JPH02200827A - Electroconductive combined filament yarn and production thereof - Google Patents

Electroconductive combined filament yarn and production thereof

Info

Publication number
JPH02200827A
JPH02200827A JP1853089A JP1853089A JPH02200827A JP H02200827 A JPH02200827 A JP H02200827A JP 1853089 A JP1853089 A JP 1853089A JP 1853089 A JP1853089 A JP 1853089A JP H02200827 A JPH02200827 A JP H02200827A
Authority
JP
Japan
Prior art keywords
core
fiber
conductive
yarn
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1853089A
Other languages
Japanese (ja)
Inventor
Hideyuki Mitamura
三田村 秀幸
Fumikazu Yoshida
文和 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP1853089A priority Critical patent/JPH02200827A/en
Publication of JPH02200827A publication Critical patent/JPH02200827A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject combined filament yarn having excellent electroconductivity, yarn properties, hue and dyeability by combining a core- sheath type electroconductive conjugate fiber comprising of sheath part of thermoplastic polymer and core part containing low-melting point metal specified its mixing ratio and shape in length direction and a non-electroconductive fiber. CONSTITUTION:A non-electroconductive fiber is combined with a core-sheath type electroconductive conjugate fiber using metal having melting point lower than the thermoplastic polymer in sheath part as core part in which sectional ratio of the core in cross section of the fiber is 0.2-50% and degree of variability of cross-sectional area of core part in length direction in <=25%, and the core part is substantially continued in length direction. Shrinkage in boiling water of the two fiber are respectively adjusted as <=15%, difference of the shrinkage in boiling water is adjusted as 0-15% and mixed ratio of the core-sheath type electroconductive conjugate fiber is adjusted as 0.25-46wt.%.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、芯鞘型導電性複合繊維を含有し、導電性性能
に優れ糸物性、色相及び染色性に優れた導電性混繊糸に
関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a conductive mixed fiber yarn containing a core-sheath type conductive conjugate fiber and having excellent conductivity and excellent yarn physical properties, hue, and dyeability. .

(従来の技術) 合成繊維、例えばポリエステル系繊維、ポリアミド系繊
維等は導電性が低いため、Wl!擦により静電気が発生
し易く、かかる合成繊維よりなる布帛の使用に際して塵
埃の付着、放電に伴う各種の障害等が発生している。か
かる問題を解決するため繊維製品に導電性繊維を混合す
ることが知られており、導電性繊維として金属繊維、金
属メツキを施した繊維、カーボンブラックおよび/また
は導電性物質を配合した繊維等が提案されている(特開
昭51−11909号公報、特公昭53−44579号
公報、特公昭56−37322号公報、特開昭57−1
93520号公報)。
(Prior Art) Synthetic fibers, such as polyester fibers and polyamide fibers, have low conductivity, so Wl! Static electricity is easily generated due to rubbing, and when using fabrics made of such synthetic fibers, various problems occur due to dust adhesion and discharge. In order to solve this problem, it is known to mix conductive fibers into textile products, and examples of conductive fibers include metal fibers, metal-plated fibers, fibers blended with carbon black and/or conductive substances, etc. It has been proposed (Japanese Patent Publication No. 11909/1982, Japanese Patent Publication No. 44579/1982, Japanese Patent Publication No. 37322/1982, Japanese Patent Application Publication No. 57/1989)
93520).

また、導電性金属酸化物粒子を含有した導電性複合繊維
と非導電性繊維とからなる導電性を有する混繊糸も提案
されている(特公昭61−56334号公報)。
Furthermore, a conductive mixed fiber yarn consisting of a conductive composite fiber containing conductive metal oxide particles and a non-conductive fiber has also been proposed (Japanese Patent Publication No. 56334/1982).

(発明が解決しようとする課H) ところで、前記の特開昭51−11909号公報に記載
されたものは、低融点の金属を芯成分とした導電性の芯
鞘型複合繊維に関するものであるが、その実施例及び第
1図によれば金属は自重で芯成分として紡糸され、した
がって芯成分の面積の変動率はかなり高いものと考えら
れ、しかも芯成分が繊維軸に沿って5cm以上連続して
いればよいとのことから導電性の点でかなり問題かあ多
ものである。
(Problem H to be solved by the invention) By the way, the above-mentioned Japanese Unexamined Patent Application Publication No. 11909/1987 relates to conductive core-sheath type composite fibers containing a low melting point metal as a core component. However, according to the example and Figure 1, the metal is spun as a core component under its own weight, and therefore the rate of variation in the area of the core component is considered to be quite high, and moreover, the core component is continuous for 5 cm or more along the fiber axis. There are quite a few problems in terms of conductivity, since it is fine if the

