JPH02201214A - Distance measuring system - Google Patents

Distance measuring system

Info

Publication number
JPH02201214A
JPH02201214A JP1976889A JP1976889A JPH02201214A JP H02201214 A JPH02201214 A JP H02201214A JP 1976889 A JP1976889 A JP 1976889A JP 1976889 A JP1976889 A JP 1976889A JP H02201214 A JPH02201214 A JP H02201214A
Authority
JP
Japan
Prior art keywords
distance
width
real image
lens
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1976889A
Other languages
Japanese (ja)
Inventor
Takashi Kuno
尚 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sokuhan Co Ltd
Original Assignee
Tokyo Sokuhan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sokuhan Co Ltd filed Critical Tokyo Sokuhan Co Ltd
Priority to JP1976889A priority Critical patent/JPH02201214A/en
Publication of JPH02201214A publication Critical patent/JPH02201214A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To enable the measuring of a distance to an object from a lens or an imaging position of the object precisely by making a parallel light beam with a fixed width irradiate to the object to measure a distance from the object detecting a width of a real image of the reflected light. CONSTITUTION:A parallel light beam with a width AB is made to irradiate an object A at a height (ab) positioned at a point separated by a distance Y from a lens position Q and a real image A' with a height a'b' of an image is formed on an imaging surface K by the reflected light thereof. Then, a width of the real image A' of the reflected light is detected to measure a distance from the object A. The object A may be irradiated with two parallel spot-like lights. In other words, as with alternate irradiation of two parallel light beams these real image A' spots are generated alternately in a light receiving sensor, a distance can be calculated by detecting an interval between the two spots with the sensor. Thus, a correct distance can be measured to the object A from a lens or an imaging position of the object A.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、レンズもしくは対R吻の緒謙位置から咳対象
物までの距離t−梢密にJJ足できる光学的、電気的な
#J距方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides an optical and electrical Regarding the distance method.

「従来の技術」 従来の測距方式の代表例として三角#Jtを応用し九も
のがある(書軸名 元手部品の使い方と留意点、発行所
 オプトロニクス社、発行日 昭和60牛2月28日の
第109〜110頁参照〕。
"Conventional technology" There are nine representative examples of conventional distance measurement methods that apply the triangular #Jt (Book name: How to use the main parts and points to note, Publisher: Optronics Co., Ltd., Publication date: February 28, 1985) (See pages 109-110 of Japan).

その原塊を第5図に基づいて説明する。The raw mass will be explained based on FIG. 5.

対象物の一点Pから固定光路21に沿って進む元は固定
I/ンズ22及びハーフミラ−23を通過して接眼レン
ズ24により結till!Ifi25上に橡を結ぶ。
The source that travels along the fixed optical path 21 from one point P on the object passes through the fixed I/lens 22 and half mirror 23 and is condensed by the eyepiece 24! Tie the rope on Ifi25.

一方、対象物の一点Pから測距光路26に沿って進む元
は、ハーフミラ−23から基線長りだけ隔たった所に設
けられ九傾動可能な反射鏡27により反射し、移動レン
ズ28t−通つ九後ハーフiラー23によシ直角に反射
し、接眼レンズ24により結像面25上に像を結ぶ。
On the other hand, the source that travels along the distance measuring optical path 26 from one point P of the object is reflected by a reflecting mirror 27 that is provided at a distance from the half mirror 23 by the base line length and can be tilted nine times, and passes through the movable lens 28t. It is reflected at right angles by the rear half-I mirror 23 and focused on an image plane 25 by the eyepiece 24 .

ここで反射鏡27の傾き角度及びレンズ28の移動型を
[!lすることによシ、固定光路21を通った光によろ
葎と、測距光路26を通つ九元による葎とを一叙させ、
これにより)S−7ξラー23もしくは結像面25から
点Pまでの距JII′Ik求めることができる。
Here, the inclination angle of the reflecting mirror 27 and the movable type of the lens 28 are set to [! By doing so, the light passing through the fixed optical path 21 and the light passing through the distance measuring optical path 26 are described together,
As a result, the distance JII'Ik from the S-7ξ mirror 23 or the imaging plane 25 to the point P can be determined.

jlIJち、/%−7iシー23がら点Pまでの距離s
は 8=L/lanα で求りられる。
jlIJchi, /%-7iC23 Distance s from point P
is determined by 8=L/lanα.

