JPH02201828A - Magnetic drive type electrode for vacuum interrupter - Google Patents

Magnetic drive type electrode for vacuum interrupter

Info

Publication number
JPH02201828A
JPH02201828A JP1960189A JP1960189A JPH02201828A JP H02201828 A JPH02201828 A JP H02201828A JP 1960189 A JP1960189 A JP 1960189A JP 1960189 A JP1960189 A JP 1960189A JP H02201828 A JPH02201828 A JP H02201828A
Authority
JP
Japan
Prior art keywords
arc
contact
contact surface
electrode
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1960189A
Other languages
Japanese (ja)
Inventor
Taiji Noda
泰司 野田
Toshimasa Fukai
利眞 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP1960189A priority Critical patent/JPH02201828A/en
Publication of JPH02201828A publication Critical patent/JPH02201828A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/664Contacts; Arc-extinguishing means, e.g. arcing rings
    • H01H33/6643Contacts; Arc-extinguishing means, e.g. arcing rings having disc-shaped contacts subdivided in petal-like segments, e.g. by helical grooves

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PURPOSE:To improve the breaking performance by connecting a contact part, an arc part, and a lead rod with each other in such a way that for current components of a current way formed between a contact surface and the lead rod at the time of energization, the component in the parallel direction to the contact surface is larger than the component in the crossing direction. CONSTITUTION:An arc part 30 of an electrode has a plurality of spiral grooves 29, and a ring-like contact part 31 is connected at the center of the surface side of the arc part 30 by brazing. The spiral grooves 29 of the arc part 30 extend to the contact part 31. The outer diameter of a lead rod 32 and the outer diameter of the contact part 31 are almost similar to each other, and a current way in the crossing direction to a contact surface 31a is secured large. Most of current ways between the lead rod 32 and the contact surface 31a are crossing at the time of energization and just after the opening time (while arc exists on the contact surface 31a), so the arc spreads radially by force of self-diffusion of metal steam at the time of breaking to move from the contact part 31 to the arc part 30, and the arc is extinguished after rotation and moving by action of the spiral grooves 29 at the arc part 30.

Description

【発明の詳細な説明】 人 産業上の利用分野 本発明は、アークを磁気回転駆動してしゃ関する。[Detailed description of the invention] Human industrial application field The present invention relates to magnetic rotational driving of an arc.

B 発明の概要 本発明は、磁気駆動型の真空インタラプタ用電極におい
て、接触面の外径をリード棒の径とほぼ等しいものとし
て、接触面とリード棒との間に形成される電流路におけ
る電流成分のうち、接触面に直交する方向の電流成分を
接触面に平行なものより大きくし、もってしゃ断時の金
属蒸気によるアークの自己拡散力によってアークを接触
部からアーク部へ移動し、アーク部においてアークを回
転移動させてしゃ断するようにしたものである。
B. Summary of the Invention The present invention provides an electrode for a magnetically driven vacuum interrupter in which the outer diameter of the contact surface is approximately equal to the diameter of the lead rod, so that the current flow in the current path formed between the contact surface and the lead rod is reduced. Among the current components, the current component in the direction perpendicular to the contact surface is made larger than the current component parallel to the contact surface, so that the arc moves from the contact part to the arc part by the self-diffusion force of the arc due to metal vapor at the time of interruption, and the arc part The arc is cut off by rotationally moving the arc.

C従来の技術 一般に、真空インタラプタは、第8図に示すように、真
空容器1内に、固定電極2を有する固定リード棒3と可
動1橿4を有し上下動可能な可動リード棒5とを内装し
て構成される。図中、6は可動リード棒5を可動として
いるベローズ、7は真空容器1内周をおおっているシー
ルドである。
C. Prior Art Generally, as shown in FIG. 8, a vacuum interrupter includes a fixed lead rod 3 having a fixed electrode 2 and a movable lead rod 5 having a movable rod 4 and movable up and down in a vacuum vessel 1. It consists of an interior. In the figure, 6 is a bellows that makes the movable lead rod 5 movable, and 7 is a shield that covers the inner circumference of the vacuum container 1.

