JPH02201831A - Magnetic driving type electrode for vacuum interrupter - Google Patents

Magnetic driving type electrode for vacuum interrupter

Info

Publication number
JPH02201831A
JPH02201831A JP1960489A JP1960489A JPH02201831A JP H02201831 A JPH02201831 A JP H02201831A JP 1960489 A JP1960489 A JP 1960489A JP 1960489 A JP1960489 A JP 1960489A JP H02201831 A JPH02201831 A JP H02201831A
Authority
JP
Japan
Prior art keywords
arc
lead rod
contact
electrode
contact part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1960489A
Other languages
Japanese (ja)
Inventor
Taiji Noda
泰司 野田
Toshimasa Fukai
利眞 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP1960489A priority Critical patent/JPH02201831A/en
Publication of JPH02201831A publication Critical patent/JPH02201831A/en
Pending legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PURPOSE:To improve the breaking performance by setting the outer diameter of a contact surface to be less than the diameter of a lead rod and connecting the lead rod with the back surface of a contact part directly, and setting a component of current ways at the time of energization of the crossing direction to the contact part larger than a component parallel to it. CONSTITUTION:The forward end part of a lead rod 25 is engaged with a throughholes 22 from the back surface side of an arc part 21, a flange part 26 provided in the outer circumferential surface of the lead rod 25 is applied to the back surface of a reinforcement plate 24, and the forward end part of the lead rod 25 and the arc part 21 are brazed with each other. A contact part 27 is engaged in the throughhole 22 on the surface side of the arc part 21, this contact part 27 has a bottom, a bottom surface 27a is tightly applied to a forward end surface 24a of the lead rod 25, and the circumferential surface of the contact part 27 is connected with the arc part 21 and the contact part bottom surface 27a with the lead rod forward end surface 24a by brazing respectively, so the lead rod 25 is directly connected with the back surface of the contact part 27. At the time of energization, most of current ways between the lead rod 25 and the contact surface 27b are of crossing direction to the contact surface 27b, so arc spreads radially and is extinguished by force of self-diffusion of metal steam produced at the time of breaking.

Description

【発明の詳細な説明】 人、 産業上の利用分舒 本発明は、アークを磁気回転駆動してしゃ断する真空イ
ンタラプタ用磁気駆動型電極に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetically driven electrode for a vacuum interrupter that interrupts an arc by magnetic rotational driving.

B 発明の概要 本発明は、磁気駆動型の真空インタラプタ用電極におい
て、接触面の外径をリード棒の直径以下にすると共に、
接触部の背面に直接リード棒を接続して、接触面とリー
ド棒との間に形成される電流路におけろ電流成分のうち
、接触面に直交する方向の電流成分を接触面に平行なも
のより大きくし、もってしゃ断時の金属蒸気によるアー
クの自己拡散力によってアークを接触部からアーク部へ
移動し、アーク部においてアークを回転移動させてしゃ
断するようにしたものである。
B. Summary of the Invention The present invention provides an electrode for a magnetically driven vacuum interrupter, in which the outer diameter of the contact surface is made equal to or less than the diameter of the lead rod, and
By connecting a lead rod directly to the back of the contact part, in the current path formed between the contact surface and the lead rod, the current component in the direction perpendicular to the contact surface is divided into the current component in the direction perpendicular to the contact surface. The arc is made larger than the conventional one, and the arc is moved from the contact part to the arc part by the self-diffusion force of the arc due to the metal vapor at the time of breaking, and the arc is rotated and moved in the arc part to break it.

C従来の技術 一般に、真空インタラプタは、第9図に示すように、真
空容器1内に、固定電極2を有する固定リード棒3と可
動電極4を有し上下動可能な可動リード棒5とを内装し
て構成されろ。図中、6は可動リード棒5を可動として
いるベローズ、7ば真空容器l内周をおおっているシー
ルドである。
C. Prior Art Generally, as shown in FIG. 9, a vacuum interrupter has a fixed lead rod 3 having a fixed electrode 2 and a movable lead rod 5 having a movable electrode 4 and movable up and down in a vacuum container 1. Interior and configuration. In the figure, 6 is a bellows that makes the movable lead rod 5 movable, and 7 is a shield that covers the inner periphery of the vacuum vessel l.

