JPH02202420A - Pressure measuring device of plasticizing material in injection molding and injection molding machine - Google Patents

Pressure measuring device of plasticizing material in injection molding and injection molding machine

Info

Publication number
JPH02202420A
JPH02202420A JP2179189A JP2179189A JPH02202420A JP H02202420 A JPH02202420 A JP H02202420A JP 2179189 A JP2179189 A JP 2179189A JP 2179189 A JP2179189 A JP 2179189A JP H02202420 A JPH02202420 A JP H02202420A
Authority
JP
Japan
Prior art keywords
pressure
injection
plastic material
plunger
injection plunger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2179189A
Other languages
Japanese (ja)
Inventor
Takao Odate
大舘 隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Co Ltd
Original Assignee
Sodick Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co Ltd filed Critical Sodick Co Ltd
Priority to JP2179189A priority Critical patent/JPH02202420A/en
Publication of JPH02202420A publication Critical patent/JPH02202420A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/53Means for plasticising or homogenising the moulding material or forcing it into the mould using injection ram or piston

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Measuring Fluid Pressure (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To precisely measure the pressure of a plasticizing material in both a measuring process and injection process by measuring the pressure of the plasticizing material by a pressure sensor arranged on the rear or the front of an injection plunger. CONSTITUTION:A plasticizing material melted and plasticized by a preplasticizing mechanism 20, for example, molten resin is sent to a resin rich area 18 from the preplasticizing mechanism and a ram 34 and injection plunger 22 are moved backward to an initial position. Then even after filling of the resin rich area 18 with the molten resin, the preplasticizing mechanism 20 keeps sending the molten resin and the injection plunger 22 is pressed rightward by force of the molten resin. The resin pressure pressing the injection plunger 22 rightward presses a pressure sensor 32 of the rear of the injection plunger and the resin pressure is measured by the pressure sensor. The pressure of the plasticizing material in a measuring process is obtained easily in this manner. The resin pressure in the injection process acts upon the injection plunger 22 as reaction force, measured by the pressure sensor 32 of the rear of the injection plunger and also a variation of the resin pressure is secured reliably.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、射出プランジャの前進に伴って、射出シリ
ンダ前方の樹脂溜りの可塑材料を射出する射出成形にお
ける可塑材料の圧力測定方法および射出成形機に関する
Detailed Description of the Invention [Field of Industrial Application] This invention relates to a method for measuring the pressure of a plastic material in injection molding in which plastic material in a resin reservoir in front of an injection cylinder is injected as an injection plunger moves forward, and a method for measuring the pressure of a plastic material in injection molding. Regarding machines.

〔従来の技術〕 射出成形において、樹脂(プラスチ−2り)のような可
塑材料は、加熱溶融され、加圧下で金型のキャビティ内
に射出され、冷却後、成形品としてキャビティから取り
出されている。また、最近ではセラミックのような新素
材も水、樹脂等を介在物として可塑化され、成形加工さ
れている。そして、成形加工においては、バラツキのな
い一定品質の成形品を成形することが必要とされている
[Prior Art] In injection molding, a plastic material such as a resin (Plasti-2) is heated and melted, injected under pressure into a mold cavity, and after cooling, is taken out from the cavity as a molded product. There is. Recently, new materials such as ceramics have also been plasticized and molded using water, resin, etc. as inclusions. In the molding process, it is necessary to mold a molded product of constant quality without variation.

特に、技術的に高度化、精密化された産業界においては
、一定量質の成形品の必要性は高い、そのため、従来技
術にあっては、外乱に対して一定の条件(最適条件)を
維持するように、機械的成形条件(射出圧力、射出速度
、射出量、加熱温度、スクリュー回転速度、背圧、保圧
等)をクローズトループ制御等によってコンピュータ制
御している。
In particular, in the technologically advanced and precise industry, there is a high need for molded products of a certain quantity and quality.Therefore, in conventional technology, certain conditions (optimal conditions) against external disturbances are required. The mechanical molding conditions (injection pressure, injection speed, injection amount, heating temperature, screw rotation speed, back pressure, holding pressure, etc.) are computer-controlled by closed-loop control or the like to maintain the same.

しかし、可塑材料自身の変動が最適条件の維持を難しく
している。たとえば、同一可塑材料でもロフト毎に材料
粒子の大きさ、固有粘度にバラツキがある。また、乾燥
ムラによる含有水量のバラツキによって、粘度のバラツ
キが生じる。そして、可塑材料自身の変動に応じて、キ
ャビティ内での可塑材料の流れ速度、圧力分布、固化層
の発生の仕方等が、変化する。そのため、成形サイクル
において1機械的成形状件を一定に維持しても成形品の
寸法のバラツキ、外観のバラツキ、離型不良が生じ、不
良品の発生を完全に防止することが難しい。
However, variations in the plastic material itself make it difficult to maintain optimal conditions. For example, even if the same plastic material is used, there are variations in material particle size and intrinsic viscosity depending on the loft. Furthermore, variations in the amount of water contained due to uneven drying cause variations in viscosity. Then, in response to fluctuations in the plastic material itself, the flow velocity of the plastic material within the cavity, the pressure distribution, the manner in which a solidified layer is generated, etc. change. Therefore, even if one mechanical molding condition is maintained constant during the molding cycle, variations in dimensions, variations in appearance, and defective mold release occur in the molded products, making it difficult to completely prevent the occurrence of defective products.

そのため、計量工程、射出工程において、可塑材料の圧
力を正確に測定し、可塑材料の圧力の変動に応じて、機
械的成形条件(射出圧力、射出量IW、射出量、加熱温
度、スクリュー回転速度、背圧、保圧等)を制御するこ
とが重要視されている射出プランジャまたはスクリュー
の前進時において、射出シリンダに供給される加圧媒体
、たとえば、加圧油の発生源での油圧を検出して、計量
工程、射出工程での可塑材料の圧力を間接的に求める測
定方法が一般に行なわれている。
Therefore, in the metering process and injection process, the pressure of the plastic material is accurately measured, and the mechanical molding conditions (injection pressure, injection amount IW, injection amount, heating temperature, screw rotation speed) are adjusted according to the fluctuations in the pressure of the plastic material. Detection of hydraulic pressure at the source of pressurized medium, such as pressurized oil, supplied to the injection cylinder during advancement of the injection plunger or screw, where it is important to control the pressure (back pressure, holding pressure, etc.) Therefore, a measurement method is generally used in which the pressure of the plastic material is indirectly determined during the metering process and the injection process.

