional array probe, etc. in a conventional diagnostic device that can connect multiple probes. The purpose is to provide a connection method.

本発明の他の目的は、実時間で前記探触子を切換え、複
数断面を撮像することにある。
Another object of the present invention is to switch the probe in real time and image a plurality of cross sections.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために複数のコネクタを複数列配列
された一つの探触子に対応させたものである。
In order to achieve the above object, a plurality of connectors are arranged in a plurality of rows to correspond to one probe.

また、実時間複数断面撮像及び、一つのビーム毎に配列
を切換えて撮像するために、高速で切換えできる送受信
回路を具備したものである。
In addition, in order to perform real-time multi-sectional imaging and to switch the array for each beam and perform imaging, it is equipped with a transmitting/receiving circuit that can be switched at high speed.

さらに、短軸可変口径及び、短軸可変フォーカス短軸方
向セクタ走査のためには、複数配列振動子群を一つの探
触子とし、短軸に分割された構成としたものである。
Furthermore, for short-axis variable aperture and short-axis variable focus short-axis direction sector scanning, a plurality of arrayed transducer groups are used as one probe, which is divided into short axes.

〔作用〕[Effect]

複数探触子のコネクタを一つの二次元配列探触子と対応
させるため、コネクタを共用できる。また高速で切換え
可能な送受信回路により、実時間で複数断面を表示でき
る。
Since the connectors of multiple probes correspond to one two-dimensionally arrayed probe, the connectors can be shared. In addition, the transmitter/receiver circuit can be switched at high speed, allowing multiple cross-sections to be displayed in real time.

〔実施例〕〔Example〕

以下本発明の一実施例を、第1図、第2図を用いて説明
する。従来の超音波診断装置は、第2図(a)の様に、
複数個の探触子A、Bを同時に別別のコネクタ3a、3
bにて撮像装置本体2に接続し、そのうち一つの探触子
を動作させて画像を得る。二画面を同時に表示する場合
にも第2図(b)に示す画面4にて探触子Aの像、探触
子Bの像のどちらかがフリーズとなる。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. The conventional ultrasonic diagnostic equipment, as shown in Fig. 2(a),
Connect multiple probes A and B to separate connectors 3a and 3 at the same time.
It is connected to the imaging device main body 2 at b, and one of the probes is operated to obtain an image. Even when two screens are displayed simultaneously, either the image of probe A or the image of probe B freezes on screen 4 shown in FIG. 2(b).

本実施例では、第1図の10に示す探触子は撮像装置の
にはそれぞれ別のコネクタ3a、3bにより各列の振動
子群を接続する。各振動子列では長軸方向(素子配列方
向)にビームを走査する。
In this embodiment, the probe shown at 10 in FIG. 1 connects the transducer groups in each row to the imaging device through separate connectors 3a and 3b, respectively. In each transducer row, the beam is scanned in the long axis direction (element arrangement direction).

なお各振動子列は短軸長は互いに同じであるのが普通で
あるが短軸長を互いに変えても良い。
Although the short axis lengths of the vibrator rows are usually the same, the short axis lengths may be changed.

これによると、断層面11Aと短軸方向にわずかずれた
断層面11Bを撮像でき、二側面表示する場合は、一つ
の断層像のみ実時間で表示され、他はフリーズ状態とな
る。また、実時間で二つの探触子を切換表示できる装置
では、断層面10A。
According to this, it is possible to image the tomographic plane 11B slightly shifted from the tomographic plane 11A in the short axis direction, and when displaying two sides, only one tomographic image is displayed in real time, and the others are in a frozen state. In addition, in a device that can switch and display two probes in real time, the tomographic plane 10A.

10Bが実時間で表示され、奥行き方向のイメージ構築
に有用となる。また、−画像表示で、断層10A、断層
10Bを順次表示しても良い。
10B is displayed in real time, which is useful for constructing images in the depth direction. Alternatively, the tomography 10A and the tomography 10B may be sequentially displayed in -image display.