このような真空インタラプタの電極2,4には、大電流
しゃ断簡力特性、低さい断電流値特性、高耐電圧値特性
など重々の電気的特性が要求される。
The electrodes 2 and 4 of such a vacuum interrupter are required to have severe electrical characteristics such as large current breaking characteristics, low breaking current value characteristics, and high withstand voltage value characteristics.

しかしながら、これらの緒特性は相反する性質のもので
あるので、すべてを同時に達成することは難しい。した
がって、従来より、真空インタラプタの用途に応じてい
ずれかの特性を重視して電極材料を選択したり、特殊な
電極構造を採用したりしている。
However, since these characteristics are contradictory, it is difficult to achieve all of them at the same time. Therefore, conventionally, electrode materials have been selected with emphasis on one of the characteristics, or a special electrode structure has been adopted, depending on the purpose of the vacuum interrupter.

このような状況のもと、同じ電極径でより電流しゃ断性
能を向上させるための代表例として、磁気駆動型の電極
が知られている。
Under these circumstances, magnetically driven electrodes are known as a representative example of improving current cutting performance with the same electrode diameter.

磁気駆動型の電極の一例を第6図、第7図に示す。図に
示すように、この電極8は、複数のスパイラル溝9を備
えたアーク部10の一方の面側中央部に接触部11を設
け、アーク部10の他方の面側にリード棒12を接続す
る構造となっており、磁気駆動力によりアークを外周方
向に駆動し、電極の種部的な加熱を防止することによっ
て、しゃ断限界の増大を図るものである。
Examples of magnetically driven electrodes are shown in FIGS. 6 and 7. As shown in the figure, this electrode 8 has a contact portion 11 provided at the center of one side of an arc portion 10 having a plurality of spiral grooves 9, and a lead rod 12 connected to the other side of the arc portion 10. The structure is designed to increase the cutoff limit by driving the arc in the outer circumferential direction using magnetic driving force and preventing local heating of the electrode.

しかして、この電極8は、アークを回転させろことを目
ざしたものであるから、発生したアークが停滞すること
なく、電流ゼロ点をむかえるまで動いているように種々
の試みがなされている。
Since this electrode 8 is intended to rotate the arc, various attempts have been made to ensure that the generated arc does not stagnate and continues to move until it reaches the zero current point.

つまり、アーク13は、第6図中の■で発生した後、ア
ークペダル10a上を■、■。
That is, after the arc 13 is generated at point (■) in FIG. 6, it moves over the arc pedal 10a at points (■) and (■).

■のように移動する。この際に、アーク13は、次々に
発生するアークを集めてアーク柱13′となって回転す
ることになる。
■Move as shown. At this time, the arc 13 collects the arcs generated one after another and rotates to form an arc column 13'.

アーク13の駆動力となるのは、第7図における、電極
8の半径方向に生じる電流Ihの成分に基因する電極部
に生じるコ字状の電流路による磁気力Fである。
The driving force for the arc 13 is the magnetic force F caused by the U-shaped current path generated in the electrode portion due to the component of the current Ih generated in the radial direction of the electrode 8 in FIG.

したがって、従来は、 ■ 磁気力Fが大きく生じるように、 B: +)−ド棒12の直径に比較して接触部11の内
径を大きくする、 b: リード棒12の上部に高抵抗材料(SUS鋼)か
らなるいわゆるブローアウトリング14を設ける、 C:スパイラル溝9の内端部を第6図中9aで示す如く
接触部11の下まで伸ばしてアークペダル10aを長く
する、 といった手段をとっており、また、 ■ アークの回転移動のために、 +1= アークペダル10aの先端を第6図中10bで
示すように長くして、アークが隣接ペダルに移動しやす
くする、 b:周辺のアークシールドとの間隙寸法を考慮する、 といった手段をとっている。
Therefore, in the past, in order to generate a large magnetic force F, B: the inner diameter of the contact portion 11 is made larger than the diameter of the lead rod 12; b: a high-resistance material ( The arc pedal 10a is lengthened by providing a so-called blowout ring 14 made of stainless steel (SUS steel), and by extending the inner end of the spiral groove 9 below the contact portion 11 as shown by 9a in FIG. 6. In addition, for the rotational movement of the arc, +1 = The tip of the arc pedal 10a is lengthened as shown by 10b in Figure 6 to make it easier for the arc to move to the adjacent pedal. b: Surrounding arc Measures are taken to consider the gap between the shield and the shield.