また、ノズル、プランジャシリンダ前部の、いわゆる、
樹脂留りやスクリュー背面に圧力センサーを配置して、
可塑材料の圧力を測定する方法も知られている。
In addition, the so-called nozzle, the front part of the plunger cylinder,
A pressure sensor is placed on the resin retainer and the back of the screw,
Methods of measuring pressure in plastic materials are also known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、発生源での加圧媒体の圧力から可塑材料
の圧力を求める方法では、管路抵抗、バルブ抵抗、ピー
ク圧、脈動等の不確定要素によって、加圧媒体の圧力変
動が、可塑材料の圧力変動に十分対処できない、そのた
め、可塑材料の圧力変動が正確に把握できず、可塑材料
の圧力が正確に測定できない。
However, in the method of determining the pressure of the plastic material from the pressure of the pressurized medium at the source, pressure fluctuations of the pressurized medium may be affected by uncertain factors such as pipe resistance, valve resistance, peak pressure, and pulsation. It is not possible to adequately cope with pressure fluctuations, and therefore the pressure fluctuations of the plastic material cannot be accurately grasped, and the pressure of the plastic material cannot be accurately measured.

これに対して、ノズル、プランジャシリンダ前部の樹脂
留りに圧力センサーを配置し、圧力センサーによって、
可塑材料の圧力を測定する方法では、可塑材料の圧力を
直接測定できるため、不確定要素に影響されず、可塑材
料の圧力が正確に測定でき、iTT塑材料の圧力変動も
迅速、容易に把握される、ここで、ノズル、プランジャ
シリンダの肉厚が薄いため、ノズル、プランジャシリン
ダの外周に圧力センサーを固定し、ノズル、プランジャ
シリンダの壁部を貫通して圧力センサーが配設される。
In contrast, a pressure sensor is placed in the resin retainer at the front of the nozzle and plunger cylinder.
With the method of measuring the pressure of plastic materials, the pressure of plastic materials can be directly measured, so the pressure of plastic materials can be accurately measured without being affected by uncertainties, and pressure fluctuations in iTT plastic materials can be quickly and easily understood. Here, since the wall thickness of the nozzle and the plunger cylinder is thin, the pressure sensor is fixed to the outer periphery of the nozzle and the plunger cylinder, and the pressure sensor is disposed through the wall of the nozzle and the plunger cylinder.

しかし、可塑材料の圧力が圧力センサーを外方に押圧し
ているため、このような構成では、圧力センサーが、可
塑材料の圧力によって、ノズル、プランジャシリンダの
壁部から抜は落ちる虞れがある。また、圧力センサーの
取付は孔からいわゆる樹脂漏れが生じやすい、そのため
、抜は落ち、樹脂漏れを防止した構造としなければなら
ず、構成的に複雑化する。さらに、取付は位置も限定さ
れ、保守管理も容易でなく、耐久性においても問題があ
る。
However, since the pressure of the plastic material pushes the pressure sensor outward, in such a configuration, there is a risk that the pressure sensor may fall off the wall of the nozzle or plunger cylinder due to the pressure of the plastic material. . In addition, when mounting the pressure sensor, so-called resin leakage is likely to occur from the hole, so the hole must be removed and the structure must be designed to prevent resin leakage, which complicates the structure. Furthermore, the mounting position is limited, maintenance is not easy, and there are problems with durability.

さらに、スクリューの背面にロードセルのような圧力セ
ンサーを配置した構成では、可塑材料、圧力センサー間
に、スクリューおよび機構物が長く存在する。そして、
スクリュー、機構物がかなりに質量を持ち1弾性歪、部
材間のクリアランスのために、衝撃荷重が発生して、圧
力センサーに作用する。そのため、圧力センサーの測定
値が、衝撃荷重の影響で不正確になりやすい、また、慣
性の影響によっても、測定値が不正確になる。従って、
可塑材料の圧力が正確に測定できない。
Furthermore, in a configuration in which a pressure sensor such as a load cell is placed on the back side of the screw, the screw and mechanism remain for a long time between the plastic material and the pressure sensor. and,
Because the screw and mechanism have considerable mass, elastic strain, and clearance between members, an impact load is generated and acts on the pressure sensor. Therefore, the measured value of the pressure sensor tends to be inaccurate due to the impact load, and also due to the influence of inertia. Therefore,
Pressure of plastic material cannot be measured accurately.

この発明は、構成的に複雑化することなく、計量工程、
射出工程の双方において、可塑材料の圧力が正確に測定
できる射出成形での可塑材料の圧力測定方法および射′
出成形機に関する。
This invention enables the measuring process to be performed without complicating the structure.
A method for measuring the pressure of plastic materials in injection molding that can accurately measure the pressure of plastic materials in both injection processes, and
Regarding the molding machine.

〔課題を解決するための手段〕[Means to solve the problem]

この目的を達成するために、この発明では、プランジャ
射出方式を採用し、射出プランジャ背面または射出プラ
ンジャ前面に配設した圧力センサーによって、可塑材料
の圧力を測定している。また、射出プランジャ側面に配
設した歪センサーから可塑材料の圧力を測定してもよい
In order to achieve this object, the present invention employs a plunger injection method, and measures the pressure of the plastic material by a pressure sensor disposed on the back or front of the injection plunger. Alternatively, the pressure of the plastic material may be measured from a strain sensor disposed on the side surface of the injection plunger.

〔作用〕[Effect]

この発明では、スクリューを使用せずにプランジャ射出
方式を採用しているために、衝撃荷重の発生が抑制され
、正確な圧力測定が可能となる。
In this invention, since a plunger injection method is adopted without using a screw, generation of impact load is suppressed and accurate pressure measurement is possible.