なお、複数断面像を実時間同時表示する場合に、超音波
ビームの走査順序は第3図(a)に数字で示すように振
動子列10aと10bとを交互に用いて1ビームずつ形
成し、2n番目のビーム形成が終了したときそれぞれの
振動子列による断面の1回の走査が終了するようにする
。またこれに変えて、第3図(b)に示すように振動子
列10aによる1からnまでのビーム走査が終了した後
に。
In addition, when displaying multiple cross-sectional images simultaneously in real time, the scanning order of the ultrasonic beam is such that the transducer arrays 10a and 10b are used alternately to form one beam at a time, as shown numerically in FIG. , 2n-th beam formation is completed, one scan of the cross section by each transducer row is completed. Alternatively, as shown in FIG. 3(b), after beam scanning from 1 to n by the transducer array 10a is completed.

振動子列10bによるn+1から2nまでのビーム走査
を行なっても良い。
Beam scanning from n+1 to 2n may be performed by the transducer array 10b.

第4図に別の実施例を示す。本例では3例の振動子列1
0a、10b、10cを有する探触子10’ を用いる
。内側の振動子列10bはコネクタ3bを介して撮像装
置本体2に接続され、外側の振動子列10aと10cは
互いに同一位置の素子が共通接続され、コネクタ3aを
介して撮像装置本体2に接続される。本実施例は、短軸
可変口径を実現するものであり、近距離では、中央の振
動子列10bのみ動作し、遠距離では、10a。
FIG. 4 shows another embodiment. In this example, three transducer rows 1
A probe 10' having 0a, 10b, and 10c is used. The inner transducer row 10b is connected to the imaging device main body 2 via the connector 3b, and the outer transducer rows 10a and 10c have elements in the same position commonly connected to each other, and are connected to the imaging device main body 2 via the connector 3a. be done. This embodiment realizes a short-axis variable aperture, in which only the central transducer row 10b operates at short distances, and the transducer array 10a operates at long distances.

10b、10cが同時に動作する。このように振動子面
からの対象の距離に応じて口径を変化させることにより
短軸方向のビーム特性を良好にすることができる。さら
に、短軸方向可変フォーカスを付加することにより、よ
り良好な短軸ビームが得られる。第5図にこれを実施す
る実施例を示す。
10b and 10c operate simultaneously. By changing the aperture in accordance with the distance of the object from the vibrator surface in this way, it is possible to improve the beam characteristics in the short axis direction. Furthermore, by adding a short-axis variable focus, a better short-axis beam can be obtained. FIG. 5 shows an embodiment for implementing this.

この例では、長軸3素子、短軸3素子から構成される振
動子列10a、10b、10cを用いる。
In this example, transducer arrays 10a, 10b, and 10c each having three long-axis elements and three short-axis elements are used.

撮像装置内の送受信回路の数は、長軸口径数でも良いし
、長軸素子数分でも良い。但し、長軸口径数分の時は、
振動子に切換スイッチが付加される。
The number of transmitting/receiving circuits in the imaging device may be the number of long axis apertures or the number of long axis elements. However, when the diameter of the major axis is several minutes,
A changeover switch is added to the vibrator.

