JPH02203267A - Production of limiting current type oxygen sensor - Google Patents

Production of limiting current type oxygen sensor

Info

Publication number
JPH02203267A
JPH02203267A JP1024601A JP2460189A JPH02203267A JP H02203267 A JPH02203267 A JP H02203267A JP 1024601 A JP1024601 A JP 1024601A JP 2460189 A JP2460189 A JP 2460189A JP H02203267 A JPH02203267 A JP H02203267A
Authority
JP
Japan
Prior art keywords
glass
cap
pellet
coated
glass powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1024601A
Other languages
Japanese (ja)
Inventor
Takafumi Kajima
孝文 鹿嶋
Hideo Yamamoto
秀男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1024601A priority Critical patent/JPH02203267A/en
Publication of JPH02203267A publication Critical patent/JPH02203267A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To lower a number of the producing stages by applying material dissipated at high temp. to the single side of a pellet made of an ionic conductive material and applying the glass powder to the surface of the coated layer and thereafter closely sticking a holding baste plate and performing calcination. CONSTITUTION:A small hole 2 is provided to a pellet 1 made of zirconia and the electrodes 3, 4 are formed thereon. Then a coated alumina powder layer is formed on the electrode 4 side and a coated fine glass powder layer is formed thereon. Just after it, a holding base plate 9 with a heater 8 formed thereon is closely stuck on the coated fine glass powder layer. Calcination is performed in this state and thereby a glass cap 6 is formed and also the coated alumina powder layer is oxidized and vaporized by calcination and the space 7 is formed and the base plate 9 is bonded on the surface of the cap 6. In such a way, both formation of the cap 6 and bonding of the base plate 9 are simultaneously attained by calcination of one time and a number of the stages is lowered and productivity is enhanced.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、安定化ジルコニアなどを酸素イオン導電体
として利用する限界電流式酸素センサの製造方法の改良
に関する。この限界電流式酸素センサはボイラ、自動車
エンジン等の燃焼制御、あるいはマンホール等での酸欠
モニター等に利用されている。
The present invention relates to an improvement in a method for manufacturing a limiting current type oxygen sensor that uses stabilized zirconia or the like as an oxygen ion conductor. This limiting current type oxygen sensor is used for combustion control in boilers, automobile engines, etc., and oxygen deficiency monitoring in manholes, etc.

【従来の技術】[Conventional technology]

従来の限界電流式酸素センサのうち、ヒーターを有する
保持基板にセンサ本体を結合させるタイプのものでは、
予め限界電流式酸素センサ本体を作っておき、これに、
予めヒーターが形成された保持基板を接着剤で接着させ
て製造するようにしている。
Among the conventional limiting current type oxygen sensors, the type in which the sensor body is connected to a holding board with a heater,
Make the limiting current type oxygen sensor body in advance, and attach it to it.
The device is manufactured by bonding a holding substrate on which a heater is formed in advance with an adhesive.

【発明が解決しようとする課頭】[The subject that the invention attempts to solve]

しかしながら、従来のように接着工程を別個に行なうの
では製造工程数が増え、生産性が悪いという問題がある
。また、接着剤あるいは接着剤の隙間により生じた空洞
部によりヒーターの熱伝導が妨げられる分だけヒーター
の熱効率が低下するという問題もある。 この発明は、製造工程数が少なく生産性が良好で、且つ
ヒーターの熱効率も改善可能な、限界電流式酸素センサ
の製造方法を提供することを目的とする。
However, if the bonding process is performed separately as in the past, the number of manufacturing steps increases, resulting in poor productivity. Another problem is that the thermal efficiency of the heater is reduced to the extent that heat conduction of the heater is hindered by the adhesive or the cavity created by the gap between the adhesives. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a limiting current type oxygen sensor, which has a small number of manufacturing steps, has good productivity, and can also improve the thermal efficiency of a heater.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するため、この発明による限界電流式酸
素センサの製造方法においては、表裏両面に電極を有す
るイオン導電体ベレットに対し、まずその一方の面に高
温で散逸する材料を塗布し、さらにその材料の塗布層の
全体を覆い尽くすように上記のベレットの一方面にガラ
ス微粉末を塗布した後直ちにこのガラス微粉末塗布層表
面に保持基板を密着させ、その状態で焼成工程を行うこ
とが特徴となっている。
In order to achieve the above object, in the method for manufacturing a limiting current type oxygen sensor according to the present invention, an ionic conductor pellet having electrodes on both the front and back surfaces is first coated with a material that dissipates at high temperature, and then Immediately after applying fine glass powder to one side of the pellet so as to cover the entire coating layer of the material, a holding substrate is brought into close contact with the surface of the fine glass powder coating layer, and the firing process is performed in this state. It has become a feature.