また、加圧油のような圧力媒体の圧力から可塑材料の圧
力を間接的に測定しているのでなく、射出プランジャ前
部の可塑材料の圧力を直接またはできるだけ接近した地
点で測定しているため、管路抵抗、バルブ抵抗、ピーク
圧、脈動等の不確定要素の影響が排除され、可塑材料の
圧力が正確に測定できる。
In addition, the pressure of the plastic material is not measured indirectly from the pressure of a pressure medium such as pressurized oil, but the pressure of the plastic material at the front of the injection plunger is measured directly or at a point as close as possible. The influence of uncertain factors such as pipe resistance, valve resistance, peak pressure, and pulsation is eliminated, and the pressure of the plastic material can be measured accurately.

〔実施例〕〔Example〕

以下、図面を参照しながらこの発明の実施例について詳
細に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図に示すように、この発明によれば、射出成形機1
0はプランジャ射出方式に構成されている、つまり、射
出成形y110は、バンドヒータ12の巻装されたプラ
ンジャシリンダ14と、ホッパー16に供給された可塑
材料、たとえば、樹脂を加熱、溶融し、溶融樹脂を加熱
シリンダ上部の、いわゆる樹脂溜り18に送るプリプラ
機構20と、射出プランジャ22を摺動自在に収納した
射出シリンダ24とを備えている。実施例では、プリプ
ラ機構20は、プランジャ28を持つプランジャ方式に
構成されているが、スクリュ一方式としてもよい。
As shown in FIG. 1, according to the present invention, an injection molding machine 1
0 is configured by a plunger injection method, that is, the injection molding y110 heats and melts the plunger cylinder 14 around which the band heater 12 is wound and the plastic material, such as resin, supplied to the hopper 16. It includes a pre-plastic mechanism 20 that sends the resin to a so-called resin reservoir 18 at the top of the heating cylinder, and an injection cylinder 24 that slidably houses an injection plunger 22. In the embodiment, the pre-plastic mechanism 20 is configured as a plunger type having a plunger 28, but it may be a one-screw type.

プリプラ機構20は公知の構成をしており、バンドヒー
タ12が、プリプラ機構の加熱シリンダ28の回りにも
配設されている。ホッパー16に供給された樹脂は、加
熱シリンダ28.トーピード3oによって均一に加熱、
溶融され、プリプラ機構のプランジャ26の前進に伴っ
て、樹脂溜り18に送られる。
The pre-plastic mechanism 20 has a known configuration, and a band heater 12 is also arranged around a heating cylinder 28 of the pre-plastic mechanism. The resin supplied to the hopper 16 is transferred to the heating cylinder 28. Uniform heating with Torpedo 3o,
The resin is melted and sent to the resin reservoir 18 as the plunger 26 of the pre-plastic mechanism moves forward.

射出プランジャ22のへラド23は、ラム34内に配置
され、ヘッドの背後に、圧力センサー32が配設されて
いる。実施例では、圧力センサー32としてロートワッ
シャーが利用されているが、ロードワッシャー以外の圧
力センサーを利用してもよいラム34は、射出シリンダ
24内に摺動自在に配設され、加圧媒体、たとえば加圧
油が流路3Bから射出シリンダ24に供給されると、加
圧油はラムを左方に押圧する。
The plunger 23 of the injection plunger 22 is arranged in a ram 34 and behind the head a pressure sensor 32 is arranged. In the embodiment, a funnel washer is used as the pressure sensor 32, but a pressure sensor other than a load washer may be used. For example, when pressurized oil is supplied to the injection cylinder 24 from the flow path 3B, the pressurized oil pushes the ram to the left.

ここで、射出プランジャ22のへラド23がラム内に配
こされ、ヘッドの背面でラム内に圧力センサー32が配
設されているため、ラム34が左方に押圧されると、ラ
ムは、圧力センサー32を介在して、射出プランジャ2
2を押圧し、射出プランジャを伴って左方に移動する。
Here, since the plunger 23 of the injection plunger 22 is disposed inside the ram, and the pressure sensor 32 is disposed inside the ram at the back of the head, when the ram 34 is pushed to the left, the ram will Injection plunger 2 via pressure sensor 32
Press 2 and move to the left with the injection plunger.

つまり、ラム34、射出プランジャ22が一体的に前進
する。
In other words, the ram 34 and the injection plunger 22 move forward together.

また、別の流路38から、加圧油を射出シリンダ2痙に
供給すれば、ラム34.射出プランジャ22は、一体的
に右方に移動して、初期位置に後退する。
Moreover, if pressurized oil is supplied to the injection cylinder 2 from another flow path 38, the ram 34. The injection plunger 22 integrally moves to the right and retreats to the initial position.

この発明では、圧力センサー32が射出プランジャ22
の背面にか配設されて、射出プランジャ、ラム間に介在
されている。そして、この圧力センサー32によって、
計量工程、射出工程での樹脂、セラミック等の可塑材料
の圧力が、以下のようにして測定される。
In this invention, the pressure sensor 32 is connected to the injection plunger 22.
The injection plunger is interposed between the injection plunger and the ram. And, by this pressure sensor 32,
The pressure of plastic materials such as resins and ceramics in the metering process and the injection process is measured as follows.

まず、プリプラ機構20で溶融、可塑化された可塑材料
、たとえば、溶融樹脂が、プリプラ機構から樹脂溜り1
8に送られて、ラム34、射出プランジャ22を初期位
置に後退させる。そして、樹脂溜り18に溶融樹脂が充
満した後も、プリプラ機構20は溶融樹脂を送り続け、
溶融樹脂の圧力(樹脂圧)によって、射出プランジャ2
2は右方に押される。
First, a plastic material, for example, a molten resin, melted and plasticized in the pre-plastic mechanism 20 is transferred from the pre-plastic mechanism to the resin reservoir 1.
8 to retract the ram 34 and injection plunger 22 to their initial positions. Then, even after the resin reservoir 18 is filled with molten resin, the pre-plastic mechanism 20 continues to feed the molten resin,
The pressure of the molten resin (resin pressure) causes the injection plunger 2 to
2 is pushed to the right.