D 発明が解決しようとするiI!!題上記のような手
段をとる従来の電極におけろ思想は、発生したアーク1
3にすばやくいわゆるコ字力による磁気駆動力を作用さ
せるようにしたものである。したがって、アーク13の
動きは、前述したように一点で発生したアーク13が成
長し、次々に発生したアークを集めて大きなアーク柱1
3/となって回転する如(なる。
D. The iI that the invention attempts to solve! ! The idea behind conventional electrodes that take the above-mentioned measures is that the generated arc 1
3 to quickly apply a magnetic driving force by a so-called U-shaped force. Therefore, the movement of the arc 13 is that the arc 13 generated at one point grows as described above, and the arcs generated one after another are collected to form a large arc column.
3/ as if rotating.

しかし、アークが回転するといっても、アークには電極
外周方向に向かう磁気駆動力が作用していることから、
アークの回転移動は電極表面の一部のみで終了してしま
い、ft極全全表面有効に利用されない。
However, even though the arc rotates, there is a magnetic driving force acting on the arc toward the outer circumference of the electrode.
The rotational movement of the arc ends only on a part of the electrode surface, and the entire surface of the ft electrode is not effectively utilized.

したがって、電極径に見合ったしゃ断性能が得られず、
また、前述のように、■スパイラル溝9を長くする、■
アークペダル10を長くする、■ブローアウトリング1
4を設ける等の手段をとっても性能の向上には限界があ
12、特に■、■の手段では、耐久性が低下するという
別の問題が発生してしまう。
Therefore, breaking performance commensurate with the electrode diameter cannot be obtained,
In addition, as mentioned above, ■ lengthening the spiral groove 9, ■
Lengthen the arc pedal 10, ■Blowout ring 1
Even if measures such as providing 4 are taken, there is a limit to the improvement in performance.In particular, the measures 1 and 2 cause another problem of reduced durability.

第8図には従来の電極における電極径と電流しゃ断性能
との関係を示しである。図には、併せて縦磁界印加型の
電極についても示しである。図かられかるように、磁気
駆動型の電極では、gll径径ある寸法以上になると、
しゃ断性能の向上は望めない。
FIG. 8 shows the relationship between the electrode diameter and current cutoff performance in a conventional electrode. The figure also shows a vertical magnetic field application type electrode. As can be seen from the figure, in magnetically driven electrodes, when the gll diameter exceeds a certain size,
No improvement in cutting performance can be expected.

また、特に、しゃ断電流が50kA以上になると、アー
クエネルギが大きくなるため、磁気駆動力のみではアー
クの局所的集中が防止できず、電極径が110〜120
m以上ではほとんどしゃ断性能は上がらない。
In addition, especially when the breaking current exceeds 50 kA, the arc energy becomes large, so the local concentration of the arc cannot be prevented by magnetic driving force alone, and the electrode diameter is 110 to 120 kA.
m or more, the breaking performance hardly improves.

さらに、定格電圧が12kV程度の真空インタラプタに
おいては、外部配線との距離(第9図中に「1」で示す
)は250〜350m程度であり、電磁力の値は約20
 Gauss/ k A −rm (磁束密度/電流・
アーク長)、磁気駆動力Fは10 g f / k A
、 −mm程度であるため、特にアークがアークペダル
10aの外周付近(第6図に示した■の位1it)に位
置する場合には、円周方向へアークが移動しにくくなり
、しゃ断性能が低下する。
Furthermore, in a vacuum interrupter with a rated voltage of about 12 kV, the distance from the external wiring (indicated by "1" in Figure 9) is about 250 to 350 m, and the electromagnetic force is about 20 m.
Gauss/ k A -rm (magnetic flux density/current・
arc length), magnetic driving force F is 10 g f / k A
, -mm, so especially when the arc is located near the outer periphery of the arc pedal 10a (1 it at the ■ mark shown in Fig. 6), it becomes difficult for the arc to move in the circumferential direction, and the breaking performance deteriorates. descend.

