JPH02203221A - Abnormality diagnostic device for gear - Google Patents

Abnormality diagnostic device for gear

Info

Publication number
JPH02203221A
JPH02203221A JP1024271A JP2427189A JPH02203221A JP H02203221 A JPH02203221 A JP H02203221A JP 1024271 A JP1024271 A JP 1024271A JP 2427189 A JP2427189 A JP 2427189A JP H02203221 A JPH02203221 A JP H02203221A
Authority
JP
Japan
Prior art keywords
gear
frequency
abnormality
waveform
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1024271A
Other languages
Japanese (ja)
Other versions
JPH0733976B2 (en
Inventor
Fumitatsu Shinno
新野 文達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1024271A priority Critical patent/JPH0733976B2/en
Publication of JPH02203221A publication Critical patent/JPH02203221A/en
Publication of JPH0733976B2 publication Critical patent/JPH0733976B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To grasp quantitatively the eccentric abnormality of a gear by extracting the frequency components generated with the eccentric abnormality from the vibration waveform of a gear and calculating the abnormality degree number therefrom. CONSTITUTION:The abnormality for the gears 102-106 are diagnosed from the vibration waveforms which are detected by a vibration sensor 108 at the outside of a gear device 101. At this time, the waveforms are made to pass through a vibration frequency band caused by the gear by a band-pass filter 1, and the waveforms after passing through the filter 1 are repeatedly fetched in a waveform input part 2 in the manner of taking a signal worked 21 based on the pulses generating 22 from the gear revolution as a start command. Then, the waveforms fetched to the set number of times are averaged 3 and converted 4 into a frequency spectrum. The meshing and revolution frequency are calcu lated based on this frequency and the number of gear tooth, hence the noticed frequency is calculated 5. Based on the results, the size of necessary frequency components are extracted 6 from the frequency spectrum, then the abnormality degree and quantity are calculated 7 and displaied 8.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、歯車異常診断用に取り込んだ振動波形を処
理して偏心による異常を診断する歯車の異常診断装置に
関する。
The present invention relates to a gear abnormality diagnosing device that processes vibration waveforms captured for gear abnormality diagnosis to diagnose abnormalities due to eccentricity.

【従来の技術】[Conventional technology]