このような真空インタラプタの電極2,4には、大電流
しゃ断簡力特性、低さい断電流値特性、高酌電圧値特性
など種々の電気的特性が要求されろ。
The electrodes 2 and 4 of such a vacuum interrupter are required to have various electrical characteristics such as large current breaking characteristics, low breaking current value characteristics, and high voltage value characteristics.

しかしながら、これらの緒特性は相反する性質のもので
あるので、すべてを同時に達成することは難しい。した
がって、従来より、真空インタラプタの用途に応じてい
ずれかの特性を重視して電極材料を選択しなり、特殊な
電極構造を採用したりしている。
However, since these characteristics are contradictory, it is difficult to achieve all of them at the same time. Therefore, conventionally, electrode materials have been selected with emphasis on one of the characteristics depending on the purpose of the vacuum interrupter, and a special electrode structure has been adopted.

このような状況のもと、同じ電極径でより電流しゃ断性
能を向上させるための代表例として、磁気駆動型の電極
が知られている。
Under these circumstances, magnetically driven electrodes are known as a representative example of improving current cutting performance with the same electrode diameter.

磁気駆動型の電極の一例を第5図、第6図に示す。図に
示すように、この電極8は、複数のスパイラル溝9を備
えたアーク部10の一方の面側中央部に接触部11を設
け、アーク部10の他方の面側にリード棒12を接続す
る構造となっており、磁気駆動力によりアークを外周方
向に駆動し、電極の極部的な加熱を防止することによっ
て、しゃ断限界の増大を図るものである。
An example of a magnetically driven electrode is shown in FIGS. 5 and 6. As shown in the figure, this electrode 8 has a contact portion 11 provided at the center of one side of an arc portion 10 having a plurality of spiral grooves 9, and a lead rod 12 connected to the other side of the arc portion 10. The structure is designed to increase the cutoff limit by driving the arc in the outer circumferential direction using magnetic driving force and preventing local heating of the electrode.

しかして、この電極8ば、アークを回転させろことを目
ざしたものであるから、発生したアークが停滞すること
なく、電流ゼロ点をむかえるまで動いているように種々
の試みがなされている。
Since this electrode 8 is intended to rotate the arc, various attempts have been made to ensure that the generated arc does not stagnate and continues to move until the current reaches zero point.

つまり、アーク13は、第5図中の■で発生した後、ア
ークペダル10a上を■、■。
That is, after the arc 13 occurs at point 2 in FIG. 5, it moves over the arc pedal 10a at points 2 and 3.

■のように移動する。この際に、アーク13は、次々に
発生するアークを集めてアーク柱13′となって回転す
ることになる。
■Move as shown. At this time, the arc 13 collects the arcs generated one after another and rotates to form an arc column 13'.

アーク1tの駆動力となるのは、第6図における、電極
8の半径方向に生じる電流1hの成分に基因する電極部
に生じるコ字状の電流路による磁気力Fである。
The driving force for the arc 1t is the magnetic force F due to the U-shaped current path generated in the electrode portion due to the component of the current 1h generated in the radial direction of the electrode 8 in FIG.

したがって、従来は、 ■ 磁気力Fが大きく生じるように、 a: リード棒12の直径に比較して接触部11の内径
を大きくする、 b= リード棒12の上部に高抵抗材料(SO3鋼)か
らなるいわゆるブローアウトリング14を設ける、 C:スパイラル溝9の内端部を第5図中9aで示す如く
接触部11の下まで伸ばしてアークペダル10aを長く
する、 といった手段をとっており、また、 ■ アークの回転移動のために、 a:アークペダル10aの先端を第5図中10bで示す
ように長くして、アークが隣接ペダルに移動しやすくす
る、 b:周辺のアークシールドとの間隙寸法を考慮する、 といった手段をとっている。
Therefore, in the past, in order to generate a large magnetic force F, a: The inner diameter of the contact part 11 was made larger than the diameter of the lead rod 12, b= A high resistance material (SO3 steel) was placed on the upper part of the lead rod 12. C: The inner end of the spiral groove 9 is extended below the contact portion 11 as shown by 9a in FIG. 5 to lengthen the arc pedal 10a. In addition, ■ For the rotational movement of the arc, a: The tip of the arc pedal 10a is lengthened as shown by 10b in Fig. 5 to make it easier for the arc to move to the adjacent pedal. Measures are taken to consider the gap size.