第5図は、撮像装置本体2に複数コネクタ分送波回路を
有する例である。送波レートパルス発生器5a、5bは
、長軸方向の送波ビームフォーカスのため遅延分布をも
った送波信号を発生し、ドライバ6aに入力する。ドラ
イバ6aの出力はコネクタ3aを介して外側の振動子列
10a、10cに印加される。また、送波レートパルス
発生器5bは5aの出力と同様に長軸方向フォーカスの
ための遅延分布をもち、かっ5aの出力よりも短軸送波
フォーカス分だけ全体に遅延を受けた送波信号を発し、
ドライバ6bに入力する。発生されたドライバパルスは
、コネクタ3bに接続された探触子列10bを駆動する
。これにより長軸、短軸ともにフォーカスされたビーム
を発生する。また受信された信号は、送受分離回路9a
、9bによって受波回路に導かれる。可変遅延線12は
、9aからの信号と9bからの信号に異なる遅延を与え
ることによって短軸方向の受波フォーカスを行う。また
、スイッチSWI〜SW6を通って増幅器7によって増
幅された信号は可変遅延線8によって遅延分布をうけ長
軸方向の受波フォーカスが行なわれる。整相後の信号処
理回路によってデイスプレーに撮像される。短軸可変口
径は、送波は、レートパルス発生器5aのオン、オフに
よって実現される。受波の可変口径は、スイッチSW1
、SW3.SW5のオン、オフによって実現される。受
波系の構成はこれに限らず、増幅器7が可変遅延線12
の振動子側に各々配置され、可変遅延線12と8は一つ
にしても同様の効果がある。
FIG. 5 shows an example in which the imaging device main body 2 includes a plurality of connector division/transmission circuits. The transmission rate pulse generators 5a and 5b generate transmission signals having a delay distribution for focusing the transmission beam in the long axis direction, and input the signals to the driver 6a. The output of the driver 6a is applied to the outer transducer arrays 10a and 10c via the connector 3a. In addition, the transmission rate pulse generator 5b has a delay distribution for focusing in the long axis direction like the output of 5a, and the transmission signal is delayed overall by the amount of the short axis transmission focus than the output of 5a. emits,
input to the driver 6b. The generated driver pulse drives the probe array 10b connected to the connector 3b. This generates a beam that is focused on both the long and short axes. Also, the received signal is sent to the transmission/reception separation circuit 9a.
, 9b to the receiving circuit. The variable delay line 12 performs reception focusing in the short axis direction by giving different delays to the signal from 9a and the signal from 9b. Further, the signal passed through the switches SWI to SW6 and amplified by the amplifier 7 is subjected to delay distribution by the variable delay line 8, and reception focusing in the long axis direction is performed. After phasing, the signal processing circuit captures an image on the display. With the short axis variable aperture, wave transmission is realized by turning on and off the rate pulse generator 5a. The variable aperture of the receiving wave is set by switch SW1.
, SW3. This is realized by turning SW5 on and off. The configuration of the receiving system is not limited to this, and the amplifier 7 is connected to the variable delay line 12.
The same effect can be obtained even if the variable delay lines 12 and 8 are placed on the vibrator side of the oscillator, and the variable delay lines 12 and 8 are combined into one.

第6図は、撮像装置本体2に一つの探触子分だけ送受波
回路を有する例である。可変口径は、送受共にコネクタ
3aを選択するスイッチSWI、3゜5のオン、オフに
て実現する。コネクタ3bを選択するスイッチSW2,
4.6は常にオンとされる。他の符号は第5図と同一の
部分を示す。ただし本実施例では短軸フォーカスを実現
するためコネクタ3aと外側振動子列10a、10bの
間、及びコネクタ3bと内外振動子列10bの間にそれ
ぞれ、高耐圧遅延線11.lla、llbを挿入する必
要がある。すなわち、遅延線11bの遅延時間をlla
の遅延時間より長くすることにより送受ともに短軸方向
にフォーカスされる。なお外側の振動子列の遅延線11
aは省略できる。またlla、llbの少なくとも一方
を可変遅延線として可変フォーカスとすることもできる
FIG. 6 shows an example in which the imaging device main body 2 includes a wave transmitting/receiving circuit for one probe. The variable diameter is realized by turning on and off the switch SWI, 3°5, which selects the connector 3a for both transmission and reception. switch SW2 for selecting connector 3b;
4.6 is always on. Other symbols indicate the same parts as in FIG. However, in this embodiment, in order to achieve short-axis focusing, high voltage delay lines 11. It is necessary to insert lla and llb. That is, the delay time of the delay line 11b is lla
By making the delay time longer than , both transmission and reception are focused in the short axis direction. Note that the delay line 11 of the outer transducer row
a can be omitted. Further, at least one of lla and llb can be used as a variable delay line to provide variable focus.

短軸方向へのセクタ走査は、第5,6図の例で、各遅延
をセクタ用の遅延制御にすることで実現される。
Sector scanning in the short axis direction is realized by making each delay a sector delay control in the example of FIGS. 5 and 6.