噛合って回転する複数個の歯車をケース中に収容し、動
力伝達や回転数の変換等に使用する歯車装置においては
、軸の曲がりを含む歯車の異常な偏心、歯面に付いた打
痕及び歯折損などの局部異常、異常な摩耗などにより、
それらの歯車が相手歯車と噛合う時に異常振動が発生す
る。 これをケースに固定した振動センサによって検出し、そ
の振動波形を解析して逆に歯車の異常を把握するものが
歯車の異常診断装置である。 しかし、前記のケースに振動センサを固定して検出した
振動波形には、歯車軸を支承する転がり軸受や電動機の
電磁力などに起因する歯車の異常以外の振動も重なり合
い、しかもこれらの比率が大きいことから歯車の異常診
断を阻害している。 このため歯車軸上に設けた回転マークと、これを検出す
るセンサにより回転パルスを発生し、このパルスを基準
として振動波形を繰り返し取り込み、加算平均して歯車
の異常以外の振動を低減するようにしている。 加算平均とは、ある点を基準にして取り込んだ時間領域
データ即ち振動波形を繰り返し、多数回加算して平均す
ると基準に対してタイミング(位相なども含む)が不安
定に変化するようなデータ(ノイズ)は零に近づいて消
滅し、基準点に対して常に安定したタイミングにあるデ
ータだけが残るということを利用したものである。 しかし歯車の異常は、回転パルスを取り出した軸に取り
付けられた歯車にだけ発生する訳でなく、これと噛み合
う相手歯車にも発生する。 このような場合には、異常を診断したい歯車の取り付け
られている軸に前記回転マークを付は直し、その軸の回
転パルスを取り出せば良いが、歯車装置の構造上から回
転マークの取り付けが不可能な場合が多い。 出願人は先に特別昭62−231734号として歯車の
異常診断装置を出願しているが、これは回転パルスを取
り出している歯車だけでなく、この1語車に噛合ってい
る相手歯車の回転にも同期させた振動波形が得られる上
に、両歯車の噛合いによって発生する顕著な振動波形を
、任意に調整することによって取り込める歯車の異常診
断装置である。 診断は、このように波形平均してノイズを除去した後の
波形を周波数スペクトルに変換して行っていた。即ち歯
車の異常の種類によって発生する振動成分が異なるので
、そのスペクトルの変化に注目して異常かどうかを判断
していた。
In gear devices that house multiple gears that mesh and rotate in a case and are used for power transmission, rotation speed conversion, etc., abnormal eccentricity of the gears, including bending of the shaft, and dents on the tooth surfaces. Due to local abnormalities such as broken teeth, abnormal wear, etc.
Abnormal vibrations occur when these gears mesh with their mating gears. A gear abnormality diagnosis device detects this with a vibration sensor fixed to the case, analyzes the vibration waveform, and conversely identifies abnormalities in the gear. However, in the vibration waveform detected by fixing the vibration sensor to the case described above, vibrations other than gear abnormalities caused by rolling bearings that support the gear shaft and electromagnetic force of the electric motor are also overlapped, and the ratio of these vibrations is large. This obstructs gear abnormality diagnosis. For this reason, a rotation pulse is generated by a rotation mark provided on the gear shaft and a sensor that detects this, and vibration waveforms are repeatedly captured using this pulse as a reference, and the vibrations are averaged to reduce vibrations other than gear abnormalities. ing. Additive averaging refers to data whose timing (including phase, etc.) changes unstably with respect to the reference by repeating time domain data, i.e., vibration waveforms, taken with a certain point as a reference, and adding and averaging them many times. This method takes advantage of the fact that noise) approaches zero and disappears, leaving only data that is always at stable timing with respect to the reference point. However, gear abnormalities do not only occur in the gear attached to the shaft from which the rotational pulse is extracted, but also in the mating gear that meshes with the gear. In such a case, you can reattach the rotation mark to the shaft on which the gear you want to diagnose the abnormality is attached to and extract the rotation pulse of that shaft. However, due to the structure of the gear device, attaching the rotation mark is not possible. It is often possible. The applicant had previously applied for an abnormality diagnosis device for gears as Special No. 62-231734, but this device detects not only the rotation of the gear from which rotational pulses are extracted, but also the rotation of the mating gear meshing with this one-wheel. This is a gear abnormality diagnosing device that not only can obtain synchronized vibration waveforms, but also can capture the noticeable vibration waveforms generated by the meshing of both gears by arbitrarily adjusting them. Diagnosis was performed by converting the waveform after noise was removed by averaging the waveform into a frequency spectrum. That is, since the vibration components generated differ depending on the type of gear abnormality, it has been determined whether or not there is an abnormality by paying attention to changes in the spectrum.

【発明が解決しようとする課題】[Problem to be solved by the invention]

実際の歯車装置では、診断したい軸に取り付けられた歯
車と噛合う相手歯車が取り付けられている軸に取り付け
られた歯車に起因するスペクトルも出現し、その比も減
速比9増速比によって変化するため1対1ではなく、ま
た異常の種類によっては、基本のスペクトルおよびその
整数倍のスペクトルなどが多数出現するため、どのスペ
クトルがどの歯車の異常に起因した成分に相当するか即
座に見分けられず、簡単に異常を判断できないという問
題があった。 また異常発生初期の段階では、異常に起因した振動成分
が小さく、単に加算平均した波形を分析しただけでは、
異常に起因したスペクトルが、除去しきれないノイズの
中に埋もれてしまうという問題もあった。 第5図は歯車の偏心異常の実験から求められた偏心異常
歯車の振動波形図であり、第6図は第5図の歯車の異常
診断に用いる外部パルス信号の波形図である。振動波形
は横軸が時間縦軸が振動振幅であり第6図の外部パルス
信号の波形と対比してみると、1回転に1回の割合で振
幅が増減していることがわかる。またこの波形から増減
している振動の周波数を求めるとこの周波数は偏心して
いる歯車の噛合同波数であることがわかった。このよう
な場合の周波数スペクトルは、歯車の回転周波数をf 
l” +噛合周波数をf、、とすると、f。 fr、  fm、  fr−+r、の周波数のスペクト
ルが3本発生することが実験で確かめられた。 この発明は、歯車の振動波形から異常程度数を演算し、
歯車の偏心に基づく異常を診断する歯車の異常診断装置
を提供することを目的とする。
In an actual gear device, a spectrum due to the gear attached to the shaft that meshes with the gear attached to the shaft to be diagnosed also appears, and the ratio also changes depending on the reduction ratio 9 and the increase ratio. Therefore, it is not one-to-one, and depending on the type of abnormality, many spectra such as the basic spectrum and integral multiples of the basic spectrum appear, so it is difficult to immediately tell which spectrum corresponds to the component caused by the abnormality of which gear. However, there was a problem in that abnormality could not be easily determined. In addition, in the early stages of an abnormality, the vibration component caused by the abnormality is small, and simply analyzing the averaged waveform will not work.
There was also the problem that the spectrum caused by the abnormality was buried in noise that could not be completely removed. FIG. 5 is a vibration waveform diagram of an eccentric gear determined from an experiment to detect eccentricity of a gear, and FIG. 6 is a waveform diagram of an external pulse signal used for abnormality diagnosis of the gear shown in FIG. In the vibration waveform, the horizontal axis is time and the vertical axis is vibration amplitude, and when compared with the waveform of the external pulse signal in FIG. 6, it can be seen that the amplitude increases and decreases at a rate of once per rotation. Furthermore, when the frequency of the increasing and decreasing vibrations was determined from this waveform, it was found that this frequency was the meshing wave number of the eccentric gear. The frequency spectrum in such a case is the rotational frequency of the gear f
It has been experimentally confirmed that, when f is the meshing frequency of gears, three frequency spectra of f.fr, fm, and fr-+r are generated. calculate numbers,
It is an object of the present invention to provide a gear abnormality diagnosing device for diagnosing abnormalities due to gear eccentricity.