発明が解決しようとする課題 上記のような手段をとる従来のTiSにおけろ思想(よ
、発生したアーク13にすばやくいわゆるコ字力による
磁気駆動力を作用させるようにしたものである。したが
って、アーク13の動きは、前述したように一点で発生
したアーク13が成長し、次々に発生したアークを集め
て大きなアーク柱13′となって回転する如くなる。
Problems to be Solved by the Invention In the conventional TiS that takes the above-mentioned measures, the idea is to quickly apply a magnetic driving force by a so-called U-shaped force to the generated arc 13. Therefore, As described above, the movement of the arc 13 is such that the arc 13 generated at one point grows, and the arcs generated one after another are collected to form a large arc column 13' that rotates.

しかし、アークが回転するといっても、アークには電極
外周方向に向かう磁気駆動力が作用していることから、
アークの回転移動はfi極表面の一部のみで終了してし
まい、電極全表面が有効に利用されない。
However, even though the arc rotates, there is a magnetic driving force acting on the arc toward the outer circumference of the electrode.
The rotational movement of the arc ends only on a part of the fi pole surface, and the entire electrode surface is not effectively utilized.

したがって、電極径に見合ったしゃ断性能が得られず、
また、前述のように、■スパイラル溝9を長くする、■
アークペダル10を長くする、■ブローアウトリング1
4を設けろ等の手段をとっても性能の向上には限界があ
り、待に■、■の手段では、爾久性が低下するという別
の問題が発生してしまう。
Therefore, breaking performance commensurate with the electrode diameter cannot be obtained,
In addition, as mentioned above, ■ lengthening the spiral groove 9, ■
Lengthen the arc pedal 10, ■Blowout ring 1
Even if measures such as providing 4 are taken, there is a limit to the improvement in performance, and measures ① and ③ create another problem of reduced durability.

第7図には従来の電極における電極径と電流しゃ断性能
との関係を示しである。図には、併せて縦磁界印加型の
電極についても示しである。図かられかるように、磁気
駆動型の電極では、電極径がある寸法以上になると、し
ゃ断性能の向上は望めない。
FIG. 7 shows the relationship between the electrode diameter and current cutoff performance in a conventional electrode. The figure also shows a vertical magnetic field application type electrode. As can be seen from the figure, with magnetically driven electrodes, if the electrode diameter exceeds a certain size, no improvement in the blocking performance can be expected.

また、特に、しゃ断電流が50kA以上になると、アー
クエネルギが大きくなるため、磁気駆動力のみではアー
クの局所的集中が防止できず、電極径が110〜120
1以上ではほと凡としゃ断性能は上がらない。
In addition, especially when the breaking current exceeds 50 kA, the arc energy becomes large, so the local concentration of the arc cannot be prevented by magnetic driving force alone, and the electrode diameter is 110 to 120 kA.
If it is 1 or more, the breaking performance will hardly improve.