射出プランジャ22を右方に押す樹脂圧は、射出プラン
ジャ背面の圧力センサー32を押し、圧力センサーによ
って、樹脂圧が測定される。
The resin pressure pushing the injection plunger 22 to the right pushes the pressure sensor 32 on the back of the injection plunger, and the resin pressure is measured by the pressure sensor.

このように、射出プランジャ背面の圧力センサー32が
可塑材料の圧力を測定することによって、計量工程にお
ける可塑材料の圧力が容易に求められる。そして、この
発明では、射出プランジャ方式を採用し、樹脂溜り18
の溶融可塑材料、圧力センサー32間に射出プランジャ
22が介在しているにすぎないため、衝撃荷重、慣性の
発生が抑制され可塑材料の圧力が正確に測定できる。ま
た、射出シリンダ24に供給される加圧油のような作動
媒体の圧力から可塑材料の圧力を求める公知の測定方法
とは異なり、このような測定方法では、管路抵抗、バル
ブ抵抗、ピーク圧、脈動等の不確定要素の影響が排除で
きる。そのため、この点からも可塑材料の圧力が正確に
求められる。
In this way, the pressure of the plastic material in the metering process can be easily determined by the pressure sensor 32 on the back of the injection plunger measuring the pressure of the plastic material. In this invention, an injection plunger method is adopted, and the resin reservoir 18
Since the injection plunger 22 is only interposed between the molten plastic material and the pressure sensor 32, the generation of impact load and inertia is suppressed, and the pressure of the plastic material can be accurately measured. Also, unlike known measurement methods that determine the pressure of the plastic material from the pressure of a working medium, such as pressurized oil, supplied to the injection cylinder 24, such measurement methods rely on pipe resistance, valve resistance, and peak pressure. , the influence of uncertain factors such as pulsation can be eliminated. Therefore, the pressure of the plastic material can be determined accurately from this point as well.

圧力センサー32が予め設定した所定値に達すると、プ
リプラ機構20が停止され、プリプラ機構から樹脂溜り
18への溶融樹脂の送りが中断される。
When the pressure sensor 32 reaches a predetermined value, the pre-placing mechanism 20 is stopped and the feeding of molten resin from the pre-placing mechanism to the resin reservoir 18 is interrupted.

溶融樹脂の送りが中断されると、加圧油が流路36を介
して射出シリンダ24に供給され、ラム34は射出プラ
ンジャ22を伴なって前進し、樹脂溜り18の溶融樹脂
は、ノズル42を介して金型のキャビティー(図示しな
い)に射出される。なお、図示しないが、プリプラ機構
20.樹脂溜り18間の流路に逆止弁が設けられて、射
出工程での樹脂溜りからプリプラ機構への逆流を防止し
ている。この射出工程における樹脂圧は、反力として射
出プランジャ22に作用し、射出プランジャ背面の圧力
センサー32で測定され、樹脂圧の変動も確実に把握さ
れる。
When the feeding of molten resin is interrupted, pressurized oil is supplied to the injection cylinder 24 through the flow path 36, the ram 34 moves forward together with the injection plunger 22, and the molten resin in the resin reservoir 18 is transferred to the nozzle 42. is injected into a mold cavity (not shown) through the . Although not shown, the pre-plastic mechanism 20. A check valve is provided in the flow path between the resin reservoirs 18 to prevent backflow from the resin reservoir to the pre-plastic mechanism during the injection process. The resin pressure during this injection process acts on the injection plunger 22 as a reaction force, and is measured by the pressure sensor 32 on the back of the injection plunger, so that fluctuations in the resin pressure can also be reliably grasped.

このように、射出工程においても、計量工程と同様に、
不確定要素、衝撃荷重、慣性の影響をいずれも排除、抑
制して、可塑材料の圧力(たとえば、樹脂圧)が正確に
測定される。また、射出プランジャ背面に圧力センサー
32を配設すれば足り射出成形機lOは構成的になんら
複雑化しない。
In this way, in the injection process as well as in the metering process,
Pressure in plastic materials (eg, resin pressure) is accurately measured, eliminating and suppressing the effects of uncertainties, shock loads, and inertia. Further, it is sufficient to dispose the pressure sensor 32 on the back surface of the injection plunger, and the injection molding machine 10 does not become structurally complicated.

上記実施例では、射出プランジャ22の背面に設けた圧
力センサー32によって、可塑材料の圧力を求めている
が、第2図に示すように、圧力センサー132を射出プ
ランジャ22の前面に設け、この圧力センサーによって
、可塑材料の圧力を測定してもよい、このように、圧力
センサー132を射出プランジャ22の前面に設けた構
成では、不確定要素衝撃荷重、慣性の影響を完全に排除
した状態で樹脂溜りの可塑材料の圧力が直接測定でき、
極めて正確な測定が可能となる。
In the above embodiment, the pressure of the plastic material is determined by the pressure sensor 32 provided on the back surface of the injection plunger 22, but as shown in FIG. The pressure of the plastic material may be measured by a sensor. In this configuration in which the pressure sensor 132 is provided on the front surface of the injection plunger 22, the pressure of the plastic material can be measured with the influence of uncertain factors impact load and inertia completely eliminated. The pressure of the plastic material in the pool can be directly measured,
Extremely accurate measurements are possible.

また、圧力センサー32を射出プランジャ22の前面に
設ける構成では、射出プランジャ22の軸線方向に十分
な肉厚があるため、圧力センサー132は貫通孔でなく
、盲孔状の取付は孔44に収納される。そのため、可塑
材料の圧力が、圧力センサー132を抑圧しても、圧力
センサーの抜は落る虞れは全くない。
In addition, in the configuration in which the pressure sensor 32 is provided on the front surface of the injection plunger 22, since the injection plunger 22 has sufficient wall thickness in the axial direction, the pressure sensor 132 is not installed in a through hole, but is installed in a blind hole shape in the hole 44. be done. Therefore, even if the pressure of the plastic material suppresses the pressure sensor 132, there is no risk of the pressure sensor being removed.