【課題を解決するための手段】[Means to solve the problem]

上記目的は、この発明によれば、歯車に起因した振動周
波数帯域を通過させるバンドパスフィルタと、歯車の回
転パルスを基に加工した外部パルス信号を起動指令とし
て前記バンドパスフィルタ通過後の刷毛居を繰り返し取
り込む波形入力部と、付設する平均回数設定部で設定す
る回数に達するまで前記刷毛居入力部で取り込んだ波形
を加算平均する波形平均部と、前記加算平均した波形を
周波数スペクトルに変換するフーリエ変換部と、前記回
転パルスの周波数と歯車の歯数を基にして噛合周波数お
よび回転周波数を計算し、計算された値を基にして注目
すべき周波数を求める注目周波数演算部と、前記注目周
波数演算部で計算した注目周波数を基にして前記フーリ
エ変換部で変換したスペクトルから診断に必要な周波数
成分の大きさを抽出するスペクトル抽出部と、前記スペ
クトル抽出部で抽出された各周波数成分の大きさから歯
車の異常程度数Yを求める異常程度数演算部と、前記異
常程度数Yを表示するための表示部を備えた歯車の異常
診断装置によって達成される。
According to the present invention, the above object is to provide a band pass filter that passes a vibration frequency band caused by a gear, and a brush filter that passes through the band pass filter using an external pulse signal processed based on the rotation pulse of the gear as a starting command. a waveform input section that repeatedly takes in the waveform; a waveform averaging section that adds and averages the waveforms that have been taken in by the brush input section until the number of times set in the attached averaging number setting section is reached; and a waveform averaging section that converts the added and averaged waveform into a frequency spectrum. a Fourier transform unit; a frequency-of-interest calculation unit that calculates a meshing frequency and a rotational frequency based on the frequency of the rotational pulse and the number of teeth of the gear; and a frequency-of-interest calculation unit that calculates a frequency of interest based on the calculated values; a spectrum extraction section that extracts the magnitude of the frequency component necessary for diagnosis from the spectrum transformed by the Fourier transform section based on the frequency of interest calculated by the frequency calculation section; This is achieved by a gear abnormality diagnosing device that includes an abnormality degree calculation section that calculates the abnormality degree Y of the gear from its size, and a display section that displays the abnormality degree Y.