さらに、定格電圧が12kV程度の真空インタラプタに
おいては、外部配線との距離(第8図中にrl」で示す
)は250〜350mm程度であり、電磁力の値は約2
0 Gaus3/l(A−Im(磁束密度/電流・アー
ク長)磁気駆動力Fは10 g f / k A−we
程度であるため、特にアークがアークペダル10aの外
周付近(第5図に示した■の位置)に位置する場合には
、円周方向へアークが移動しにくくなり、しゃ断性能が
低下する。
Furthermore, in a vacuum interrupter with a rated voltage of about 12 kV, the distance from the external wiring (indicated by "rl" in Figure 8) is about 250 to 350 mm, and the electromagnetic force is about 2.
0 Gaus3/l (A-Im (magnetic flux density/current/arc length) magnetic driving force F is 10 g f / k A-we
Therefore, especially when the arc is located near the outer periphery of the arc pedal 10a (the position marked with ■ in FIG. 5), it becomes difficult for the arc to move in the circumferential direction, and the breaking performance deteriorates.

上記のように、外方向のIi!i気駆動力によるしゃ断
性能の向上には限界があったので、本件発明者らは原点
に帰り、しゃ断時に発生する金属蒸気の自己拡散力にて
発生したアークを接触部からアーク部に移動させること
ができないか試みた。
As mentioned above, the outward Ii! Since there was a limit to the improvement of the breaking performance by the i-air driving force, the inventors of the present invention returned to the original point and moved the arc generated by the self-diffusion force of the metal vapor generated during the breaking from the contact part to the arc part. I tried to see if it was possible.

すなわち、外方向の磁気駆動力が極力小さくなるように
電極を構成してみたのである。
In other words, the electrodes were constructed so that the outward magnetic driving force was as small as possible.

具体的には、リード棒の外径と接触面の外径とをほぼ等
しいものとして、リード棒と接触面との間の電流路が、
接触面に直交するもの(第9図中ので示す)が大半とな
るようにして、接触面と平行となる方向の成分(第9図
中0で示す)が極力少なくなるように配慮したのである
Specifically, assuming that the outer diameter of the lead rod and the outer diameter of the contact surface are approximately equal, the current path between the lead rod and the contact surface is
We made sure that the majority of the components are perpendicular to the contact surface (indicated by 0 in Figure 9), and that the component in the direction parallel to the contact surface (indicated by 0 in Figure 9) is as small as possible. .

この電極を用いて真空インタラプタを組み立てて、その
しゃ断性能を試験したところ、電流しゃ断性能が10〜
30%向上する結果が得られた。しかも、試験後のもの
を分解してt4電極面を観察したところ、局部的な二ロ
ーシリンはなく、電極表面はぼ全体にアークの痕跡が見
られた(従来のものでは、局部的な二ローションであっ
た)。これから、電極表面全体が有効利用されているこ
とが判った。
When a vacuum interrupter was assembled using this electrode and its interrupting performance was tested, the current interrupting performance was 10~10.
A result of 30% improvement was obtained. Moreover, when we disassembled the product after the test and observed the t4 electrode surface, we found that there was no localized dirocyrinization, and traces of arcing were seen on almost the entire electrode surface (with the conventional type, there was no localized dilocyrinization). Met). From this, it was found that the entire electrode surface was effectively utilized.

また、真空インタラプタのシールド内壁面のよごれ、パ
リの発生も少なかった。これは、しゃ断後の耐圧低下防
止が図れ、その結果、大電流しゃ断回数の増加が期待で
きることを示している。
In addition, there was less dirt and debris on the inner wall of the vacuum interrupter shield. This shows that it is possible to prevent a drop in withstand voltage after shutoff, and as a result, an increase in the number of large current shutoffs can be expected.

したがって、発生したアークを従来の如く強制的に外方
向向きの磁気力によって駆動させるのではなく、自然発
生の自己拡散力によってアークを接触部からアーク部に
移動させろことにより、良好な結果が得られろことが判
った。
Therefore, better results can be obtained by moving the arc from the contact part to the arc part by the naturally occurring self-diffusion force, instead of forcing the generated arc to be driven by an outward magnetic force as in the past. It turned out that it was impossible.