さらに、可塑材料の圧力が、圧力センサー132を取付
は孔44の底部に押圧すればするほど、圧力センサー1
32は取付は孔44の底部を密着され、十分な液密が圧
力センサー、取付は孔の底部間に確保される。ここで、
圧力センサーのリード線46の挿通孔は、通常、取付は
孔の底部で取付は孔に連通されている。そのため、リー
ド線46の挿通孔が十分に封止され、リード線4Bを介
した樹脂漏れも十分に防止でき、保守も容易となる。こ
のように圧力センサー32の抜は落ち、樹脂漏れを考慮
することなく構成できるため、射出成形機10の構成が
簡単化される。
Further, the more the pressure of the plastic material pushes the pressure sensor 132 to the bottom of the mounting hole 44, the more the pressure sensor 132 is pressed against the bottom of the mounting hole 44.
32 is attached tightly to the bottom of the hole 44 to ensure sufficient liquid tightness between the pressure sensor and the bottom of the hole. here,
The insertion hole for the lead wire 46 of the pressure sensor is normally attached at the bottom of the hole and communicated with the hole. Therefore, the insertion hole for the lead wire 46 is sufficiently sealed, resin leakage through the lead wire 4B can be sufficiently prevented, and maintenance is also facilitated. In this way, the pressure sensor 32 can be easily removed and the structure can be constructed without considering resin leakage, so that the structure of the injection molding machine 10 is simplified.

そして、圧力センサー132は、樹脂溜りに僅かに露出
していれば足り、可塑材料の圧力の作用面を小さく設定
できるため、耐久性にすぐれるとともに、3000〜5
000Kg/平方C■といった高い圧力の測定も可能と
なる。
The pressure sensor 132 only needs to be slightly exposed to the resin pool, and the surface on which the pressure of the plastic material acts can be set small.
It is also possible to measure pressures as high as 1,000 kg/sq.

樹脂溜り18の可塑材料の圧力に比例して、射出プラン
ジャ22が、軸線方向に歪む、そのため、第3図に示す
ように、射出プランジャ22の歪みを検出する歪みセン
サー232を射出プランジャ22の側面に配設してもよ
い、この構成においても、射出プランジャ22の歪みか
ら樹脂溜り18の可塑材料の圧力が、上記実施例と同様
に、不確定要素、衝撃荷重の影響を排除、抑制して、計
量工程、射出工程の双方において、正確に測定できる。
The injection plunger 22 is distorted in the axial direction in proportion to the pressure of the plastic material in the resin reservoir 18. Therefore, as shown in FIG. In this configuration as well, the pressure of the plastic material in the resin reservoir 18 due to the distortion of the injection plunger 22 can be reduced by eliminating and suppressing the effects of uncertain factors and impact loads, as in the above embodiment. , accurate measurements can be made in both the metering process and the injection process.

また、可塑材料の圧力そのものを測定せず、射出プラン
ジャ22の歪みから可塑材料の圧力を測定するこの構成
では、高い圧力が歪みセンサー232に作用しないため
、耐久性にすぐれた構成が得られる。
Further, in this configuration in which the pressure of the plastic material itself is not measured, but the pressure of the plastic material is measured from the strain of the injection plunger 22, high pressure does not act on the strain sensor 232, so a highly durable configuration can be obtained.

また、圧力センサーに比較して廉価な歪みセンサー23
2を利用するため、安価な射出成形機10が得られる。
In addition, the strain sensor 23 is cheaper than the pressure sensor.
2, an inexpensive injection molding machine 10 can be obtained.

さらに、歪みセンサー232は、射出プランジャに高精
度の加工を加えることなく、射出プランジャ22の側面
に容易に取付けられる。そのため、構成的に複雑化しな
い、また、射出プランジャのストローク変更等の設計変
更、射出プランジャの交換をすることなく、公知の射出
成形機をこの発明の射出成形機lOに改造できる。
Furthermore, the strain sensor 232 can be easily attached to the side surface of the injection plunger 22 without requiring high-precision machining to the injection plunger. Therefore, a known injection molding machine can be modified to the injection molding machine 10 of the present invention without complicating the structure, and without changing the design such as changing the stroke of the injection plunger or replacing the injection plunger.

なお、w42図、第3図に示す実施例では、射出プラン
ジャ22.ラム34を分離して構成する必要がないため
、第1図の実施例とは異なり、射出プランジャ、ラムは
一体化できる。
In addition, in the embodiment shown in FIG. W42 and FIG. 3, the injection plunger 22. Unlike the embodiment of FIG. 1, the injection plunger and ram can be integrated, since the ram 34 does not need to be constructed separately.

また、第4図に示すように、射出プランジャのヘッド2
3の背後でラム34にチャンバ4Bヲfltf、このチ
ャンバに作動媒体、たとえば、作動油を封止するととも
に、圧力センサー322を射出プランジャ背面に配設し
た構成としてもよい、この構成においては、樹脂溜り1
8の可塑材料の圧力が、射出プランジャ22に作用して
、射出プランジャを右方に押圧すると、ラムのチャンバ
48の作動油が押圧され、射出プランジャを押し返す、
そのため、樹脂溜り18の可塑材料の圧力が4反力とし
て、射出プランジャ背面の圧力センサー322で測定さ
れるこの構成においても、不確定要素、衝撃荷重、慣性
の影響が排除、抑制され、樹脂溜り18の可塑材料の圧
力が正確に測定できる。また、この構成では、第2実施
例と同様に、圧力の作用面が小さくて足りるため、耐久
性にすぐれた構成が得られるとともに、高い圧力の測定
が可能となる。
In addition, as shown in FIG. 4, the head 2 of the injection plunger
A configuration may also be adopted in which a chamber 4B is placed in the ram 34 behind the ram 3, and a working medium, for example, hydraulic oil is sealed in this chamber, and a pressure sensor 322 is disposed on the back side of the injection plunger. Pool 1
When the pressure of the plastic material No. 8 acts on the injection plunger 22 and pushes the injection plunger to the right, the hydraulic fluid in the chamber 48 of the ram is pressed and pushes the injection plunger back.
Therefore, even in this configuration in which the pressure of the plastic material in the resin reservoir 18 is measured as four reaction forces by the pressure sensor 322 on the back of the injection plunger, the effects of uncertain factors, impact loads, and inertia are eliminated and suppressed, and the resin reservoir The pressure of 18 plastic materials can be measured accurately. Further, in this configuration, as in the second embodiment, since the surface on which the pressure acts is small is sufficient, a configuration with excellent durability can be obtained, and high pressure can be measured.