上記のように、外方向の磁気駆動力によるしゃ断性能の
向上には限界があったので、本件発明者らは原点に帰り
、しゃ断時に発生する金属蒸気の自己拡散力にて発生し
たアークを接触部からアーク部に移動させることができ
ないか試みた。
As mentioned above, there was a limit to the improvement of the breaking performance due to the outward magnetic driving force, so the inventors of the present invention returned to the starting point and decided to contact the arc generated by the self-diffusion force of the metal vapor generated during the breaking. I tried to see if it was possible to move it from the section to the arc section.

すなわち、外方向の磁気駆動力が極力小さくなるように
電極を構成してみたのである。
In other words, the electrodes were constructed so that the outward magnetic driving force was as small as possible.

具体的には、接触部の外径をリード棒の直径以下とする
と共に、接触部背面に直接リード棒を接続し、リード棒
と接触部表面との間の電流路が、接触部表面に直交する
もの(第10図中ので示す)が大半となるようにして、
接触部表面と平行となる方向の成分(第10図中Oで示
す)が極力少な(なるように配慮しなのである。
Specifically, the outer diameter of the contact part is set to be less than or equal to the diameter of the lead rod, and the lead rod is connected directly to the back of the contact part, so that the current path between the lead rod and the surface of the contact part is perpendicular to the surface of the contact part. (indicated by in Figure 10) will be the majority,
Care has been taken to ensure that the component in the direction parallel to the surface of the contact portion (indicated by O in FIG. 10) is as small as possible.

この電極を用いて真空インタラプタを組み立てて、その
しゃ断性能を試験したところ、電流しゃ断性能が10〜
30%向上する結果が得られた。しかも、試験後のもの
を分解して電極表面を観察しなところ、局部的な二ロー
ジヲンはなく、電極表面はぼ全体にアークの痕跡が見ら
れた(従来のものでは、局部的な二ロージ旨ンであった
)。これから、電極表面全体が有効利用されていること
が判った。
When a vacuum interrupter was assembled using this electrode and its interrupting performance was tested, the current interrupting performance was 10~10.
A result of 30% improvement was obtained. Furthermore, when we disassembled the product after the test and observed the electrode surface, we found that there were no localized double digits, and traces of arcs were seen on almost the entire electrode surface. It was delicious). From this, it was found that the entire electrode surface was effectively utilized.

また、真空インタラプタのシールド内壁面のよごれ、パ
リの発生も少なかった。これは、しゃ断後の耐圧低下防
止が図れ、その結果、大電流しゃ断回数の増加が期待で
きることを示している。
In addition, there was less dirt and debris on the inner wall of the vacuum interrupter shield. This shows that it is possible to prevent a drop in withstand voltage after shutoff, and as a result, an increase in the number of large current shutoffs can be expected.

したがって、発生したアークを従来の如く強制的に外方
向向きの磁気力によって駆動させるのではなく、自然発
生の自己拡散力によってアークを接触部からアーク部に
移動させることにより、良好な結果が得られろことが判
った。
Therefore, good results can be obtained by moving the arc from the contact part to the arc part by the naturally occurring self-diffusion force, instead of forcing the generated arc to be driven by an outward magnetic force as in the past. It turned out that it was impossible.

E 課題を解決するための手段 上記知見に基づき、本発明では、 複数のスパイラル溝を有するアーク部の一方の面の中央
部にリング状の接触面を具備する接触部を設け、他方の
面の中央部にリード棒を接続してなる真空インタラプタ
用磁気駆動型電極において、 前記接触面の外径を前記リード棒の直径以下にすると共
に、前記接触部の背面に直接前記リード棒を接続して、
少なくとも通電時において前記接触面と前記リード棒と
の間に形成される電流路における電流成分を、接触面に
直交する方向の成分をIv、接触面に平行する方向の成
分をI)lとしたとき、I v > r hとなるよう
にしたのである。
E Means for Solving the Problems Based on the above findings, the present invention provides a contact portion having a ring-shaped contact surface in the center of one surface of an arc portion having a plurality of spiral grooves, and a contact portion having a ring-shaped contact surface on the other surface. In a magnetically driven electrode for a vacuum interrupter having a lead rod connected to a central portion, the outer diameter of the contact surface is set to be equal to or less than the diameter of the lead rod, and the lead rod is directly connected to the back surface of the contact portion. ,
At least when current is applied, the current component in the current path formed between the contact surface and the lead rod is defined as Iv, the component in the direction perpendicular to the contact surface, and I)l, the component in the direction parallel to the contact surface. Then, I v > r h.