【作  用】[For production]

イオン導電体ベレットの一方の面にまず高温で散逸する
材料を塗布し、さらにその材料の塗布層の全体を覆い尽
くすように上記のベレットの一方面にガラス微粉末を塗
布した後直ちにこのガラス微粉末塗布層表面に保持基板
を密着させ、その状態で焼成工程を行うと、ガラス一体
層によるガラスキャップが形成され、このガラスキャッ
プは上記ベレッ1−に封着された状態になるとともに、
上記の保持基板がこのガラスキャップに接着されること
になる。また、この焼成工程で上記の材料は酸化あるい
は蒸発して散逸してしまうため、その部分に空隙が形成
されるが、上記のようにガラスキャップがベレットに封
着されるため、この空隙は気密に保たれることになる。 そして、−度の焼成工程で、気密な空隙を形成するガラ
スキャップを形成することができるとともに、保持基板
を接着できるため、製造工程数が少なくなり、生産性に
優れることになる。 また、接着剤を用いないため、その分だけ熱伝導に優れ
、保持基板に設けられたヒーターの熱効率が向上する。 そして接着剤の隙間により形成される空洞部も形成され
ないため、この点でも熱伝導が優れる。 さらに、焼成前のガラスに対する保持基板の密着はある
程度ラフなものでよいので、不良品発生のリスクが少な
く、量産性に優れる。
First, a material that dissipates at high temperature is applied to one side of the ionic conductor pellet, and then a fine glass powder is applied to one side of the above-mentioned pellet so as to cover the entire coated layer of the material. When the holding substrate is brought into close contact with the surface of the powder coating layer and the firing process is performed in this state, a glass cap is formed by the glass integral layer, and this glass cap is sealed to the bellet 1-, and
The holding substrate described above will be adhered to this glass cap. Also, during this firing process, the above materials oxidize or evaporate and dissipate, so a void is formed in that area, but since the glass cap is sealed to the pellet as described above, this void is airtight. will be maintained. In addition, a glass cap that forms an airtight gap can be formed in a second firing process, and a holding substrate can be bonded to the glass cap, which reduces the number of manufacturing steps and improves productivity. Furthermore, since no adhesive is used, thermal conductivity is excellent, and the thermal efficiency of the heater provided on the holding substrate is improved. Also, since no cavities are formed due to gaps between adhesives, heat conduction is excellent in this respect as well. Furthermore, the adhesion of the holding substrate to the glass before firing may be rough to some extent, so there is less risk of producing defective products and it is excellent in mass production.