「発明が解決しようとする課題」 しかしながら、上記公知の測距方式にめりては、結像面
25上にてピントを合わすために、反射鏡27を傾動調
整しfcD s移動レンズ28を移動調螢するといった
面倒な操作をしなければならす、l九七のような調整操
作を可能とするための機構が複雑なものとならさるを得
ないという問題点があシ、これを如何(C解決丁べさか
という課題が生じてい九のである。
"Problem to be Solved by the Invention" However, in the above-mentioned known distance measuring method, in order to focus on the image plane 25, the reflecting mirror 27 is tilted and the fcDs moving lens 28 is moved. There is an unavoidable problem that the mechanism to enable adjustment operations such as l97 is complicated, which requires troublesome operations such as adjusting the engine. There are nine problems that need to be solved.

1陳鑓を解決する丸めの手段」 本発明は上記課題を解決するためになされたもので、元
学的狸論を追充することによシ達成されたものでるる。
1. Rounding Means to Solve the Problems of Invention The present invention was made to solve the above-mentioned problem, and was achieved by adding to the Gengaku Raccoon theory.

μUち、請求項1の発明は、一定の巾をもつ平行光l1
illt一対象吻に向けて照射し、その反射光の実家の
巾を検知して対象物との距#llIを測定することを%
像とするものである。
μU, the invention of claim 1 provides parallel light l1 having a certain width.
illt - irradiate the object's snout and measure the distance to the object by detecting the width of the reflected light.
It is a statue.

ま九、請求項2の発明は、21!iの平行するスポット
状ft源を対象物に向けて煕射し、それら夫々の反射光
の実歇スポット点閲の巾tm知して対象物との距離を測
定することを特徴とするものである。
Nine, the invention of claim 2 is 21! It is characterized by emitting i parallel spot-shaped ft sources toward an object, and measuring the distance to the object by determining the actual spot width tm of each reflected light. be.

ま九、好ましい実m態様に工れば、前記反射光による実
像を円m面又は円錐面の母線上に結葎嘔せることを%輩
とするものである。
(9) If constructed in a preferred embodiment, the real image formed by the reflected light will be formed on the generatrix of a circular or conical surface.

「実xa例」 以下、本発明測距方式の堆削及び−実施ガを図面を参照
しつつ説明する。第1図はレンズ位置QからYだけ隔た
った所に位*−rる高さabなる対象物A rc%巾イ
ロなる平行光fjlk照射し、その反射光により結像面
に上に、憚の高さa′vなる!J!葎A″を結はせた一
合を示すものである。
"Example xa" Hereinafter, the excavation and implementation of the distance measuring method of the present invention will be explained with reference to the drawings. Figure 1 shows that parallel light fjlk of width A is irradiated onto an object of height ab located at a distance of Y from lens position Q. The height is a′v! J! This shows a knot of apex A''.

レンズ位1tQから対5rfI!JAtでの距離をYl
 レンズ位&Qから実録A′までの距離をy1対象物A
のft@からの高さをXz94*h’の元軸からの高さ
(以下歇高という)をxl レンズの固1r焦点距離を
fとすれは、M像粂件として次式(1) 、 C2)が
取立する。
From lens position 1tQ vs. 5rfI! The distance in JAt is Yl
The distance from the lens position &Q to the actual record A' is y1 object A
The height from ft@ is the height from the original axis of C2) will collect.

ll Y+、−T       (1) 五:L            (23Y 式(1)、(2)工9 x=(匂−1)X→(を子)−X−(3))’= ’4
CX十X)        C4)式(3)は距111
Y=対する輩高工の関係を示すもので、第2図にみられ
るような二次1組となる。
ll Y+, -T (1) 5:L (23Y Formula (1), (2) Engineering 9 x = (odor - 1)
CX1X) C4) Equation (3) is the distance 111
It shows the relationship between high school and high school for Y=, and it becomes a quadratic set as shown in Figure 2.

故に予め、この−数を満足するような演算処理1路を作
っておけは、鍵高X即ち実像の巾を検知することによっ
てレンズ位1111Qから対象物Aまでの距龜Yt−求
めることができる。
Therefore, if one calculation process is created in advance that satisfies this - number, the distance Yt- from the lens position 1111Q to the object A can be determined by detecting the key height X, that is, the width of the real image. .