なお、前記接触部はクロム、銅を主成分とした材料から
なり、例えばCu −Cr −M Oの複合金属が採用
されろ。
The contact portion may be made of a material containing chromium or copper as a main component, such as a composite metal of Cu-Cr-MO.

また、前記アーク部は磁性材料と銅を主成分とした材料
からなり、Fa  Crや磁性ステンレス鋼−Cuの複
合金属が採用されろ。
Further, the arc portion is made of a material mainly composed of a magnetic material and copper, and a composite metal of Fa Cr or magnetic stainless steel-Cu may be used.

F  作     用 上記真空インタラプタ用電極では、電流のしゃ断時、ア
ーク基中を起こすことなく、発生した金属蒸気の自己拡
散力によって発生各アークは接触部からアーク部へと移
動し、アーク部において各アークは全体回転するので、
電極面を有効に利用してしゃ断が行なわれる。
F Function In the vacuum interrupter electrode described above, when the current is cut off, each generated arc moves from the contact part to the arc part by the self-diffusion force of the generated metal vapor without causing an arc base, and each arc moves from the contact part to the arc part. Since the entire arc rotates,
Cutoff is performed by effectively utilizing the electrode surface.

G実施例 第1図、第2図には本発明の一実施例に係る真空インタ
ラプタ用電極の平面とそのI−■矢視断面を示しである
G Embodiment FIGS. 1 and 2 show a plane of a vacuum interrupter electrode according to an embodiment of the present invention and its cross section taken along the I-■ arrow.

当該電極のアーク部21ば、中央部に貫通孔22を有す
る円盤リング状をなし、貫通孔22内局面付近から外周
面にかけて多数のスパイラル溝23が形成しである。こ
こでは、スパイラル溝23はアーク部21の表裏を11
通するものとしであるが、これは、アーク部2Jの表面
あるいは裏面あるいは両面に設けた貫通しない溝であっ
てもよい。
The arc portion 21 of the electrode has a disk ring shape with a through hole 22 in the center, and a large number of spiral grooves 23 are formed from near the inner surface of the through hole 22 to the outer peripheral surface. Here, the spiral groove 23 extends from the front and back of the arc portion 21 to 11
However, this may be a non-penetrating groove provided on the front surface, back surface, or both surfaces of the arc portion 2J.

本実施例に係る電極では、アーク部2Jの裏面には、ス
テンレス、インコネル等製の補強板24が設けである。
In the electrode according to this embodiment, a reinforcing plate 24 made of stainless steel, Inconel, etc. is provided on the back surface of the arc portion 2J.

アーク部21の背面側から貫通孔22にはリード棒25
の先端部が嵌合してあり、り一ド棒25外局面に突設さ
れたフランジ部26が補強板24裏面に当接されている
。リード棒25先端部とアーク部21とはろう付は結合
されている。
A lead rod 25 is inserted into the through hole 22 from the back side of the arc portion 21.
A flange portion 26 protruding from the outer surface of the reinforcing rod 25 is in contact with the back surface of the reinforcing plate 24. The tip of the lead rod 25 and the arc portion 21 are connected by brazing.

一方、アーク部21の表面側におい゛C貫通孔22には
接触部27が嵌着しである。この接触部27は底付きと
なっており、その底面27aはリード棒25の先端面2
5aに密着し、接触部27周面とアーク部21及び接触
部底面27aとリード棒先端面25aとはろう付は結合
されている。つまり、接触部27の背面にリード棒25
が直接接続されている構造となっているのである。
On the other hand, a contact portion 27 is fitted into the C through hole 22 on the surface side of the arc portion 21. This contact portion 27 has a bottom, and the bottom surface 27a is the tip surface 2 of the lead rod 25.
5a, and the peripheral surface of the contact portion 27 and the arc portion 21 and the bottom surface 27a of the contact portion and the tip end surface 25a of the lead rod are connected by brazing. In other words, the lead rod 25 is attached to the back of the contact portion 27.
The structure is such that they are directly connected.

接触面27bの外径りはリード棒23の直径dと等しい
かそれ以下の大きさとされる。
The outer diameter of the contact surface 27b is set to be equal to or smaller than the diameter d of the lead rod 23.