E 課題を解決するための手段 上記知見に基づき、本発明では、 複数のスパイラル溝を有するアーク部の一方の面の中央
部にリング状の接触面を具備する接触部を設け、他方の
面の中央部にリード棒を接続してなる真空インタラプタ
用磁気駆動型電極において、 少なくとも通電時において前記接触面と前記リード棒と
の間に形成される電流路における電流成分を、接触面に
直交する方向の成分をIv、接触面に平行する方向の成
分をIhとしたとき、Iv>lhとなるように前記接触
部、アーク部、リード棒を接続構成したのである。
E Means for Solving the Problems Based on the above findings, the present invention provides a contact portion having a ring-shaped contact surface in the center of one surface of an arc portion having a plurality of spiral grooves, and a contact portion having a ring-shaped contact surface on the other surface. In a magnetically driven electrode for a vacuum interrupter in which a lead rod is connected to the center part, a current component in a current path formed between the contact surface and the lead rod at least when energized is directed in a direction perpendicular to the contact surface. When the component in the direction parallel to the contact surface is Iv, and the component in the direction parallel to the contact surface is Ih, the contact portion, the arc portion, and the lead rod are connected so that Iv>lh.

なお、前記接触部はクロム、銅を主成分とした材料から
なり、例えばCu −Cr−Moの複合金属が採用され
ろ。
The contact portion may be made of a material containing chromium or copper as a main component, such as a Cu-Cr-Mo composite metal.

また、前記アーク部は磁性材料と銅を主成分とした材料
からなり、Fe−Crや磁性ステンレス鋼−Cuの複合
金属が採用される。
Further, the arc portion is made of a material mainly composed of a magnetic material and copper, and a composite metal of Fe-Cr or magnetic stainless steel-Cu is used.

さらに、前記スパイラル溝としては、アーク部を板厚方
向に貫通するもの、表面側もしくは背面側に貫通させな
いで設けるもの、貫通させないでアーク部両面に設ける
ものなどが該当する。
Furthermore, the spiral grooves include those that penetrate the arc portion in the thickness direction, those that are provided on the front side or the back side without penetrating them, and those that are provided on both sides of the arc portion without penetrating them.

F  作     用 上記真空インタラプタ用電極では、電流のしゃ断時、ア
ーク鳥中を起こすことなく、発生した金属蒸気の自己拡
散力によって発生各アークは接触部からアーク部へと移
動し、アーク部において各アークは全体回転するので、
電極面を有効に利用してしゃ断が行なわれる。
F Function In the vacuum interrupter electrode described above, when the current is cut off, each generated arc moves from the contact area to the arc area due to the self-diffusion power of the generated metal vapor without causing an arc in the arc. Since the entire arc rotates,
Cutoff is performed by effectively utilizing the electrode surface.

G実施例 第1図、第2図には本発明の一実施例に係る真空インタ
ラプタ用電極の平面とその■−■矢視断面を示しである
Embodiment G FIGS. 1 and 2 show a plane of an electrode for a vacuum interrupter according to an embodiment of the present invention and a cross-section thereof taken along the line (■--■).

当該Ti極のアーク部30は複数のスパイラル溝29を
有する。アーク部30の表面側の中央部にはリング状の
接触部31をろう付けにより結合する。この電極におい
ては、アーク部30のスパイラル溝29は接触部31に
まで及んでいる。図中、29aが接触部31に形成され
たスパイラル溝29の延長部である。
The arc portion 30 of the Ti pole has a plurality of spiral grooves 29. A ring-shaped contact portion 31 is coupled to the center portion of the surface side of the arc portion 30 by brazing. In this electrode, the spiral groove 29 of the arc portion 30 extends to the contact portion 31. In the figure, 29a is an extension of the spiral groove 29 formed in the contact portion 31.