また、特公昭53−44579号公報に記載されたもの
は、電気伝導性カーボンブラックを全体に実質的に均一
に分散させたものであるため、糸物性、色相および染色
性等の点で種々問題を有し、満足のできるものではなか
った。
Furthermore, since the material described in Japanese Patent Publication No. 53-44579 has electrically conductive carbon black dispersed substantially uniformly throughout, it has various problems in terms of yarn properties, hue, dyeability, etc. and was not satisfactory.

さらにまた、特公昭56−37322号公報に記載され
たものは、カーボンブランクを含有する導電性複合繊維
であり、同じく糸物性、色相および染色性等の点で同じ
く問題があった。
Furthermore, the fiber described in Japanese Patent Publication No. 56-37322 is a conductive conjugate fiber containing a carbon blank, which has similar problems in terms of yarn properties, hue, dyeability, etc.

また、特開昭57−193520号公報に記載されたも
のは、アンチモン化合物を含有する酸化第二錫系微粉末
を配合した熱可塑性重合体よりなる成分を芯成分とした
ものをも含むものであるが、白皮が高くなる反面染色性
の点で問題が生じる。
Furthermore, the material described in JP-A-57-193520 also includes a material whose core component is a thermoplastic polymer blended with stannic oxide fine powder containing an antimony compound. , while the white skin becomes high, problems arise in terms of stainability.

さらに、特公昭61−56334号公報に記載されたも
のは、繊維形成性ポリマーからなる保護層と導電性金属
酸化物粒子を含有する結合材ポリマーとからなる導電層
とが接合されてなる低配向性の導電性複合繊維と高配向
性の非導電性繊維とよりなる導電性を有する混繊糸に関
するものであるが、この混繊糸はカーボンブラック使い
の導電糸に比べ白皮的には改善されるものの導電性複合
繊維の導電層として金属酸化物粒子を用いているために
染色布帛の基布と導電糸の染め差が顕著になると言う染
色性面での問題が生じ、一般衣料用として汎用性のある
ものではなかった。すなわち、金属酸化物粒子を芯に含
めても、導電糸の側面は芯の金属酸化物粒子の影響を受
けて染色性の影響を多大に受ける問題がある。
Furthermore, the method described in Japanese Patent Publication No. 61-56334 is a low-oriented film formed by bonding a protective layer made of a fiber-forming polymer and a conductive layer made of a binder polymer containing conductive metal oxide particles. This paper relates to a conductive mixed yarn consisting of a highly oriented conductive composite fiber and a highly oriented non-conductive fiber, but this mixed yarn has improved whiteness compared to a conductive yarn using carbon black. However, because metal oxide particles are used as the conductive layer of the conductive composite fiber, there is a problem in terms of dyeability that the difference in dyeing between the base fabric of the dyed fabric and the conductive yarn becomes noticeable, so it is not suitable for general clothing. It wasn't versatile. That is, even if metal oxide particles are included in the core, there is a problem in that the side surfaces of the conductive thread are affected by the metal oxide particles in the core and are greatly affected by dyeability.

そこで、本発明は、従来の技術の欠点を解消し、鞘部が
熱可塑性重合体で芯部が低融点金属からなる芯鞘型導電
性複合繊維と非導電性繊維とからなる導電性混繊糸を提
供するものである。
Therefore, the present invention solves the drawbacks of the conventional technology and provides a conductive mixed fiber consisting of a core-sheath type conductive composite fiber whose sheath part is made of a thermoplastic polymer and whose core part is made of a low melting point metal, and a non-conductive fiber. It provides thread.