【実 施 例】【Example】

つぎにこの発明の一実施例について図面を参照j、なが
ら説明する。図面は製造過程に沿ったもので、この順に
述べて行く。まず、第1図に示すように、たとえば安定
化ジルコニア(ZrO2−8no1%Y2O3)のベレ
ット1に小孔2を設けたものを用意し、この両面に小孔
2を塞がないようにして電極3.4をそれぞれ形成する
。具体的にはたとえば白金などの材料をペースト状にし
たものをスクリーン印刷により塗工して必要に応じて乾
燥させた後、たとえば1000°Cで30分焼成して形
成する。 つぎに第2図のようにアルミナ粉(あるいは高温で酸化
または蒸発して散逸する他の有機材料)をペースト状に
したものをスクリーン印刷によりベレット1の電f!4
側に塗布してアルミナ粉塗布M5を形成する。このとき
、図示のように小孔2にもアルミナ粉が詰まるが、この
小孔2は直径が20μm〜30μm程度のきわめて細い
ものであるから詰まらないこともあり、それでもよい。 さらに、第3図に示すように、このアルミナ粉塗布層5
の上にペースト状にしたガラス微粉末をスクリーン印刷
により塗工し、アルミナ粉塗布層5を覆い尽くすガラス
微粉末塗布層61を形成する。このガラスとしてはたと
えば岩城ガラス株式会社製に一4006AとZrO2−
3io1%Y2O3とを混合比1:1で混合したものな
どを使用できる。 その直後に、第4図に示すようにヒーター8が形成され
た保持基板(たとえばアルミナ板でなる〉9を、このガ
ラス微粉末塗布層61に密着させる。 この状態で、これを乾燥のための仮焼成を経、あるいは
この仮焼成を経ずに、たとえば950°Cの炉に30分
入れて焼成を行う。すると、第5図に示すようにガラス
微粉末塗布ll61はガラス−体層となり、このガラス
一体層により形成されたガラスキャップ6ができあがる
。アルミナ粉塗布、!5はこの焼成工程で酸化して気化
しあるいは蒸発して散逸し、その結果その部分が空隙7
となって残り、気密性の高い空隙7が得られる。すなわ
ち、気密な空隙7を形成するためのガラスキ・ヤップ6
がジルコニアベレット1に封着されたことになる。また
、小孔2の部分も貫通する。そして、この焼成により、
ガラスキャップ6の表面に保持基板9が接着されること
になる。 ここで、−度の焼成によりガラスキャップ6の形成と、
このガラスキャップ6への保持基板9の接着とが同時に
達成される。したがって、工程数が減り、生産性が向上
する。しかも、焼成前にはガラス微粉末塗布層61と保
持基板9とは単に密着させておくだけで、焼成によって
ガラスキャップ6と保持基板9とが接着することになる
ため、密着させる作業は比較的ラフでも許されることに
なる。さらにこのようにガラスの焼成によって接着され
るため、その接着力は大きく、且つ接着剤を介在させな
いためヒーター8の熱効率も上がる。 実際に上記の材料で製造したところ、ガラスキャップ6
と保持基板9との接着性は良好で、且つヒーター8の熱
効率も上がって酸素センサとしての良好な特性が得られ
ることが確認できた。また、ガラスキャップ6となるガ
ラスとして旭ガラス株式会社製ASF−200を使用し
、保持基板9としてフォルステライト板を使用して作っ
た実例においてもガラスキャップ6と保持基板9との接
着力に問題はなく、しかもヒーター8の効率が従来より
30%程度向上し、特性の良好な限界電流式酸素センサ
が得られたことが確認できた。 なお、ガラスキャップ6となるガラスとしては上記のガ
ラス以外に軟化点900℃〜1000°C程度以上の高
融点ガラス、結晶化ガラスなどを使用することができる
。また、上記では省略しているが、ジルコニアペレット
1の面から保持基板9の面にまで伸びる電極3.4のリ
ード部分を、上記のガラスキャップ6の形成のための焼
成時に同時に形成することもできる。この場合、第4図
のようにガラス微粉末塗布層61を保持基板9に密着さ
せた状態で、ペースト状のリード材料をジルコニアペレ
ット1の面から保持基板9の表面に至るパターンにスク
リーン印刷により形成しておけば、ガラスキャップ6の
形成のための焼成時に、このリード部分が同時に焼成さ
れてできあがることになる。
Next, an embodiment of the present invention will be described with reference to the drawings. The drawings follow the manufacturing process and will be described in this order. First, as shown in Fig. 1, a pellet 1 made of, for example, stabilized zirconia (ZrO2-8no1%Y2O3) with small holes 2 is prepared, and the electrodes are placed on both sides of the pellet without blocking the small holes 2. 3.4 respectively. Specifically, it is formed by applying a paste of material such as platinum by screen printing, drying if necessary, and then baking at, for example, 1000° C. for 30 minutes. Next, as shown in Figure 2, alumina powder (or other organic material that oxidizes or evaporates at high temperatures and dissipates) is made into a paste and screen printed to make the pellet 1 electric f! 4
Coat on the side to form alumina powder coating M5. At this time, as shown in the figure, the small hole 2 is also clogged with alumina powder, but since the small hole 2 is extremely thin with a diameter of about 20 μm to 30 μm, it may not be clogged, so this is fine. Furthermore, as shown in FIG. 3, this alumina powder coating layer 5
Fine glass powder in the form of a paste is applied thereon by screen printing to form a fine glass powder coating layer 61 that completely covers the alumina powder coating layer 5. Examples of this glass include ZrO2-4006A and ZrO2- manufactured by Iwaki Glass Co., Ltd.