なお、第1図、第3図、第4図に示す実施例では、圧力
センサー32,332.歪センサ−232が、高温の可
塑材料に接触せず、可塑材料の温度の影響を受けないた
め、耐久性にすぐれた構成が得られる。
Note that in the embodiments shown in FIGS. 1, 3, and 4, the pressure sensors 32, 332, . Since the strain sensor 232 does not come into contact with the high temperature plastic material and is not affected by the temperature of the plastic material, a highly durable configuration can be obtained.

上述した実施例は、この発明を説明するためのものであ
り、この発明を何等限定するものでなくこの発明の技術
範囲内で変形、改造等の施されたものも、全てこの発明
に包含されることはいうまでもない。
The above-mentioned embodiments are for illustrating this invention, and do not limit this invention in any way, and any modifications, modifications, etc. made within the technical scope of this invention are also included in this invention. Needless to say.

〔発明の効果〕〔Effect of the invention〕

上記のように、この発明によれば、この発明では、プラ
ンジャ射出方式を採用し、射出プランジャ背面または射
出プランジャ前面に配設した圧力センサーや射出プラン
ジャ側面に配設した歪センサーによって、可塑材料の圧
力を測定している。
As described above, according to the present invention, a plunger injection method is adopted, and a pressure sensor disposed on the back surface of the injection plunger or a strain sensor disposed on the side surface of the injection plunger is used to inject plastic material. Measuring pressure.

このような可塑材料の圧力測定方法においてはプランジ
ャ射出方式としているため、衝撃荷重、慣性の発生が防
止、抑制され、正確な圧力測定が可能となる。
Since such a method for measuring pressure of a plastic material uses a plunger injection method, generation of impact load and inertia is prevented and suppressed, and accurate pressure measurement is possible.

また、加圧油のような圧力媒体の圧力から可塑材料の圧
力を間接的に測定しているのでなく、射出プランジャ前
部の可塑材料の圧力を直接またはできるだけ接近した地
点で測定しているため、管路抵抗、バルブ抵抗、ピーク
圧、脈動等の不確定要素の影響が排除され、可塑材料の
圧力が正確に測定できる。
In addition, the pressure of the plastic material is not measured indirectly from the pressure of a pressure medium such as pressurized oil, but the pressure of the plastic material at the front of the injection plunger is measured directly or at a point as close as possible. The influence of uncertain factors such as pipe resistance, valve resistance, peak pressure, and pulsation is eliminated, and the pressure of the plastic material can be measured accurately.

さらに、圧力センサー、歪センサーは容易に配設でき、
射出成形機が構成的に複雑化する虞れがない。
Furthermore, pressure sensors and strain sensors can be easily installed.
There is no possibility that the injection molding machine will become structurally complicated.

また、圧力センサー、歪センサーが゛可塑材料の温度の
影響を受けない位置に配設できるため、耐久性にすぐれ
た構成が得られる。
Furthermore, since the pressure sensor and strain sensor can be disposed at positions that are not affected by the temperature of the plastic material, a highly durable structure can be obtained.

特に、圧力センサーを射出プランジャの前面に設けた構
成では、不確定要素、衝撃荷重、慣性の影響を完全に排
除した状態で、可塑材料の圧力が直接測定でき、極めて
正確な測定が可能となる。
In particular, a configuration in which the pressure sensor is placed in front of the injection plunger allows for direct measurement of the pressure in the plastic material, completely eliminating the effects of uncertainties, shock loads, and inertia, making extremely accurate measurements possible. .

この構成では、圧力センサーは、貫通孔でなく、盲孔状
の取付は孔に収納できるため、可塑材料の圧力が、圧力
センサーを押圧しても、圧力センサーの抜は落る虞れは
全くない、さらに、可塑材料の圧力が、圧力センサーを
取付は孔の底部に押圧すればするほど、圧力センサーが
取付は孔の底部を密着して、十分な液密か確保される。
In this configuration, the pressure sensor can be housed in a blind hole rather than a through hole, so even if the pressure of the plastic material presses on the pressure sensor, there is no risk of the pressure sensor being removed. Moreover, the more the pressure of the plastic material presses the pressure sensor against the bottom of the mounting hole, the more the pressure sensor adheres to the bottom of the mounting hole, ensuring sufficient liquid tightness.

そのため圧力センサーのリード線を介した樹脂漏れも十
分に防+hされ、保守も容易となる。また、圧力センサ
ーは、樹脂溜りに僅かに露出していれば足り可塑材料の
圧力の作用面を小さく設定できるため、耐久性にすぐれ
るとともに、3000〜5000Kg/平方C膳といっ
た高圧力の測定も可能となる。
Therefore, resin leakage through the lead wire of the pressure sensor is sufficiently prevented, and maintenance is also facilitated. In addition, the pressure sensor only needs to be slightly exposed to the resin pool, and the surface on which the pressure of the plastic material acts can be set small, so it has excellent durability and can also measure high pressures such as 3000 to 5000 kg/sq. It becomes possible.

歪みセンサーを射出プランジャの側面に配設した構成に
おいても、高い圧力が歪みセンサーに作用しないため、
耐久性にすぐれた構成が得られるとともに、歪みセンサ
ーは、比較的廉価であるため、安価に構成できる。また
、歪みセンサーは。
Even in a configuration where the strain sensor is placed on the side of the injection plunger, high pressure does not act on the strain sensor.
In addition to providing a highly durable configuration, the strain sensor is relatively inexpensive, so it can be constructed at low cost. Also, the strain sensor.