(課題を解決するための手段) 本発明は、前記の課題を解決するために次の手段をとる
ものである。すなわち、本発明は、鞘部が熱可塑性重合
体からなり芯部が該熱可塑性重合体の融点より低い融点
を有する金属からなる芯鞘型導電性複合繊維と、非導電
性繊維とからなる混繊糸であって、前記芯鞘型導電性複
合繊維の横断面における該芯部の面積割合が0.2%〜
50%であり該芯部の糸の長平方向における面積の変動
率が25%以下であって該芯部が糸の長平方向に実質的
につながっており、前記混繊糸における該芯鞘型導電性
複合繊維の割合が0.25重量%〜46重量%であり、
該非導電性繊維と該芯鞘型導電性複合繊維の沸水収縮率
がともに15%以下で両者の沸水収縮率の差が0%〜1
5%の範囲にあることを特徴とする導電性混繊糸、及び
熱可塑性重合体を紡糸ノズルの鞘部に供給するとともに
該熱可塑性重合体の融点より低い融点の溶融金属を該紡
糸ノズルの芯部に、該鞘部に対する該芯部の面積割合が
0.2%〜50%となるように加圧供給して芯鞘型導電
性複合繊維を紡糸しついで芯成分をその融点以上に加熱
した後少なくとも2.5倍以上の延伸倍率で熱延伸して
環水収縮率15%以下とし、さらに得られた芯鞘型導電
性複合繊維を沸水収縮率差が0%〜15%となるように
湧水収縮率15%以下の非導電性繊維と組合わせて前者
と後者との重量割合(%)を0.25+99.75〜4
6:54になるべく混繊することを特−徴とする導電性
混繊糸の製造法を、前記課題を解決するための手段とす
る。ものである。
(Means for Solving the Problems) The present invention takes the following means to solve the above problems. That is, the present invention provides a composite fiber comprising a core-sheath type conductive composite fiber in which the sheath part is made of a thermoplastic polymer and the core part is made of a metal having a melting point lower than the melting point of the thermoplastic polymer, and a non-conductive fiber. The fiber yarn has an area ratio of the core in a cross section of the core-sheath type conductive composite fiber of 0.2% to 0.2%.
50%, the variation rate of the area of the core in the longitudinal direction of the yarn is 25% or less, the core is substantially connected in the longitudinal direction of the yarn, and the core-sheath type conductive conductive material in the mixed fiber yarn is The proportion of the composite fiber is 0.25% to 46% by weight,
Both the non-conductive fiber and the core-sheath type conductive composite fiber have a boiling water shrinkage rate of 15% or less, and the difference in boiling water shrinkage rate between the two is 0% to 1.
A conductive mixed yarn characterized in that the content of the conductive fiber is in the range of 5%, and a thermoplastic polymer are supplied to the sheath of the spinning nozzle, and a molten metal having a melting point lower than that of the thermoplastic polymer is supplied to the spinning nozzle. A core-sheath type conductive composite fiber is spun by supplying pressure to the core so that the area ratio of the core to the sheath is 0.2% to 50%, and heating the core component to a temperature above its melting point. After that, it is hot-stretched at a draw ratio of at least 2.5 times or more so that the ring water shrinkage rate is 15% or less, and the obtained core-sheath type conductive composite fiber is drawn so that the difference in boiling water shrinkage rate is 0% to 15%. In combination with non-conductive fibers having a spring water shrinkage rate of 15% or less, the weight ratio (%) of the former and the latter is 0.25 + 99.75 to 4.
A method for producing a conductive mixed fiber yarn characterized by mixing the fibers as much as 6:54 is a means for solving the above problem. It is something.

以下に、本発明の詳細な説明する。The present invention will be explained in detail below.

まず、本発明で用いる芯鞘型導電性複合繊維の鞘部を構
成する熱可塑性重合体は、溶融紡糸可能な繊維形成重合
体であればよい、かかる重合体の具体例としてはポリエ
チレンテレフタレートやポリブチレンテレフタレートの
如きポリエステル、ナイロン6やナイロン66の如きポ
リアミド、ポリエチレンやポリプロピレンの如きポリオ
レフィン等、またはこれ等を主成分とする重合体等を挙
げることができる。
First, the thermoplastic polymer constituting the sheath of the core-sheath type conductive composite fiber used in the present invention may be any fiber-forming polymer that can be melt-spun.Specific examples of such polymers include polyethylene terephthalate and polyethylene terephthalate. Examples include polyesters such as butylene terephthalate, polyamides such as nylon 6 and nylon 66, polyolefins such as polyethylene and polypropylene, and polymers containing these as main components.

またかかる鞘部の熱可塑性重合体には必要に応じて任意
の添加剤例えば艶消剤、着色剤、酸化安定剤を含有させ
てもよい。
Further, the thermoplastic polymer of the sheath portion may contain arbitrary additives such as a matting agent, a coloring agent, and an oxidation stabilizer, if necessary.