【作 用】[For use]

バンドパスフィルタを通って得られたf、 −f、 。 f、、f、+f、の周波数成分を抽出し、抽出した成分
を波形平均部で加算平均することにより波形の振幅が殆
ど一定となり、この加算平均した波形をフーリエ変換部
で周波数スペクトルに変換し、注目周波数演算部で注目
すべき周波数fイーfF 。 f、、f、+f、を求め、スペクトル抽出部で注目すべ
き周波数成分の大きさP(f、 −f、 )、  P(
Lm ) 、  PCf@ 十f、 )を抽出し、これ
らの値から異常程度数Yを求めることにより、偏心異常
に起因して発生する周波数スペクトルの特徴から歯車の
偏心異常を診断することができる。
f, −f, obtained through a bandpass filter. By extracting the frequency components of f, , f, +f, and averaging the extracted components in the waveform averaging section, the amplitude of the waveform becomes almost constant, and this averaged waveform is converted into a frequency spectrum in the Fourier transform section. , the frequency fEfF to be noted in the frequency-of-interest calculation section. Find f,, f, +f, and use the spectrum extractor to calculate the magnitudes of frequency components P(f, −f, ), P(
By extracting Lm), PCf@10f, ) and determining the abnormality degree number Y from these values, it is possible to diagnose gear eccentricity abnormality from the characteristics of the frequency spectrum caused by the eccentricity abnormality.