アーク部30の裏面側の中央部にはリード棒32をろう
付けにより接合する。このリード棒32の外径と前記接
触部31の外径とはほぼ等しいものとされている。こう
することによって、接触面31a(接触部31の表面)
に直交する方向の電流路が大きく確保されるのである。
A lead rod 32 is joined to the center portion of the back side of the arc portion 30 by brazing. The outer diameter of this lead rod 32 and the outer diameter of the contact portion 31 are approximately equal. By doing this, the contact surface 31a (the surface of the contact portion 31)
This ensures a large current path in the direction perpendicular to .

なお、本電極では、アーク部30の裏面に、ステンレス
、インコネル等製の補強板35を設けである。
In this electrode, a reinforcing plate 35 made of stainless steel, Inconel, etc. is provided on the back surface of the arc portion 30.

本実施例において、接触部31は外径40叫、内径20
mmで、M o −Crの多孔質焼結体にCuを溶浸し
て形成される。
In this embodiment, the contact portion 31 has an outer diameter of 40 mm and an inner diameter of 20 mm.
mm, and is formed by infiltrating Cu into a porous sintered body of Mo-Cr.

アーク部30は外径80順、スパイラル溝の数(=アー
クペダル30aの数)は12、スパイラル溝29の幅は
4画で、Fe、 Crの多孔質焼結体にCuを溶浸した
Cu (50%)−Fe(42%)−Cr(8%)の成
分からなる材料にて形成されろ。
The arc part 30 has an outer diameter of 80, the number of spiral grooves (=the number of arc pedals 30a) is 12, the width of the spiral groove 29 is 4 strokes, and is made of Cu infiltrated into a porous sintered body of Fe and Cr. (50%) - Fe (42%) - Cr (8%).

上記構成の電極を第3図に示すように、固定電極33、
可動電極34として真空インタラプタを構成し、電極径
を変えて電流しゃ断性能について試験した結果を第4図
に示す。
As shown in FIG. 3, the electrodes with the above configuration are fixed electrodes 33,
A vacuum interrupter was constructed as the movable electrode 34, and the current interrupting performance was tested by changing the electrode diameter. The results are shown in FIG.

第3図において、真空インタラプタの構成部材は第8図
に示したものと同じであり、同一部材は同一符号で示し
である。なお、試験の条件は、電圧12 kV、電極間
ギャップ12印である。
In FIG. 3, the constituent members of the vacuum interrupter are the same as those shown in FIG. 8, and the same members are designated by the same reference numerals. Note that the test conditions were a voltage of 12 kV and an interelectrode gap of 12 marks.

通電時及び開極直後(アークが接触面上に存在する間)
においては、リード棒12と接触面31aとの間の電流
路が、接触面31aに直交するもの(第2図、第9図中
ので示す)が大半(I v) I h)となるので、し
ゃ断時に生ずる金属蒸気の自己拡散力によって、アーク
i、f放射方向に広がって、接触部からアーク部へ移動
し、アーク部におけるスパイラル溝の作用によって回転
移動し、消弧する。第1図において、アークの移動を説
明的に矢印Aで示しである。
During energization and immediately after contact opening (while the arc exists on the contact surface)
In this case, most of the current paths between the lead rod 12 and the contact surface 31a are (I v) I h) perpendicular to the contact surface 31a (indicated by the circles in FIGS. 2 and 9). Due to the self-diffusion force of the metal vapor generated at the time of interruption, the arcs i and f spread in the radial direction, move from the contact part to the arc part, rotate and move by the action of the spiral groove in the arc part, and are extinguished. In FIG. 1, the movement of the arc is illustrated by an arrow A.

試験の結果、本発明の電極を用いた真空インタラプタに
おけろしゃ断性能(第4図中o −oで示す)は従来品
のもの(第4図中×−×で示す)より外径において10
〜30%良好であり、しかも120朧の大径のものにお
いても、極めて良好な結果が得られた。
As a result of the test, the breaking performance (indicated by o - o in Fig. 4) of the vacuum interrupter using the electrode of the present invention was 10% higher in the outer diameter than that of the conventional product (indicated by x - x in Fig. 4).
-30% good results, and extremely good results were obtained even with the large diameter 120 oboro.