また、コネクタについては、第7図(a)に示す様に、
探触子側コネクタ12が、本体コネクタ3a、3bに合
せて分離し、ケーブルで一体になる方式や、(b)の様
に、探触子側コネクタ12は、本体コネクタ3a、3b
と同時に接続できる様に一つにする方式がある。逆に、
本体側コネクタ3を一つにまとめ、従来の複数の探触子
A、Bを接続できる形式でも良い。
Regarding the connector, as shown in Figure 7(a),
The probe side connector 12 may be separated from the main body connectors 3a, 3b and integrated with a cable, or as shown in (b), the probe side connector 12 may be separated from the main body connectors 3a, 3b.
There is a method of combining them into one so that they can be connected at the same time. vice versa,
The main body side connector 3 may be combined into one and a plurality of conventional probes A and B may be connected.

また、高速に切換えるドライバ回路は、我々が既に特許
顔中の特開昭60−223609等で述べたトーテムポ
ール型あるいは、プッシュプル型で送受波スイッチ機能
を有した、第8図のドライバを配列毎に持つことで実現
される。
In addition, the driver circuit for high-speed switching is a totem-pole type or a push-pull type driver as shown in Fig. 8, which has a wave transmitting/receiving switch function, which we have already described in our patented Japanese Patent Laid-Open No. 60-223609. This is achieved by having each item separately.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明によれば、二次元配列探触子
特に短軸可変口径、可変フォーカス等を行う場合に、従
来装置の改良を最小限にとどめ、しかも低価格で互換性
良く実現できるものである。
As explained above, according to the present invention, when using a two-dimensional array probe, especially when performing short-axis variable aperture, variable focus, etc., improvements to conventional equipment can be minimized, and moreover, it can be realized at low cost and with good compatibility. It is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例、第2図は従来例、第3図
は、本発明の実時間複数断層面撮像における走査方法の
例、第4図は、本発明を短軸可変口径に適用した実施例
、第5,6図は、第4図の簡易構成図、第7図は、コネ
クタ接続例、第8図はドライバ回路の一例を示す。 2・・・超音波撮像装置本体、3a、3b・・・コネク
タ、4・・・デイスプレィ、5・・・送波レートパルス
発生器、6・・・ドライバ回路、7・・増幅器、8・・
・可変遅延量路、 9・・・送受分離回路、 10・・・可変遅延線、 10a。 10b。 10c・・・超音波振動列。 茅 凹 茅 ム 図 第 ] 閃 (a) (シ) 茅2i目
Fig. 1 shows an embodiment of the present invention, Fig. 2 shows a conventional example, Fig. 3 shows an example of a scanning method in real-time multiple tomographic imaging of the present invention, and Fig. 4 shows an example of the present invention with variable short axis. 5 and 6 are simplified configuration diagrams of FIG. 4, FIG. 7 is a connector connection example, and FIG. 8 is an example of a driver circuit. 2...Ultrasonic imaging device main body, 3a, 3b...Connector, 4...Display, 5...Transmission rate pulse generator, 6...Driver circuit, 7...Amplifier, 8...
- Variable delay amount path, 9... Transmission/reception separation circuit, 10... Variable delay line, 10a. 10b. 10c... Ultrasonic vibration train. [Kayamu map number 1] Flash (a) (shi) Kaya 2i

Claims (1)