【実施例】【Example】

以下図面に基づいてこの発明の詳細な説明する。第1図
はこの発明の実施例による歯車の異常診断装置の構成を
示すブロック線図である。 第1図において、歯車の異常診断装置は歯車に起因した
振動周波数帯域を通過させるバンドパスフィルタ1と、
歯車の回転パルス発生部22から発生する回転パルスを
基に外部パルス信号発生部21で加工した外部パルス信
号を起動指令として前記バンドパスフィルタ1通過後の
波形を繰り返し取り込む波形入力部2と、付設する平均
回数設定部31で設定する回数に達するまで前記波形入
力部2で取り込んだ波形を加算平均する波形平均部3と
、前記加算平均した波形を周波数スペクトルに変換する
フーリエ変換部4と、前記回転パルスの周波数と歯車の
歯数を基にして噛合周波数および回転周波数を計算し、
計算された値を基にして注目すべき周波数を求める注目
周波数演算部5と、前記注目周波数演算部5で計算した
注目周波数を基にして前記フーリエ変換部4で変換した
スペクトルから診断に必要な周波数成分の大きさを抽出
するスペクトル抽出部6と、前記スペクトル抽出部6で
抽出された各周波数成分の大きさから歯車の異常程度数
Yを求める異常程度数演算部7と、前記異常程度数Yを
表示するための表示部8を備えている。 歯車装置101は歯車AlO2、この歯車AlO2と噛
合う歯車B103.この歯車B103と同軸の歯車Cl
O4,歯車ClO4と噛合う歯車D105からなる。 次にこの歯車異常診断装置の操作を説明する。 イ)最初に偏心によって現れる振動成分をより明確にす
るため、即ち偏心異常を診断するためにはノイズと見な
される局所異常や摩耗に起因した振動成分を除去するた
め、前記歯車装置101のケース外側に固定した振動セ
ンサ108から取り出した振動波形109をバンドパス
フィルタ1に入力する。 バンドパスフィルタ1の通過周波数帯域幅をfl−nx
r、からf、+nXf、に設定(nは1〜3程度)する
ことにより、他の成分を出来るだけ除去することができ
る。 ここにflIは噛合周波数であり、 噛合周波数=歯車の歯数×歯車の回転数+6゜f、は歯
車の回転周波数であり、 歯車の回転周波数=歯車の回転数+60  である。 口)次に注目した歯車だけの偏心異常波形を抽出するた
め、回転パルス発生部22から発生する回転パルスを基
に加工し外部パルス信号発生部21から発生する外部パ
ルス信号を起動指令として前記バンドパスフィルタ1通
過後の波形を波形入力部2で繰り返し取り組む。ここで
外部パルス信号の発生周波数は注目した歯車の回転周波
数と同じに設定する。噛合う歯車同志の噛合周波数は全
く同じであり、前記バンドパスフィルタ1ではどちらの
歯車に偏心があるのか判定できない。 第3図は外部パルス信号発生部21から発生する外部パ
ルス信号の波形図である。 ハ)波形入力部2で取り込んだ波形は付設する平均回数
設定部31で設定した設定回数に達するまで波形平均部
3で加算平均する。第2図は加算平均部3で加算平均し
た振動波形を示す。 二)加算平均した波形はフーリエ変換部4で周波数スペ
クトルに変換する。第4図はフーリエ変換部4で変換し
て得られる振動波形のスペクトルである。 ホ)以上のような波形処理を行っても、まだ除去しきれ
ないノイズ成分のスペクトルがでる可能性があるので、
読むべき周波数を予めきめておくのが注目周波数演算部
5である。 注目周波数演算部5では回転パルス22の周波数分析を
行い、正確な周波数と、別に入力した歯車の歯数の組み
合わせから注目した歯車の噛合周波数fla+ 回転周
波数f1などを計算し、これを基に注目すべき周波数f
、 −f、やf* + frを求める。 へ)前記フーリエ変換部4の出力と注目周波数演算部5
の出力とをスペクトル抽出部6へ入力させる。このスペ
クトル抽出部6では、前記注目周波数演算部5で計算し
た注目すべき周波数成分の大きさP(f、 )、P(f
、 −f、 )、P(f、 + f、 )を抽出する。 ト)前記スペクトル抽出部6の出力を異常程度数演算部
7へ入力させる。この異常程度数演算部7では、前記ス
ペクトル抽出部6で抽出した各周波数成分の大きさP(
f、 −f、 )、P(f、 十f、 )、 P(f、
)から異常程度数Yを計算する。 ここで Y=P(f、 −f、 ) xP(f、+  f、)/ [P(f、)/2] ”偏
心異常によるスペクトルには必ずf、−、f。 とf、 + f、の周波数成分が出てくる。実際の歯車
装置では、多数の歯車が噛み合うようになっているので
、f、 −f、かf、 + f、に偶然スペクトルがで
きることも考えられる。しかし両方にでる可能性は少な
いと思われるので、どちらか一方は零に近い値となるの
で、掛は算して計算することによりYの値が零に近くな
り無視することができる。 チ)前記異常程度数演算部7の出力を表示部8に入力さ
せて、この表示部8に前記異常程度数Yを表示する。第
4図に示したスペクトルの例ではY =0.201 と
なりこの値を表示部8に表示する。 前記異常程度数Yから歯車装置101の偏心異常を診断
する。
The present invention will be described in detail below based on the drawings. FIG. 1 is a block diagram showing the configuration of a gear abnormality diagnosing device according to an embodiment of the present invention. In FIG. 1, the gear abnormality diagnosis device includes a bandpass filter 1 that passes a vibration frequency band caused by the gear;
a waveform input section 2 that repeatedly receives the waveform after passing through the bandpass filter 1 using an external pulse signal processed by the external pulse signal generation section 21 based on the rotation pulse generated from the rotation pulse generation section 22 of the gear as a starting command; a waveform averaging section 3 that adds and averages the waveforms input by the waveform input section 2 until the number of times set by the averaging number setting section 31 is reached; a Fourier transform section 4 that converts the averaged waveform into a frequency spectrum; Calculate the meshing frequency and rotation frequency based on the frequency of the rotation pulse and the number of gear teeth,
A frequency of interest calculation unit 5 calculates frequencies to be focused on based on the calculated values, and a spectrum converted by the Fourier transformation unit 4 based on the frequency of interest calculated by the frequency of interest calculation unit 5 is used to calculate necessary frequencies for diagnosis. a spectrum extracting unit 6 that extracts the magnitude of a frequency component; an abnormality degree calculation unit 7 that calculates a gear abnormality degree number Y from the magnitude of each frequency component extracted by the spectrum extraction unit 6; A display section 8 for displaying Y is provided. The gear device 101 includes a gear AlO2 and a gear B103 meshing with this gear AlO2. Gear Cl coaxial with this gear B103
It consists of a gear D105 meshing with a gear ClO4 and a gear ClO4. Next, the operation of this gear abnormality diagnosis device will be explained. b) First, in order to make the vibration component that appears due to eccentricity more clear, that is, in order to diagnose eccentricity abnormality, to remove the vibration component caused by local abnormality or wear that is considered as noise, outside the case of the gear device 101. A vibration waveform 109 taken out from a vibration sensor 108 fixed to is input to the bandpass filter 1. The passing frequency bandwidth of bandpass filter 1 is fl-nx
By setting r, to f, +nXf (n is about 1 to 3), other components can be removed as much as possible. Here, flI is the meshing frequency, meshing frequency = number of gear teeth x gear rotation speed + 6°f, is the gear rotation frequency, and gear rotation frequency = gear rotation speed + 60. Mouth) Next, in order to extract the eccentricity abnormality waveform of only the gear of interest, processing is performed based on the rotational pulse generated from the rotational pulse generation section 22, and the external pulse signal generated from the external pulse signal generation section 21 is used as a starting command to generate the above-mentioned band. The waveform after passing through the pass filter 1 is repeatedly input to the waveform input section 2. Here, the generation frequency of the external pulse signal is set to be the same as the rotational frequency of the gear of interest. The meshing frequencies of the meshing gears are exactly the same, and the bandpass filter 1 cannot determine which gear has eccentricity. FIG. 3 is a waveform diagram of an external pulse signal generated from the external pulse signal generator 21. c) The waveform input by the waveform input section 2 is averaged by the waveform averaging section 3 until the number of times set by the attached averaging number setting section 31 is reached. FIG. 2 shows vibration waveforms averaged by the averaging section 3. 2) The averaged waveform is converted into a frequency spectrum by the Fourier transform unit 4. FIG. 4 shows the spectrum of the vibration waveform obtained by the Fourier transform unit 4. e) Even if you perform the above waveform processing, there is a possibility that a spectrum of noise components that cannot be removed may still appear.
The frequency of interest calculation section 5 determines in advance the frequency to be read. The frequency of interest calculation unit 5 analyzes the frequency of the rotational pulse 22, calculates the meshing frequency fla+rotational frequency f1, etc. of the gear of interest based on the combination of the accurate frequency and the number of teeth of the gear input separately, and based on this, calculates the meshing frequency fla+rotation frequency f1 of the gear of interest. Should frequency f
, −f, or f* + fr. f) Output of the Fourier transform unit 4 and frequency of interest calculation unit 5
and the output thereof are input to the spectrum extracting section 6. In this spectrum extraction section 6, the magnitudes P(f, ) and P(f
, -f, ), P(f, +f, ) are extracted. g) Input the output of the spectrum extraction section 6 to the abnormality degree calculation section 7. This abnormality degree calculation unit 7 calculates the magnitude P(
f, −f, ), P(f, 10f, ), P(f,
) to calculate the abnormality degree Y. Here, Y=P(f, -f, ) xP(f, + f,)/[P(f,)/2] "The spectrum due to eccentricity abnormality always contains f, -, f. and f, + f, A frequency component appears.In an actual gear device, many gears are meshed, so it is possible that a spectrum may be created by chance at f, -f, or f, + f.However, the frequency component appears in both. Since the possibility is considered to be small, one of the values will be close to zero, so by calculating the multiplier, the value of Y will be close to zero and can be ignored.H) The above abnormality degree number The output of the calculation section 7 is input to the display section 8, and the abnormality degree number Y is displayed on the display section 8.In the example of the spectrum shown in FIG. The eccentricity abnormality of the gear device 101 is diagnosed from the abnormality degree number Y.