特に、導電性複合繊維の白色度、染色性面を考えると熱
可塑性重合体としては二酸化チタンを1%〜3%含有し
たポリエステルおよびナイロンが好ましい。
In particular, considering the whiteness and dyeability of the conductive composite fiber, polyester and nylon containing 1% to 3% titanium dioxide are preferred as thermoplastic polymers.

また本発明で用いる芯鞘型導電性基合繊維の芯部を構成
する低融点金属として具体的にはインジウム(In)、
セレン(Ss)、スズ(Sn)、ビスマス(Bi)、鉛
(Pb)、カドミウム(Cd)等の金属およびそれらの
金属からなる二元系、三元系、四元系等の合金があり、
合金の具体例としては、Bi/Sn、 Bi/In5S
n/Pb 、、B115n/In、 Bi/Pb/Cd
Further, specific examples of the low melting point metal constituting the core of the core/sheath type conductive base fiber used in the present invention include indium (In),
There are metals such as selenium (Ss), tin (Sn), bismuth (Bi), lead (Pb), and cadmium (Cd), as well as binary, ternary, and quaternary alloys made of these metals.
Specific examples of alloys include Bi/Sn, Bi/In5S
n/Pb,, B115n/In, Bi/Pb/Cd
.

Bi/Pb/Sn、 Bi/S+/In/Pb、 Bi
/Sn/Pb/Cd 、 Bi/Sn/■口/Pb/C
d等が挙げられる。
Bi/Pb/Sn, Bi/S+/In/Pb, Bi
/Sn/Pb/Cd, Bi/Sn/■mouth/Pb/C
Examples include d.

つぎに、芯部の金属の融点は鞘部の熱可塑性重合体の融
点より低くなければならない。
Next, the melting point of the metal in the core must be lower than the melting point of the thermoplastic polymer in the sheath.

これは、複合紡糸時に芯部となる金属を均一に溶融した
状態で供給することができず、その結果望ましい導電性
を得にくいばかりか、また、糸質的にも不十分なものと
なるためである。
This is because the metal that forms the core cannot be supplied in a uniformly molten state during composite spinning, and as a result, it is not only difficult to obtain the desired conductivity, but also the quality of the thread is insufficient. It is.

そして、芯部の金属の融点Mcは、鞘部の熱可塑性重合
体の融点より低くしかも70℃≦Mc≦130℃の範囲
にあるのが好ましい、130℃をこえると、芯鞘型導電
性複合繊維の延伸が困難となり、他方Mcが70℃より
小さくなると紡糸時における芯部金属の固化かしにくく
なることがら相平衡的に不安定、な状態になるので好ま
しくない、また、融点の不 測定は、ダ差走査熱量測定(OSC)による。
The melting point Mc of the metal in the core is preferably lower than the melting point of the thermoplastic polymer in the sheath and in the range of 70°C≦Mc≦130°C. It becomes difficult to draw the fiber, and on the other hand, if Mc is smaller than 70°C, it becomes difficult to solidify the core metal during spinning, resulting in an unstable phase equilibrium state, which is not preferable, and the melting point cannot be measured. is by differential scanning calorimetry (OSC).

さらに、本発明で用いる芯鞘型導電性複合繊維において
、該芯鞘型導電性複・合繊維0横断面における芯部の占
める面積割合、長さ方向の変動率および連続性等は複合
繊維の導電性、糸物性、色相および染色性等を太き(左
右するため、芯部の面積割合は0.2%〜50%である
が、糸物性、染色性等を考慮すると0.5%〜40%、
さらに0.5%〜30%が好ましい、芯部面積の長さ方
向の変動率は複合繊維の糸物性に影響することから25
%以下が必要で、特に10%以下にすることが好ましい
Furthermore, in the core-sheath type conductive composite fiber used in the present invention, the area ratio occupied by the core in the cross section of the core-sheath type conductive composite/synthetic fiber, the rate of variation in the length direction, the continuity, etc. of the composite fiber The area ratio of the core is 0.2% to 50%, but considering the thread properties, dyeability, etc., it is 0.5% to 40%,
Furthermore, the variation rate in the longitudinal direction of the core area, which is preferably 0.5% to 30%, is 25% because it affects the yarn physical properties of the composite fiber.
% or less, and particularly preferably 10% or less.

また、芯部は糸の長手方向に実質的につながっていなけ
ればならない、ここで、実質的につながりているとは、
1m当りの不連続部の合計が5cm以下であることを意
味する。
In addition, the core must be substantially connected in the longitudinal direction of the thread, where "substantially connected" means:
This means that the total number of discontinuities per meter is 5 cm or less.