1(発明の効果 本発明に係る真空インタラブ・り用磁気駆動型電極は、
少なくとも通電時において接触部の接触面とリード棒と
の間に形成されろ電流路における電流成分を、接触面に
直交する方向の成分をIv、接触面に平行する方向の成
分をIhとしたとき、Iv>Ihとなるように接触部、
アーク部、リード棒を接続構成して、電流しゃ断時に発
生する金属蒸気の自己拡散力によってアークが接触部か
らアーク部へ移動し、アーク部において全体回転して消
弧するようにしたので、しゃ断性能が向上し、電極面を
有効に利用できることから電極径の小型化、ひいては真
空インタラプタの小型化が達成できろ。また、シールド
のよごれ及びパリの発生が抑えられることから、耐電圧
の向上、大電流しゃ断回数の増大が図れる。
1 (Effects of the Invention The magnetically driven electrode for vacuum interaction according to the present invention has the following effects:
At least when current is applied, the current component in the current path formed between the contact surface of the contact part and the lead rod, where the component in the direction perpendicular to the contact surface is Iv, and the component in the direction parallel to the contact surface is Ih. , the contact part so that Iv>Ih,
The arc part and the lead rod are connected in such a way that the arc moves from the contact part to the arc part by the self-diffusion force of the metal vapor generated when the current is cut off, and the whole body rotates in the arc part to extinguish the arc. Since performance is improved and the electrode surface can be used effectively, the electrode diameter can be reduced, and the vacuum interrupter can also be made smaller. In addition, since the shield is prevented from becoming dirty and the occurrence of flakes, the withstand voltage can be improved and the number of times the large current can be cut off can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る真空インタラプタ用電
極の平面図、第2図はその■−■矢視断面図、第3図は
実施例に係る電極を備えた真空インタラプタの縦断面図
、第4図は電極径としゃ断性能との関係を示すグラフ、
第5図は従来の磁気駆動型電極の平面図、第6図はその
M−■矢視断面図、第7図は従来の電極の電極径としゃ
断性能との関係を示すグラフ、第8図は真空インタラプ
タの概略図、第9図は電流路の説明図である。 図  面  中、 29はスパイラル溝、 30はアーク部、 31は接触部、 32はリード棒である。 特  許  出  願 株式会社 明 代    理
FIG. 1 is a plan view of an electrode for a vacuum interrupter according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along arrows -■, and FIG. 3 is a vertical cross-section of a vacuum interrupter equipped with an electrode according to an embodiment. Figure 4 is a graph showing the relationship between electrode diameter and cutting performance.
Fig. 5 is a plan view of a conventional magnetically driven electrode, Fig. 6 is a sectional view taken along the M-■ arrow, Fig. 7 is a graph showing the relationship between the electrode diameter and cutting performance of the conventional electrode, and Fig. 8 9 is a schematic diagram of a vacuum interrupter, and FIG. 9 is an explanatory diagram of a current path. In the drawing, 29 is a spiral groove, 30 is an arc portion, 31 is a contact portion, and 32 is a lead rod. Patent Application Co., Ltd. Osamu Akiyo

Claims (1)

【特許請求の範囲】 複数のスパイラル溝を有するアーク部の一方の面の中央
部にリング状の接触面を具備する接触部を設け、他方の
面の中央部にリード棒を接続してなる真空インタラプタ
用磁気駆動型電極において、 少なくとも通電時において前記接触面と前記リード棒と
の間に形成される電流路における電流成分を、接触面に
直交する方向の成分をIv、接触面に平行する方向の成
分をIhとしたとき、Iv>Ihとなるように前記接触
部、アーク部、リード棒を接続構成したことを特徴とす
る真空インタラプタ用磁気駆動型電極。
[Claims] A vacuum formed by providing a contact portion having a ring-shaped contact surface in the center of one surface of an arc portion having a plurality of spiral grooves, and connecting a lead rod to the center of the other surface. In a magnetically driven electrode for an interrupter, at least when current is energized, a current component in a current path formed between the contact surface and the lead rod, a component in a direction perpendicular to the contact surface is Iv, and a component in a direction parallel to the contact surface. A magnetically driven electrode for a vacuum interrupter, characterized in that the contact portion, the arc portion, and the lead rod are connected so that Iv>Ih, where Ih is a component of the above.
JP1960189A 1989-01-31 1989-01-31 Magnetic drive type electrode for vacuum interrupter Pending JPH02201828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1960189A JPH02201828A (en) 1989-01-31 1989-01-31 Magnetic drive type electrode for vacuum interrupter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1960189A JPH02201828A (en) 1989-01-31 1989-01-31 Magnetic drive type electrode for vacuum interrupter