【発明の効果】【Effect of the invention】

この発明によれば、歯車の振動波形から偏心異常に基づ
いて発生する周波数成分であるf。−f r +f、、
f、+f、、周波数の成分を抽出し、これらの値から異
常程度数を演算することにより、歯車の偏心異常を定量
的に把握することができる。
According to this invention, f is a frequency component generated from the gear vibration waveform based on eccentricity abnormality. −f r +f,,
By extracting the frequency components f, +f, and calculating the degree of abnormality from these values, it is possible to quantitatively understand the eccentricity abnormality of the gear.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例による歯車の異常診断装置の
構成を示すブロック図、第2図は第1図の波形平均部で
加算平均した振動波形を示す図、□第3図は第1図の歯
車の異常診断装置の外部パルス信号の波形図、第4図は
第1図のフーリエ変換部で変換して得られる振動波形の
スペクトルを示す図、第5図は歯車の偏心異常により現
れる振動波形図、第6図は第5図の歯車の異常診断に用
いる外部パルス信号を示す図である。 1:バンドバスフィルタ、2:波形入力部、3:波形平
均部、4:フーリエ変換部、5:注目周波数演算部、6
:スペクトル抽出部、7;異常程度数演算部、8;表示
部、21:外部パルス信号発生部、22:回転パルス発
生部、31:平均回数設定部、101:歯車装置、10
6二回転マーク、107;センサ、108:振動センサ
、109:振動波形。
FIG. 1 is a block diagram showing the configuration of a gear abnormality diagnosis device according to an embodiment of the present invention, FIG. 2 is a diagram showing vibration waveforms averaged by the waveform averaging section of FIG. Figure 4 is a waveform diagram of the external pulse signal of the gear abnormality diagnosis device, Figure 4 is a diagram showing the spectrum of the vibration waveform obtained by converting it in the Fourier transform section of Figure 1, and Figure 5 is a diagram showing the spectrum of the vibration waveform obtained by the gear eccentricity abnormality. The vibration waveform diagram in FIG. 6 is a diagram showing an external pulse signal used for abnormality diagnosis of the gear shown in FIG. 5. 1: Bandpass filter, 2: Waveform input section, 3: Waveform averaging section, 4: Fourier transform section, 5: Frequency of interest calculation section, 6
: Spectrum extraction section, 7; Abnormality degree calculation section, 8; Display section, 21: External pulse signal generation section, 22: Rotation pulse generation section, 31: Average number of times setting section, 101: Gear device, 10
6 double rotation mark, 107; sensor, 108: vibration sensor, 109: vibration waveform.