射出プランジャに高精度の加工を加えることなく射出プ
ランジャの側面に容易に取付けられるため、射出プラン
ジャの設計変更、交換なしに、公知の射出成形機をこの
発明の射出成形機に改造できる。
Since the injection plunger can be easily attached to the side surface of the injection plunger without performing high-precision machining, a known injection molding machine can be modified to the injection molding machine of the present invention without changing the design or replacing the injection plunger.

また、射出プランジャのヘッドの背後でラムに設けたチ
ャンバ内の封止作動媒体を介在して、射出プランジャ背
面の圧力センサーで、可塑材料の圧力を測定する構成に
おいても、圧力の作用面が小さくて足りるため、耐久性
にすぐれた構成が得られるとともに、高圧力の測定が可
能となる。
In addition, even in a configuration in which the pressure of the plastic material is measured with a pressure sensor on the back of the injection plunger via a sealed working medium in a chamber provided in the ram behind the head of the injection plunger, the surface on which the pressure acts is small. Since only a small amount of pressure is required, a structure with excellent durability can be obtained, and high pressure measurements can be made.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例に係る射出成形機の要部
の縦断面図、 第2図ないし第4図は、別実施例に係る射出成形機の要
部の各部分縦断面図である。 10:射出成形機、14ニブランジヤシリンダ、18:
樹脂溜り、20:プリプラ機構、22:射出プランジャ
、23:射出プランジャのヘッド、24:射出シリンダ
、32,132.332 :圧力センサー、232:歪
センサ42:ノズル、44:取付は孔、46:リード線
、48:ラムのチャンバ。
FIG. 1 is a vertical cross-sectional view of a main part of an injection molding machine according to one embodiment of the present invention, and FIGS. 2 to 4 are partial vertical cross-sectional views of main parts of an injection molding machine according to another embodiment. It is. 10: Injection molding machine, 14 nib plunger cylinder, 18:
Resin reservoir, 20: Pre-plastic mechanism, 22: Injection plunger, 23: Head of injection plunger, 24: Injection cylinder, 32, 132.332: Pressure sensor, 232: Strain sensor 42: Nozzle, 44: Mounting hole, 46: Lead wire, 48: Ram chamber.

Claims (8)

【特許請求の範囲】[Claims] (1)射出プランジャの背後で射出プランジャ、ラム間
に設けた圧力センサーによって、樹脂溜りの可塑材料の
圧力を測定する射出成形での可塑材料の圧力測定方法。
(1) A method for measuring the pressure of plastic material in injection molding, in which the pressure of the plastic material in the resin reservoir is measured by a pressure sensor installed between the injection plunger and the ram behind the injection plunger.
(2)射出プランジャ前面に設けた圧力センサーによっ
て、樹脂溜りの圧力を測定する射出成形での可塑材料の
圧力測定方法。
(2) A method for measuring the pressure of a plastic material in injection molding, in which the pressure in a resin reservoir is measured by a pressure sensor provided on the front surface of an injection plunger.
(3)射出プランジャ側面に歪センサーを設け、射出プ
ランジャに生じた軸線方向の歪から樹脂溜りの可塑材料
の圧力を測定する射出成形での可塑材料の圧力測定方法
(3) A method for measuring the pressure of plastic material in injection molding, in which a strain sensor is provided on the side of the injection plunger and the pressure of the plastic material in the resin reservoir is measured from the axial strain generated in the injection plunger.
(4)射出プランジャの背後でラムにチャンバを設け、
このチャンバに作動媒体を封止するとともに、射出プラ
ンジャ背面に圧力センサーを設け、樹脂溜りの可塑材料
の圧力を、作動媒体に生じた反力として、圧力センサー
が測定する射出成形での可塑材料の圧力測定方法。
(4) providing a chamber in the ram behind the injection plunger;
A working medium is sealed in this chamber, and a pressure sensor is installed on the back of the injection plunger.The pressure sensor measures the pressure of the plastic material in the resin reservoir as a reaction force generated in the working medium. Pressure measurement method.
(5)射出プランジャの前進に伴って、プランジャシリ
ンダ前部の樹脂溜りの可塑材料をプランジャシリンダか
ら金型のキャビティに射出する射出成形機において、 射出プランジャ背面に圧力センサーを設け、この圧力セ
ンサーによって樹脂溜りの可塑材料の圧力を測定可能に
構成されたことを特徴とする射出成形機。
(5) In an injection molding machine that injects the plastic material in the resin reservoir at the front of the plunger cylinder into the mold cavity as the injection plunger moves forward, a pressure sensor is installed on the back of the injection plunger, and this pressure sensor An injection molding machine characterized by being configured to be able to measure the pressure of a plastic material in a resin reservoir.
(6)射出プランジャの前進に伴って、プランジャシリ
ンダ前部の樹脂溜りの可塑材料をプランジャシリンダか
ら金型のキャビティに射出する射出成形機において、 射出プランジャの前面に設けた取付け孔内に圧力センサ
ーを収納し、圧力センサーのリード線の挿通孔を取付け
孔底部で、取付け孔に連通し、この圧力センサーによっ
て樹脂溜りの可塑材料の圧力を測定可能に構成されたこ
とを特徴とする射出成形機。
(6) In an injection molding machine that injects plastic material from a resin reservoir at the front of the plunger cylinder into a mold cavity as the injection plunger moves forward, a pressure sensor is installed in the mounting hole provided at the front of the injection plunger. An injection molding machine characterized in that the insertion hole for the lead wire of the pressure sensor is communicated with the mounting hole at the bottom of the mounting hole, and the pressure of the plastic material in the resin reservoir can be measured by the pressure sensor. .
(7)射出プランジャの前進に伴って、プランジャシリ
ンダ前部の樹脂溜りの可塑材料をプランジャシリンダか
ら金型のキャビティに射出する射出成形機において、 射出プランジャ側面に歪センサーを設け、射出プランジ
ャに生じた軸線方向の歪から樹脂溜りの可塑材料の圧力
を測定可能に構成されたことを特徴とする射出成形機。
(7) In an injection molding machine that injects the plastic material in the resin reservoir at the front of the plunger cylinder into the mold cavity as the injection plunger moves forward, a strain sensor is installed on the side of the injection plunger to detect the distortion caused in the injection plunger. An injection molding machine characterized in that it is configured to be able to measure the pressure of a plastic material in a resin reservoir from the strain in the axial direction.
(8)射出プランジャの前進に伴って、プランジャシリ
ンダ前部の樹脂溜りの可塑材料をプランジャシリンダか
ら金型のキャビティに射出する射出成形機において、 射出プランジャのヘッドをラムのチャンバ内にに収納し
、ヘッドの背後でチャンバに作動媒体を封止するととも
に、射出プランジャ背面に圧力センサーを設けたことを
特徴とする射出成形機。
(8) In an injection molding machine that injects plastic material from a resin reservoir at the front of the plunger cylinder into a mold cavity as the injection plunger moves forward, the head of the injection plunger is housed in the chamber of the ram. , an injection molding machine characterized in that a working medium is sealed in a chamber behind the head and a pressure sensor is provided on the back of the injection plunger.
JP2179189A 1989-01-31 1989-01-31 Pressure measuring device of plasticizing material in injection molding and injection molding machine Pending JPH02202420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2179189A JPH02202420A (en) 1989-01-31 1989-01-31 Pressure measuring device of plasticizing material in injection molding and injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2179189A JPH02202420A (en) 1989-01-31 1989-01-31 Pressure measuring device of plasticizing material in injection molding and injection molding machine