第1図、第2図に示す実施例では、D=dとしであるが
、第3図に示すように、Dadとしてもよい。
In the embodiments shown in FIGS. 1 and 2, D=d, but as shown in FIG. 3, it may be Dad.

上記のように各部の寸法を決め、かつ接続構成すること
によって、リード棒25から接触面27b(接触部27
の表面)に至る経路の抵抗が減少し、接触面27bに直
交する方向の電流路が大きく確保されるのである。
By determining the dimensions of each part and configuring the connections as described above, the contact surface 27b (contact part 27
The resistance of the path leading to the contact surface 27b is reduced, and a large current path in the direction perpendicular to the contact surface 27b is secured.

なお、この実施例では、スパイラル溝23の内端部は、
第1図中二点鎖線r23aJで示す如く接触部27の部
分まで延長した溝に形成してもよい。
In addition, in this embodiment, the inner end of the spiral groove 23 is
It may be formed in a groove extending to the contact portion 27 as shown by the two-dot chain line r23aJ in FIG.

本実施例において、接触部27は外径40mm、内径2
0mmで、M o −Crの多孔質焼結体にCuJe溶
浸して形成されろ。
In this embodiment, the contact portion 27 has an outer diameter of 40 mm and an inner diameter of 2 mm.
0 mm, it is formed by infiltrating a porous sintered body of Mo-Cr with CuJe.

アーク部21は外径80輔、スパイラル溝の数(=アー
クペダル21aの数)は12、スパイラル溝23の幅は
4ffI+l+で、Fe、Crの多孔質焼結体にCuを
溶浸したCu(50%)Fe(42%)−Cr(8%)
の成分からなる材料にて形成されろ。
The arc part 21 has an outer diameter of 80mm, the number of spiral grooves (=the number of arc pedals 21a) is 12, the width of the spiral groove 23 is 4ffI+l+, and is made of Cu (Cu) infiltrated into a porous sintered body of Fe and Cr. 50%) Fe (42%) - Cr (8%)
It must be made of a material consisting of the following ingredients:

上記構成の電極を第4図に示すように、固定電極29、
可動電極30として真空インタラプタを構成し、電極径
を変えて電流しゃ断性能について試験した結果を第5図
に示す。
As shown in FIG. 4, the electrodes having the above configuration are fixed electrodes 29,
A vacuum interrupter was constructed as the movable electrode 30, and the current interrupting performance was tested by changing the electrode diameter. The results are shown in FIG.

第4図において、真空インタラプタの構成部材は第9図
に示したものと同じであり、同一部材は同一符号で示し
である。なお、試験の条件は、電圧12kV、電極間ギ
ャップ12mmである。
In FIG. 4, the constituent members of the vacuum interrupter are the same as those shown in FIG. 9, and the same members are designated by the same reference numerals. Note that the test conditions were a voltage of 12 kV and an interelectrode gap of 12 mm.

通電時及び開極直後(アークが接触面上に存在する間)
においては、リード棒25と接触面27bとの間の電流
路が、接触面27bに直交するもの(第2図、第10図
中ので示す)が大半(Iv)Ih)となるので、しゃ断
時に生ずる金属蒸気の自己拡散力によって、アークは放
射方向に広がって、接触部からア゛−り部へ移動し、ア
ーク部におけるスパイラル溝の作用によって回転移動し
、消弧する。
During energization and immediately after contact opening (while the arc exists on the contact surface)
In this case, most of the current paths between the lead rod 25 and the contact surface 27b (Iv)Ih) are perpendicular to the contact surface 27b (indicated by the circles in FIGS. 2 and 10), so when the current path is cut off, Due to the self-diffusion force of the resulting metal vapor, the arc spreads in the radial direction, moves from the contact area to the gap area, and is rotated and extinguished by the action of the spiral groove in the arc area.

第1図において、アークの移動を説明的に矢印Aで示し
である。
In FIG. 1, the movement of the arc is illustrated by an arrow A.