Claims (1)

【特許請求の範囲】[Claims] 1)噛合って回転する複数個の歯車を収納する歯車装置
のケースの外側に取り付けた振動センサによつて検出す
る振動波形から、各歯車の異常を診断する歯車の異常診
断装置において、歯車に起因した振動周波数帯域を通過
させるバンドパスフィルタと、歯車の回転パルスを基に
加工した外部パルス信号を起動指令として前記バンドパ
スフィルタ通過後の波形を繰り返し取り込む波形入力部
と、付設する平均回数設定部で設定する回数に達するま
で前記波形入力部で取り込んだ波形を加算平均する波形
平均部と、前記加算平均した波形を周波数スペクトルに
変換するフーリエ変換部と、前記回転パルスの周波数と
歯車の歯数を基にして噛合周波数および回転周波数を計
算し、計算された値を基にして注目すべき周波数を求め
る注目周波数演算部と、前記注目周波数演算部で計算し
た注目周波数を基にして前記フーリエ変換部で変換した
スペクトルから診断に必要な周波数成分の大きさを抽出
するスペクトル抽出部と、前記スペクトル抽出部で抽出
された各周波数成分の大きさから歯車の異常程度数Yを
求める異常程度数演算部と、前記異常程度数Yを表示す
るための表示部を備えたことを特徴とする歯車の異常診
断装置。
1) A gear abnormality diagnosis device that diagnoses abnormalities in each gear from vibration waveforms detected by a vibration sensor attached to the outside of the case of a gear device that houses multiple gears that mesh and rotate. A bandpass filter that passes the vibration frequency band caused by the vibration, a waveform input section that repeatedly captures the waveform after passing through the bandpass filter using an external pulse signal processed based on the rotational pulse of the gear as a start command, and an attached averaging frequency setting. a waveform averaging section that adds and averages the waveforms captured by the waveform input section until the number of times set in the waveform input section is reached; a Fourier transform section that converts the averaged waveform into a frequency spectrum; and a frequency spectrum of the rotation pulse and gear teeth. a frequency-of-interest calculation unit that calculates the meshing frequency and rotational frequency based on the calculated values, and obtains a frequency of interest based on the calculated values; a spectrum extraction unit that extracts the magnitude of frequency components necessary for diagnosis from the spectrum converted by the conversion unit; and an abnormality degree number Y for determining the degree of abnormality of the gear from the magnitude of each frequency component extracted by the spectrum extraction unit. A gear abnormality diagnosing device comprising a calculation section and a display section for displaying the abnormality degree number Y.
JP1024271A 1989-02-02 1989-02-02 Gear abnormality diagnosis device Expired - Lifetime JPH0733976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1024271A JPH0733976B2 (en) 1989-02-02 1989-02-02 Gear abnormality diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1024271A JPH0733976B2 (en) 1989-02-02 1989-02-02 Gear abnormality diagnosis device

Publications (2)

Publication Number Publication Date
JPH02203221A true JPH02203221A (en) 1990-08-13
JPH0733976B2 JPH0733976B2 (en) 1995-04-12

Family

ID=12133550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1024271A Expired - Lifetime JPH0733976B2 (en) 1989-02-02 1989-02-02 Gear abnormality diagnosis device

Country Status (1)