A mixture of 3io1% Y2O3 at a mixing ratio of 1:1 can be used. Immediately after that, as shown in FIG. 4, a holding substrate (for example, made of an alumina plate) 9 on which a heater 8 is formed is brought into close contact with this fine glass powder coating layer 61. In this state, it is placed for drying. After pre-firing or without this pre-firing, it is fired by placing it in a furnace at 950°C for 30 minutes.Then, as shown in FIG. 5, the glass fine powder coating 1161 becomes a glass body layer. The glass cap 6 formed by this glass integral layer is completed.The alumina powder coating, !5, oxidizes and vaporizes or evaporates and dissipates in this firing process, and as a result, the area becomes the void 7.
, and a highly airtight void 7 is obtained. That is, a glass cover 6 for forming an airtight void 7 is used.
is sealed to the zirconia pellet 1. It also penetrates through the small hole 2. And by this firing,
A holding substrate 9 is bonded to the surface of the glass cap 6. Here, the formation of the glass cap 6 by - degree firing,
This adhesion of the holding substrate 9 to the glass cap 6 is achieved at the same time. Therefore, the number of steps is reduced and productivity is improved. Moreover, the fine glass powder coating layer 61 and the holding substrate 9 are simply brought into close contact with each other before firing, and the glass cap 6 and the holding substrate 9 are bonded together by firing, so the work of bringing them into close contact is relatively easy. Even if it's rough, it will be forgiven. Furthermore, since the glass is bonded by firing the glass, its adhesive strength is large, and since no adhesive is used, the thermal efficiency of the heater 8 is also increased. When actually manufactured using the above material, the glass cap 6
It was confirmed that the adhesion between the substrate and the holding substrate 9 was good, and the thermal efficiency of the heater 8 was also increased, resulting in good characteristics as an oxygen sensor. In addition, even in an example in which ASF-200 manufactured by Asahi Glass Co., Ltd. was used as the glass for the glass cap 6 and a forsterite plate was used as the holding substrate 9, there was a problem with the adhesive strength between the glass cap 6 and the holding substrate 9. Moreover, it was confirmed that the efficiency of the heater 8 was improved by about 30% compared to the conventional one, and that a limiting current type oxygen sensor with good characteristics was obtained. In addition to the above-mentioned glasses, high melting point glass having a softening point of about 900° C. to 1000° C. or more, crystallized glass, etc. can be used as the glass forming the glass cap 6. Further, although omitted above, the lead portion of the electrode 3.4 extending from the surface of the zirconia pellet 1 to the surface of the holding substrate 9 may be formed at the same time as the firing for forming the glass cap 6 described above. can. In this case, with the glass fine powder coating layer 61 in close contact with the holding substrate 9 as shown in FIG. If formed, this lead portion will be fired at the same time when the glass cap 6 is fired to form it.