次に、式<4) tよ、レンズ位1aIQから結鐵面K
までの紺Myと1#l!^Xとの関係を示すもので、第
3図に与られるように一久−数となる。
Next, equation <4) t, from the lens position 1aIQ to the iron surface K
Until navy blue My and 1#l! It shows the relationship with

そこで、m4図に示すようにYの変化(Ys * Ys
rY1  ・・・)により結隊点に、 、 K、 、 
K、・・・はレンズの固有焦点Fから始まる1<、@p
゛M上に位置することがわかる。故に、式(4)を満足
する直線FM上に、ま九は@綜FMを母線とする円錐面
上に、半導体装置検出素子、例えば平面状もしくは腺状
のPSD(浜松ホトニクス株式費社の曲品名)等の受光
センサを設けてお話、該センサに細微する反射諏の位I
t 例、tは、i 4 図ニオffルFK、 、 FK
、 、 FK、 %ffi*知することIcより距離Y
、 I Y、 l Y、等を求めることができる。
Therefore, as shown in the m4 diagram, the change in Y (Ys * Ys
rY1...) at the uniting point, , K, ,
K,... is 1<, @p starting from the lens's proper focus F
゛It can be seen that it is located on M. Therefore, on the straight line FM that satisfies Equation (4), a semiconductor device detection element, such as a flat or glandular PSD (Hamamatsu Photonics Co., Ltd.'s curve We installed a light-receiving sensor such as product name), and the number of reflections detected by the sensor was
t Example, t is i 4 Figure Nioffle FK, , FK
, , FK, %ffi*distance Y from knowing Ic
, I Y, l Y, etc. can be obtained.

なお、FMを母線とする円錐の頂角の牛角lはβ=90
°−(tan−”\)である。
In addition, the cow angle l of the apex angle of the cone with FM as the generatrix is β = 90
°-(tan-”\).

以上、一定の巾をもつ平行光を対象物跨照射した場合に
つきa明したが、2組の平行するスポット状元鞠を対象
物に照射しても良い。
In the above, a case has been described in which parallel light having a constant width is irradiated across the object, but it is also possible to irradiate the object with two sets of parallel spot-shaped lights.

即ち、平行する2組の元ビームを交互に照射すると、党
元センブにはそれらの*−饋スポットが交互に生ずるか
ら、これら2スポット間の間隔をセンサにより検知する
ことrCよシ距#t−其出できる。
That is, when two sets of parallel source beams are alternately irradiated, those *-feed spots are generated alternately on the source center, so the distance between these two spots can be detected by a sensor, and the distance #t is greater than rC. -I can do it.

本発明によれは例えは、X = 1 w 、 f = 
5 txmの一合、第2図に示すように、Y二6〜15
FJlの範囲で感度良好な測距ができる。もちろん、Y
o範囲を変えるには、f−?Xの値を変える必賛がるる
According to the present invention, for example, X = 1 w, f =
5 txm, as shown in Figure 2, Y26~15
Distance measurement with good sensitivity is possible within the range of FJl. Of course, Y
o To change the range, f-? It is necessary to change the value of X.

「発明の効果」 以上込べ友工うに、本発明に係る611J距方式は特許
請求の範囲に紀赦し2’Cとおシのものとしたため、間
易な方式にもかかわらず、正確な距離の測定を行なうこ
とができるという効果がある。
``Effects of the Invention'' As mentioned above, the 611J distance method according to the present invention is included in the claims as ``2'C'', so although it is a simple method, it is possible to obtain accurate distances. This has the effect of making it possible to perform measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、第2図は測定すべき組繊
Yと諏高Xとの関係を示すグラフ、第3図は嫁高Xと、
レンズから結微点までの距崩yの関係を示すグラフ、第
4図は第1図と同様に本発明の原理説明図、@5図は従
来の測距方式の代表例の原理説明図である。 A・・・対象物、A′・・・*gz X・・・対象物の
元軸からの高さ、X・・・実導の元軸からの高さ(禦高
ン、Q・・・レンズ位置、Y + Yt * YB a
 YB ・・・レンズ位置から対Ji!吻lでの距離、
y・・・レンズ位置から実部までの距龜、K・・・結歇
面、Kl e Km 1 Km・・・lIi!諏点、F
・・・固有焦点、f・・・焦点距離、イー口・・・一定
の巾をもつ平行ft、11Mもしくは2組の平行スボッ
特許出鵬人 jKg測軛株式会社 代表者 ト元。 第 図 f・・・焦点距離 −xhm) Y慣m)
Fig. 1 is an explanatory diagram of the principle of the present invention, Fig. 2 is a graph showing the relationship between the braided fibers Y to be measured and the sudaku height
A graph showing the relationship of distance decay y from the lens to the focal point. Figure 4 is a diagram explaining the principle of the present invention, similar to Figure 1. Figure @5 is a diagram explaining the principle of a typical example of the conventional distance measurement method. be. A...Object, A'...*gz X...Height of the object from the original axis, Position, Y + Yt * YB a
YB... vs. Ji from the lens position! Distance at snout l,
y... Distance from the lens position to the real part, K... Termination surface, Kl e Km 1 Km...lIi! Sudoten, F
... Unique focal point, f... Focal length, E-port... Parallel ft with a certain width, 11M or two sets of parallel subops. Figure f...focal length - xhm) Y habitus)