Publications (1)

Publication Number Publication Date
JPH02201828A true JPH02201828A (en) 1990-08-10

Family

ID=12003734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1960189A Pending JPH02201828A (en) 1989-01-31 1989-01-31 Magnetic drive type electrode for vacuum interrupter

Country Status (1)

Country Link
JP (1) JPH02201828A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016095905A (en) * 2014-11-12 2016-05-26 三菱電機株式会社 Vacuum valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4897061A (en) * 1972-03-02 1973-12-11
JPS4946245B1 (en) * 1969-08-19 1974-12-09
JPS5725636A (en) * 1980-07-23 1982-02-10 Tokyo Shibaura Electric Co Vacuum valve
JPS6276225A (en) * 1985-09-30 1987-04-08 株式会社東芝 Vacuum breaker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946245B1 (en) * 1969-08-19 1974-12-09
JPS4897061A (en) * 1972-03-02 1973-12-11
JPS5725636A (en) * 1980-07-23 1982-02-10 Tokyo Shibaura Electric Co Vacuum valve
JPS6276225A (en) * 1985-09-30 1987-04-08 株式会社東芝 Vacuum breaker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016095905A (en) * 2014-11-12 2016-05-26 三菱電機株式会社 Vacuum valve

Similar Documents

Publication Publication Date Title
EP0208271B1 (en) Vacuum interrupter
US4117288A (en) Vacuum type circuit interrupter with a contact having integral axial magnetic field means
EP0329410B1 (en) Vacuum interrupter
US3280286A (en) Vacuum-type circuit interrupter
US3355564A (en) Vacuum-type circuit interrupter
KR100484076B1 (en) Improved axial magnetic field coil for vacuum interrupter
US3163734A (en) Vacuum-type circuit interrupter with improved vapor-condensing shielding
US3522399A (en) Vacuum-type circuit interrupter with contacts having particularly shaped circumferentially spaced slots
GB2038557A (en) Vacuum interrupter
US4553002A (en) Axial magnetic field vacuum-type circuit interrupter
US3372259A (en) Vacuum-type electric circuit interrupter with arc-voltage limiting means
US3225167A (en) Vacuum circuit breaker with arc rotation contact means
US4695689A (en) Vacuum circuit breaker
JPH02201828A (en) Magnetic drive type electrode for vacuum interrupter
JP2762510B2 (en) Magnetically driven electrodes for vacuum interrupters
JPH02201833A (en) Magnetic driving type electrode for vacuum interrupter
JPH02201836A (en) Magnetic driving type electrode for vacuum interrupter
JPH02201830A (en) Magnetic driving type electrode for vacuum interrupter
JPH02201832A (en) Magnetic driving type electrode for vacuum interrupter
JP2881794B2 (en) Magnetically driven electrodes for vacuum interrupters
JPH02201838A (en) Magnetic driving type electrode for vacuum interrupter
JPH02201834A (en) Magnetic driving type electrode for vacuum interrupter
JPH02201831A (en) Magnetic driving type electrode for vacuum interrupter
JPH02201835A (en) Magnetic driving type electrode for vacuum interrupter
JP2001052576A (en) Vacuum valve