【特許請求の範囲】 1、短冊状に複数個配列された超音波振動子を具備した
探触子を複数個接続できる超音波診断装置において、超
音波ビームを走査する長軸方向と直交する短軸方向に前
記振動子を複数個配列した探触子を具備し、前記複数個
配列された振動子群を前記超音波診断装置の複数個の探
触子として接続することを特徴とする超音波診断装置。 2、前記探触子の各配列による断層面を実時間で複数面
表示することを特徴とする請求項1に記載の超音波診断
装置。 3、前記探触子の各配列を一つのビーム形成毎に切換え
ることを特徴とする請求項1に記載の超音波診断装置。 4、前記探触子の短軸方向の配列により短軸口径を可変
して超音波ビームを形成することを特徴とする請求項1
に記載の超音波診断装置。 5、前記探触子の短軸方向の配列を用い、短軸方向のフ
ォーカスを可変して超音波ビームを形成することを特徴
とする請求項1に記載の超音波診断装置。
[Claims] 1. In an ultrasonic diagnostic apparatus to which a plurality of probes each having a plurality of ultrasonic transducers arranged in a rectangular shape can be connected, An ultrasound system comprising a probe in which a plurality of the transducers are arranged in the axial direction, and a group of the plurality of arranged transducers is connected as a plurality of probes of the ultrasonic diagnostic apparatus. Diagnostic equipment. 2. The ultrasonic diagnostic apparatus according to claim 1, wherein a plurality of tomographic planes according to each arrangement of the probes are displayed in real time. 3. The ultrasonic diagnostic apparatus according to claim 1, wherein each arrangement of the probes is switched for each beam formation. 4. Claim 1, characterized in that an ultrasonic beam is formed by varying the short axis aperture by arranging the probes in the short axis direction.
The ultrasonic diagnostic device described in . 5. The ultrasonic diagnostic apparatus according to claim 1, wherein the ultrasonic beam is formed by using an arrangement of the probes in the short axis direction and varying the focus in the short axis direction.
JP1023831A 1989-02-03 1989-02-03 Ultrasonic wave diagnostic device Pending JPH02203847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1023831A JPH02203847A (en) 1989-02-03 1989-02-03 Ultrasonic wave diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1023831A JPH02203847A (en) 1989-02-03 1989-02-03 Ultrasonic wave diagnostic device

Publications (1)

Publication Number Publication Date
JPH02203847A true JPH02203847A (en) 1990-08-13

Family

ID=12121328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1023831A Pending JPH02203847A (en) 1989-02-03 1989-02-03 Ultrasonic wave diagnostic device

Country Status (1)

Country Link
JP (1) JPH02203847A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006204560A (en) * 2005-01-28 2006-08-10 Aloka Co Ltd Ultrasonic diagnostic system
CN107249468A (en) * 2015-02-10 2017-10-13 株式会社日立制作所 Ultrasonic diagnostic system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006204560A (en) * 2005-01-28 2006-08-10 Aloka Co Ltd Ultrasonic diagnostic system
JP4673074B2 (en) * 2005-01-28 2011-04-20 アロカ株式会社 Ultrasonic diagnostic equipment
CN107249468A (en) * 2015-02-10 2017-10-13 株式会社日立制作所 Ultrasonic diagnostic system
CN107249468B (en) * 2015-02-10 2020-01-14 株式会社日立制作所 Ultrasonic diagnostic system

Similar Documents

Publication Publication Date Title
US5186175A (en) Ultrasonic diagnostic apparatus
JP6200628B2 (en) Ultrasonic probe and ultrasonic imaging system
EP1484019A1 (en) Ultrasonograph
US20040122316A1 (en) Ultrasonic transmitting and receiving apparatus and ultrasonic transmitting and receiving method
JP2619446B2 (en) Ultrasound diagnostic equipment
JP3977827B2 (en) Ultrasonic diagnostic equipment
WO2001085031A1 (en) Ultrasonic diagnostic apparatus
JP2010029374A (en) Ultrasonic diagnostic apparatus
JP2005034633A (en) Ultrasonic diagnostic equipment
JPS6346693B2 (en)
JPH1170110A (en) Ultrasonic three-dimensional image converting method using intersecting array and its device
US6258030B1 (en) Ultrasonic diagnostic apparatus
JP4334671B2 (en) Ultrasonic diagnostic equipment
JP4520381B2 (en) Ultrasonic diagnostic equipment
US5673698A (en) Multichannel ultrasonic diagnosis apparatus
JP2001198122A (en) Two-dimensional array type ultrasonic probe and ultrasonograph
JPH02203847A (en) Ultrasonic wave diagnostic device
JP2743008B2 (en) Ultrasound diagnostic equipment
JPS5928682A (en) Phased array receiver
JP3256698B2 (en) Ultrasound diagnostic equipment
JPH04256739A (en) Ultrasonic diagnostic device
JPS624984B2 (en)
JP2784788B2 (en) Ultrasound diagnostic equipment
JPH03247324A (en) Ultrasonic photographing method and apparatus
WO2022230601A1 (en) Ultrasonic diagnostic device and method for controlling ultrasonic diagnostic device