【発明の効果】【Effect of the invention】

この発明の限界電流式酸素センサの製造方法によれば、
−度の焼成工程で気密な空隙を形成するガラス一体層の
形成と保持基板の接着とを達成できるため、製造工程数
が少なくなり、生産性を向上させることができる。また
、接着剤を用いないため、その分だけ熱伝導に優れ、保
持基板に設けられたヒーターの熱効率が向上する。さら
に不良品の発生率が小さく量産性にも優れる。
According to the method for manufacturing a limiting current type oxygen sensor of the present invention,
Since the formation of an integral glass layer that forms an airtight void and the adhesion of the holding substrate can be achieved in a second firing step, the number of manufacturing steps can be reduced and productivity can be improved. Furthermore, since no adhesive is used, thermal conductivity is excellent, and the thermal efficiency of the heater provided on the holding substrate is improved. Furthermore, the incidence of defective products is low and mass productivity is excellent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図及び第5図はこの発明
の一実施例にかかる製造過程の各段階での断面図である
。 1・・・安定化ジルコニアペレット、2・・・小孔、3
.4・・・電極、5・・・アルミナ粉塗布層、6・・・
ガラスキャップ、61・・・ガラス微粉末塗布層、7・
・・空隙、8・・・ヒーター、9・・・保持基板。
1, 2, 3, 4, and 5 are cross-sectional views at each stage of the manufacturing process according to an embodiment of the present invention. 1... Stabilized zirconia pellet, 2... Small hole, 3
.. 4... Electrode, 5... Alumina powder coating layer, 6...
Glass cap, 61...Glass fine powder coating layer, 7.
...Gap, 8...Heater, 9...Holding substrate.

Claims (1)

【特許請求の範囲】[Claims] (1)表裏両面に電極を有するイオン導電体ペレットに
対し、まずその一方の面に高温で散逸する材料を塗布し
、さらにその材料の塗布層の全体を覆い尽くすように上
記のペレットの一方面にガラス微粉末を塗布した後直ち
にこのガラス微粉末塗布層表面に保持基板を密着させ、
その状態で焼成工程を行うことを特徴とする限界電流式
酸素センサの製造方法。
(1) First, a material that dissipates at high temperature is applied to one side of an ionic conductor pellet that has electrodes on both the front and back sides, and then one side of the pellet is coated so as to cover the entire coated layer of the material. Immediately after applying fine glass powder to the surface of the fine glass powder coating layer, a holding substrate is brought into close contact with the surface of the fine glass powder coating layer.
A method for manufacturing a limiting current type oxygen sensor, characterized in that a firing process is performed in this state.
JP1024601A 1989-02-02 1989-02-02 Production of limiting current type oxygen sensor Pending JPH02203267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1024601A JPH02203267A (en) 1989-02-02 1989-02-02 Production of limiting current type oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1024601A JPH02203267A (en) 1989-02-02 1989-02-02 Production of limiting current type oxygen sensor

Publications (1)

Publication Number Publication Date
JPH02203267A true JPH02203267A (en) 1990-08-13

Family

ID=12142672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1024601A Pending JPH02203267A (en) 1989-02-02 1989-02-02 Production of limiting current type oxygen sensor

Country Status (1)

Country Link
JP (1) JPH02203267A (en)

Similar Documents

Publication Publication Date Title
US7233226B2 (en) Method of producing a platinum temperature sensor
JPS63186434A (en) Method of fixing electronic device to board
JPH02203267A (en) Production of limiting current type oxygen sensor
JPH10117063A (en) Manufacture of circuit board having at least one metal layer, circuit board and its use method
JP2002145676A (en) Anodic jointing method
JP2514581B2 (en) Method for manufacturing ceramic oxygen sensor
JP2582135B2 (en) Method of manufacturing thick film type gas sensing element
JPH02203266A (en) Limiting current type oxygen sensor and production thereof
JPH03129694A (en) Heating element
JPS60171450A (en) Safe detection apparatus for combustion machinery
JPH03171525A (en) Manufacture of phosphor display tube
JPH02170043A (en) Manufacture of limit current type gas concentration sensor
JP4408684B2 (en) Gas sensor and manufacturing method thereof
JP2788750B2 (en) Manufacturing method of limiting current type oxygen sensor
JPH0766237B2 (en) Display panel manufacturing method
JPH06258279A (en) Manufacture of limiting current type oxygen sensor
JP2643409B2 (en) Limit current type oxygen sensor
JPS59111290A (en) Method of forming electrode of semiconductor heater
JPS58162855A (en) Manufacture of lean sensor
JPH02311752A (en) Limit current type oxygen sensor and manufacture thereof
JPH04237172A (en) Electrostrictive effect element
JPH02280046A (en) Production of limiting current-type oxygen sensor
JPH02250231A (en) High temp erature operating element
JPH0587019B2 (en)
JPH0330815B2 (en)