試験の結果、本発明の電極を用いた真空インタラプタに
おけるしゃ断性能(第5図中o −oで示す)は従来品
のもの(第5図中X−×で示す)より谷径において10
〜30%良好であり、しかも120++++aの大径の
ものにおいても、極めて良好な結果が得られた。
As a result of the test, the interrupting performance of the vacuum interrupter using the electrode of the present invention (indicated by o - o in Fig. 5) was 10% lower in the valley diameter than that of the conventional product (indicated by X - x in Fig. 5).
-30% good results, and extremely good results were obtained even with a large diameter of 120++++a.

成分をIhとしたとき、Iv>Ihとなるようにして、
電流しゃ断時に発生する金属蒸気の自己拡散力によって
アークが接触部からアーク部へ移動し、アーク部におい
て全体回転して消弧するようにしなので、しゃ断性能が
向上し、電極面を有効に利用できることから電極径の小
型化、ひいては真空インタラプタの小型化が達成できる
。また、シールドのよごれ及びパリの発生が抑えられる
ことから、耐電圧の向上、大電流しゃ断回数の増大が図
れる。
When the component is Ih, make sure that Iv>Ih,
The arc moves from the contact part to the arc part by the self-diffusion force of the metal vapor generated when the current is cut off, and the entire arc rotates at the arc part to extinguish the arc, improving the breaking performance and making effective use of the electrode surface. This makes it possible to reduce the electrode diameter and, in turn, reduce the size of the vacuum interrupter. In addition, since the shield is prevented from becoming dirty and the occurrence of flakes, the withstand voltage can be improved and the number of times the large current can be cut off can be increased.

[1発明の効果 本発明に係る真空インタラプタ用磁気駆動型電極は、接
触部の外径をリード棒の直径息下にすると共に、接触部
の背面に直接リード棒を接続し、少なくとも通電時にお
いて接触部の接触面とり一ド棒との間に形成されろ電流
路におけろ電流成分を、接触面に直交する方向の成分を
Iv、接触面に平行する方向の
[1 Effects of the Invention The magnetically driven electrode for a vacuum interrupter according to the present invention has the outer diameter of the contact portion set to the diameter of the lead rod, and the lead rod is directly connected to the back surface of the contact portion, so that at least when energized, The current component in the current path formed between the contact surface of the contact part and the rod is expressed as Iv, the component in the direction perpendicular to the contact surface, and Iv in the direction parallel to the contact surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る真空インタラプタ用f
4極の平面図、第2図はその■−■矢視断面図、第3図
は他の実施例に係る電極の第2図と同様の断面図、第4
図は実施例に係る電極を備えた真空インタラプタの縦断
面図、第5図は電極径としゃ断性能との関係を示すグラ
フ、第6図は従来の磁気駆動型電極の平面図、第7図は
その■−■矢視断面図、第8図は従来の1掴の電極径と
しゃ断性能との関係を示すグラフ、第9図は真空インタ
ラプタの概略図、第10図は電流路の説明図である。 図  面  中、 21はアーク部、 23はスパイラル溝、 25ばU−ド棒、 27は接触部である。 第1図 一実施例1:係る電極の平面口 特  許  出  願  人 株式会社 明   電   舎 代     理     人
FIG. 1 shows f for a vacuum interrupter according to an embodiment of the present invention.
2 is a plan view of the 4 poles, FIG. 2 is a sectional view taken along arrows -■, FIG. 3 is a sectional view similar to FIG. 2 of an electrode according to another embodiment, and FIG.
The figure is a longitudinal cross-sectional view of a vacuum interrupter equipped with electrodes according to the embodiment, Figure 5 is a graph showing the relationship between electrode diameter and interrupting performance, Figure 6 is a plan view of a conventional magnetically driven electrode, and Figure 7 Figure 8 is a graph showing the relationship between the diameter of one conventional electrode and breaking performance, Figure 9 is a schematic diagram of a vacuum interrupter, and Figure 10 is an explanatory diagram of the current path. It is. In the drawing, 21 is an arc portion, 23 is a spiral groove, 25 is a U-shaped rod, and 27 is a contact portion. Fig. 1 Example 1: Planar mouth patent for such electrode Applicant Meidensha Co., Ltd. Agent

Claims (1)