Country Link
JP (1) JPH0733976B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562841U (en) * 1992-01-30 1993-08-20 三菱自動車工業株式会社 Scratch discrimination device for differential device
WO1994024537A1 (en) * 1993-04-09 1994-10-27 Monitoring Technology Corporation Method and apparatus for analyzing and detecting faults in bearings and other rotating components that slip
JP2010159848A (en) * 2009-01-09 2010-07-22 Ricoh Co Ltd Control device, image forming device, method for detecting abrasion, program, and storage medium
JP2011196944A (en) * 2010-03-23 2011-10-06 Nippon Steel Corp Method, device, and program for estimating rotational speed of rotary machine
JP2012068246A (en) * 2010-09-23 2012-04-05 General Electric Co <Ge> Sideband energy ratio method of gear engagement fault detection
CN102889986A (en) * 2011-07-18 2013-01-23 西门子公司 Method for identifying faults in transmission
JP2015148516A (en) * 2014-02-06 2015-08-20 三菱電機株式会社 Abnormality detection device and method
CN112105907A (en) * 2018-04-24 2020-12-18 赛峰集团 Method and apparatus for monitoring a gear system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101492088B1 (en) * 2013-11-21 2015-02-10 이선휘 Method For Fault Detection And Fault Diagnosis Of Planet Gear System

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562841U (en) * 1992-01-30 1993-08-20 三菱自動車工業株式会社 Scratch discrimination device for differential device
WO1994024537A1 (en) * 1993-04-09 1994-10-27 Monitoring Technology Corporation Method and apparatus for analyzing and detecting faults in bearings and other rotating components that slip
US5511422A (en) * 1993-04-09 1996-04-30 Monitoring Technology Corporation Method and apparatus for analyzing and detecting faults in bearings and other rotating components that slip
JP2010159848A (en) * 2009-01-09 2010-07-22 Ricoh Co Ltd Control device, image forming device, method for detecting abrasion, program, and storage medium
JP2011196944A (en) * 2010-03-23 2011-10-06 Nippon Steel Corp Method, device, and program for estimating rotational speed of rotary machine
JP2012068246A (en) * 2010-09-23 2012-04-05 General Electric Co <Ge> Sideband energy ratio method of gear engagement fault detection
CN102889986A (en) * 2011-07-18 2013-01-23 西门子公司 Method for identifying faults in transmission
US9267864B2 (en) 2011-07-18 2016-02-23 Siemens Aktiengesellschaft Method for identifying damage on transmissions
JP2015148516A (en) * 2014-02-06 2015-08-20 三菱電機株式会社 Abnormality detection device and method
CN112105907A (en) * 2018-04-24 2020-12-18 赛峰集团 Method and apparatus for monitoring a gear system

Also Published As

Publication number Publication date
JPH0733976B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
US10598568B1 (en) Vibration measurement and analysis
Li et al. New procedure for gear fault detection and diagnosis using instantaneous angular speed
US9459088B2 (en) Method and apparatus for monitoring the condition of electromechanical systems
Capdessus et al. Cyclostationary processes: application in gear faults early diagnosis
Mohanty et al. Fault detection in a multistage gearbox by demodulation of motor current waveform
CN107063681B (en) A kind of fault signature envelope extraction method under epicyclic gearbox time-varying vibration transfer path
JPH02203221A (en) Abnormality diagnostic device for gear
CN111610023B (en) Speed reducer noise evaluation method and device and handheld speed reducer noise evaluation instrument
US12007310B2 (en) State monitoring device and state monitoring system
US20210239570A1 (en) Method and device for monitoring a gear system
AU2015201595A1 (en) Vibration measurement and analysis
CN113405795A (en) Weak fault identification method for joint RV reducer
CN109682597A (en) A kind of gear-box vibration signal processing and analysis method
JP3092453B2 (en) Diagnosis method of planetary gear mechanism
Duan et al. Time-varying filtering for nonstationary signal analysis of rotating machinery: Principle and applications
CN113074941B (en) Variable-speed gear fault signal extraction method based on self-adaptive time-varying comb filtering
JPH02240536A (en) Abnormality diagnostic device for gear
KR102026065B1 (en) Vibration characteristics data map processing apparatus for diagnosing a fault of planetary gear box
JPH0252971B2 (en)
JPH0733977B2 (en) Gear abnormality diagnostic device
JP6577394B2 (en) Abnormality diagnosis equipment for wind power generation facilities
CN113029553B (en) Method, system and device for extracting rotating speed information of gearbox shaft and storage medium
CN110553723B (en) Vibration signal processing system and method
JP3286073B2 (en) Shaft Vibration Monitoring System for Recirculation Pump Built in Reactor
JP4591333B2 (en) Measuring device for engine generated torque