Publications (1)

Publication Number Publication Date
JPH02202420A true JPH02202420A (en) 1990-08-10

Family

ID=12064881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2179189A Pending JPH02202420A (en) 1989-01-31 1989-01-31 Pressure measuring device of plasticizing material in injection molding and injection molding machine

Country Status (1)

Country Link
JP (1) JPH02202420A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337993A (en) * 1992-06-11 1993-12-21 Toshiba Mach Co Ltd Continuous plasticizing injection molding method and apparatus
EP0672512A2 (en) * 1994-03-18 1995-09-20 Nissei Plastic Industrial Co., Ltd. Preplasticizing type injection apparatus
WO1999028109A1 (en) * 1997-12-01 1999-06-10 Niigata Engineering Co., Ltd. Injection molding machine and injection molding method
WO1999050006A1 (en) * 1998-03-31 1999-10-07 Takata Physics International Limited, Inc. Method and apparatus for manufacturing metallic parts by fine die casting
WO1999050007A1 (en) * 1998-03-31 1999-10-07 Takata Physics International Limited, Inc. Method and apparatus for manufacturing metallic parts by injection molding from the semi-solid state
EP2686150A4 (en) * 2011-03-12 2015-07-22 Husky Injection Molding Plasticating and injection device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05337993A (en) * 1992-06-11 1993-12-21 Toshiba Mach Co Ltd Continuous plasticizing injection molding method and apparatus
EP0672512A2 (en) * 1994-03-18 1995-09-20 Nissei Plastic Industrial Co., Ltd. Preplasticizing type injection apparatus
EP0672512A3 (en) * 1994-03-18 1996-10-16 Nissei Plastics Ind Co Preplasticizing type injection apparatus.
US5861182A (en) * 1994-03-18 1999-01-19 Nissei Plastic Industrial Co., Ltd. Preplasticizing injection apparatus
EP1120222A2 (en) * 1994-03-18 2001-08-01 Nissei Plastic Industrial Co., Ltd. Preplasticizing type injection apparatus
EP1120222A3 (en) * 1994-03-18 2002-02-06 Nissei Plastic Industrial Co., Ltd. Preplasticizing type injection apparatus
WO1999028109A1 (en) * 1997-12-01 1999-06-10 Niigata Engineering Co., Ltd. Injection molding machine and injection molding method
WO1999050006A1 (en) * 1998-03-31 1999-10-07 Takata Physics International Limited, Inc. Method and apparatus for manufacturing metallic parts by fine die casting
WO1999050007A1 (en) * 1998-03-31 1999-10-07 Takata Physics International Limited, Inc. Method and apparatus for manufacturing metallic parts by injection molding from the semi-solid state
EP2686150A4 (en) * 2011-03-12 2015-07-22 Husky Injection Molding Plasticating and injection device

Similar Documents

Publication Publication Date Title
US9724863B2 (en) Injection molding machine
JPH09123241A (en) Injection controlling method for screw preplasticating type injection molding machine
US20210206041A1 (en) Melt Pressure Control of Injection Molding
JPH02202420A (en) Pressure measuring device of plasticizing material in injection molding and injection molding machine
JP6682288B2 (en) Injection molding machine
JP5351307B1 (en) Pressure control device for injection molding machine
TW201343364A (en) Injection molding machine
JP5661007B2 (en) Injection device and injection control method thereof
JPH03218810A (en) Sensing method for filling quantity of injection molding machine
JPS645823B2 (en)
JP2957915B2 (en) Measuring method before starting molding of injection molding machine and weighing control device before starting molding of injection molding machine
JP3181278B2 (en) Measuring method for pre-plastic injection system
JP4367172B2 (en) Injection device and injection molding method
JPH10156902A (en) Injection molding machine, resin injection pressure controlling method, and resin injecting method
JPH0252717A (en) Plasticization device and injection molding machine
JPH0544894B2 (en)
JP3159014B2 (en) Measuring method for pre-plastic injection system
JP5531814B2 (en) Injection molding method
JP3784999B2 (en) Thermosetting resin injection molding method
KR20000016660A (en) Method and system for making hollow plastic product
JP2734477B2 (en) Injection molding method and apparatus
JP2647515B2 (en) Injection molding method
JPS6229220Y2 (en)
JP2927923B2 (en) Method and apparatus for detecting resin leakage in injection molding machine
JP2002336951A (en) Apparatus and method for preventing leakage of molten metal from nozzle surface for metal injection molding machine