【特許請求の範囲】 複数のスパイラル溝を有するアーク部の一方の面の中央
部にリング状の接触面を具備する接触部を設け、他方の
面の中央部にリード棒を接続してなる真空インタラプタ
用磁気駆動型電極において、 前記接触面の外径を前記リード棒の直径以下にすると共
に、前記接触部の背面に直接前記リード棒を接続して、
少なくとも通電時において前記接触面と前記リード棒と
の間に形成される電流路における電流成分を、接触面に
直交する方向の成分をIv、接触面に平行する方向の成
分をIhとしたとき、Iv>Ihとなるようにしたこと
を特徴とする磁気駆動型の真空インタラプタ用電極。
[Claims] A vacuum formed by providing a contact portion having a ring-shaped contact surface in the center of one surface of an arc portion having a plurality of spiral grooves, and connecting a lead rod to the center of the other surface. In the magnetically driven electrode for an interrupter, the outer diameter of the contact surface is set to be equal to or less than the diameter of the lead rod, and the lead rod is directly connected to the back surface of the contact part,
At least when current is applied, a current component in a current path formed between the contact surface and the lead rod, where the component in the direction perpendicular to the contact surface is Iv, and the component in the direction parallel to the contact surface is Ih, An electrode for a magnetically driven vacuum interrupter, characterized in that Iv>Ih.
JP1960489A 1989-01-31 1989-01-31 Magnetic driving type electrode for vacuum interrupter Pending JPH02201831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1960489A JPH02201831A (en) 1989-01-31 1989-01-31 Magnetic driving type electrode for vacuum interrupter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1960489A JPH02201831A (en) 1989-01-31 1989-01-31 Magnetic driving type electrode for vacuum interrupter

Publications (1)

Publication Number Publication Date
JPH02201831A true JPH02201831A (en) 1990-08-10

Family

ID=12003806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1960489A Pending JPH02201831A (en) 1989-01-31 1989-01-31 Magnetic driving type electrode for vacuum interrupter

Country Status (1)

Country Link
JP (1) JPH02201831A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946245B1 (en) * 1969-08-19 1974-12-09
JPS6193524A (en) * 1984-10-15 1986-05-12 株式会社明電舎 Vacuum interrupter
JPS6351017A (en) * 1986-08-21 1988-03-04 三菱電機株式会社 Vacuum breaker
JPS63158722A (en) * 1986-12-22 1988-07-01 株式会社明電舎 Vacuum interruptor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946245B1 (en) * 1969-08-19 1974-12-09
JPS6193524A (en) * 1984-10-15 1986-05-12 株式会社明電舎 Vacuum interrupter
JPS6351017A (en) * 1986-08-21 1988-03-04 三菱電機株式会社 Vacuum breaker
JPS63158722A (en) * 1986-12-22 1988-07-01 株式会社明電舎 Vacuum interruptor

Similar Documents

Publication Publication Date Title
US4704506A (en) Vacuum interrupter
US3355564A (en) Vacuum-type circuit interrupter
US6479778B1 (en) Vacuum switch including windmill-shaped electrodes
GB2038557A (en) Vacuum interrupter
US3372259A (en) Vacuum-type electric circuit interrupter with arc-voltage limiting means
EP0133368B1 (en) High current switch contact
US3711665A (en) Contact with arc propelling means embodied therein
JPH02201831A (en) Magnetic driving type electrode for vacuum interrupter
JP2762510B2 (en) Magnetically driven electrodes for vacuum interrupters
CA1124290A (en) Vacuum circuit interrupter electrode
JPH02201833A (en) Magnetic driving type electrode for vacuum interrupter
JP2751300B2 (en) Magnetically driven electrodes for vacuum interrupters
JPH02201828A (en) Magnetic drive type electrode for vacuum interrupter
JP3812711B2 (en) Vacuum valve
JP2689568B2 (en) Magnetically driven electrodes for vacuum interrupters
JP2881794B2 (en) Magnetically driven electrodes for vacuum interrupters
JPH02201835A (en) Magnetic driving type electrode for vacuum interrupter
JPH02201834A (en) Magnetic driving type electrode for vacuum interrupter
JPH02201838A (en) Magnetic driving type electrode for vacuum interrupter
JP3146158B2 (en) Vacuum valve
JPH02201830A (en) Magnetic driving type electrode for vacuum interrupter
JPH1031943A (en) Vacuum switch or breaker
JPH0244622A (en) Electrode for vacuum interrupter
JPS6328829Y2 (en)
JPH0239325Y2 (en)