Claims (1)

【特許請求の範囲】 1、一定の巾をもつ平行光線を対象物に向けて照射し、
その反射光の実像の巾を検知して対象物との距離を測定
することを特徴とする測距方式。 2、2組の平行するスポット状光線を対象物に向けて照
射し、それら夫々の反射光の実像スポット点間の巾を検
知して対象物との距離を測定することを特徴とする測距
方式。 3、実像を円錐面もしくは円錐面の母線上に結像させる
請求項1又は2に記載の測距方式。
[Claims] 1. Irradiating parallel light beams with a certain width toward an object,
A distance measurement method that measures the distance to an object by detecting the width of the real image of the reflected light. 2. Distance measurement characterized by irradiating two sets of parallel spot-shaped light beams toward an object and measuring the distance to the object by detecting the width between the real image spot points of each reflected light. method. 3. The distance measuring method according to claim 1 or 2, wherein the real image is formed on a conical surface or a generatrix of the conical surface.
JP1976889A 1989-01-31 1989-01-31 Distance measuring system Pending JPH02201214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1976889A JPH02201214A (en) 1989-01-31 1989-01-31 Distance measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1976889A JPH02201214A (en) 1989-01-31 1989-01-31 Distance measuring system

Publications (1)

Publication Number Publication Date
JPH02201214A true JPH02201214A (en) 1990-08-09

Family

ID=12008518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1976889A Pending JPH02201214A (en) 1989-01-31 1989-01-31 Distance measuring system

Country Status (1)

Country Link
JP (1) JPH02201214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1022447B1 (en) * 2013-12-05 2016-04-06 Centre De Recherches Metallurgiques Asbl DEVICE FOR FOCUSING A LASER BEAM BY CAMERA (II)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1022447B1 (en) * 2013-12-05 2016-04-06 Centre De Recherches Metallurgiques Asbl DEVICE FOR FOCUSING A LASER BEAM BY CAMERA (II)

Similar Documents

Publication Publication Date Title
US10245683B2 (en) Apparatus and method for beam diagnosis on laser processing optics
CN100491901C (en) Synthetic wave interference nano surface tri-dimensional on-line measuring system and method
JPS63500119A (en) Instruments for measuring surface morphology
US3528748A (en) Alignment of adjustable parts of a structure
CN105333815A (en) Super lateral resolution surface three-dimensional online interference measuring system based on spectral dispersion line scanning
JP2001504592A (en) Distance measuring method and distance measuring device
JPH02201214A (en) Distance measuring system
KR102246791B1 (en) Focusing and leveling device
US4952027A (en) Device for measuring light absorption characteristics of a thin film spread on a liquid surface, including an optical device
US3225644A (en) Apparatus producing interferential test data for measuring and control instruments
JP3833713B2 (en) Fringe deflectometry apparatus and method
GB1190564A (en) Method of and Means for Surface Measurement.
KR102008253B1 (en) Multi channel optical profiler based on interferometer
JPS60253945A (en) Shape measuring instrument
JP3491464B2 (en) Laser beam divergence angle measuring device
JPH0118371B2 (en)
JP2001289619A (en) Surface shape measuring method
JP2544389B2 (en) Lens center thickness measuring device
US4758731A (en) Method and arrangement for aligning, examining and/or measuring two-dimensional objects
US6081333A (en) Bi-lateral shearing interferometer with beam convergence/divergence indication
SU1672206A1 (en) Method of measuring decentering of optical parts and device for effecting same
US20240009761A1 (en) Device and Method for Determining a Focal Point
KR100738387B1 (en) Wavefront measuring devices with off-axis illumination
KR20200053908A (en) Inspection apparatus for surface of optic specimen and controlling method thereof
US4813763A (en) Light beam fluctuation compensating device and method