In当りの不連続部の合計が51以下であれば導電性能
的には問題ないが、tel以下が好ましい。
If the total number of discontinuous parts per In is 51 or less, there is no problem in electrical conductivity, but it is preferably tel or less.

1m当りの不連続部が本発明の51を越えると、導電性
能が低下するばかりか、糸物性に斑の多い糸となるので
好ましくない。
If the number of discontinuous portions per meter exceeds 51 according to the present invention, the conductive performance will not only deteriorate, but also the yarn will have uneven physical properties, which is not preferable.

本発明の導電性混繊糸は、前述の芯鞘型導電性複合#a
維と非導電性繊維とからなる混繊糸であるが、この両者
の湧水収縮率の値、及び両者の差が本発明において重要
であり、両者の湧水収縮率はともに15%以下好ましく
は11%以下にする。そして両者の湧水収縮率の差は、
0%〜15%の範囲好ましくは0%〜11%の範囲にあ
り、好ましくは非導電性繊維の湧水収縮率の方が高い、
芯鞘型導電性複合繊維の湧水収縮率が15%をこえると
金属が均一に収縮せず、したがって金属の形態がくずさ
れ、導電性能が低下し、糸物性の低下につながるので好
ましくない、他方、非導電性繊維の湧水収縮率が15%
をこえると布帛の後加工時の形態安定性が悪くなるので
好ましくない。
The conductive mixed fiber yarn of the present invention has the above-mentioned core-sheath type conductive composite #a
It is a mixed fiber yarn consisting of fibers and non-conductive fibers, and the spring water shrinkage rates of the two and the difference between the two are important in the present invention, and the spring water shrinkage rates of both are preferably 15% or less. should be 11% or less. And the difference in spring water contraction rate between the two is,
In the range of 0% to 15%, preferably in the range of 0% to 11%, preferably the spring water shrinkage rate of the non-conductive fiber is higher.
If the spring water shrinkage rate of the core-sheath type conductive composite fiber exceeds 15%, the metal will not shrink uniformly, and the shape of the metal will be destroyed, the conductive performance will decrease, and the yarn properties will deteriorate, which is not preferable. On the other hand, the spring water shrinkage rate of non-conductive fibers is 15%.
If it exceeds , the shape stability of the fabric during post-processing will deteriorate, which is not preferable.

さらに、湧水収縮率の差も0%〜15%の範囲にする。Furthermore, the difference in shrinkage rate of spring water is also set in the range of 0% to 15%.

15%をこえると染色布帛の美観が著しく損なわれるの
で好ましくない、好ましくは0%〜11%とする。また
、非導電性繊維の湧水収縮率の方が、芯鞘型導電性複合
繊維のそれより大きいことが好ましい。
If it exceeds 15%, the beauty of the dyed fabric will be significantly impaired, which is undesirable, and preferably from 0% to 11%. Further, it is preferable that the spring water shrinkage rate of the non-conductive fiber is greater than that of the core-sheath type conductive composite fiber.

本発明の混繊糸を構成する非導電性繊維を形成する重合
体としては、芯鞘型導電性複合繊維の鞘部を形成する重
合体と同一、同種又は類似のものであることが、染色性
および糸物性等の観点から好適である0例えばナイロン
6、ナイロン66、ナイロン46、ナイロン610など
ポリアミド同志の組合せ、ポリエチレンテレフタレート
、変性ポリエチレンテレフタレート、ポリエチレンテレ
フタレートなどのポリエステル同志の組合せが好適であ
る。
The polymer forming the non-conductive fibers constituting the mixed yarn of the present invention must be the same, the same kind, or similar to the polymer forming the sheath of the core-sheath type conductive composite fiber. For example, combinations of polyamides such as nylon 6, nylon 66, nylon 46, and nylon 610, and combinations of polyesters such as polyethylene terephthalate, modified polyethylene terephthalate, and polyethylene terephthalate are preferred from the viewpoint of properties and yarn properties.

また、導電性混繊糸における芯鞘型導電性複合繊維の割
合は、0.25重量%〜46重量%である。なお、容積
比でいえば0.1%〜30%が好ましい。
Further, the proportion of the core-sheath type conductive composite fiber in the conductive mixed yarn is 0.25% by weight to 46% by weight. In addition, in terms of volume ratio, 0.1% to 30% is preferable.

0.25重量%未満になると導電性能の点から好ましく
なく、他方46重量%をこえると糸物性、染色性の点で
好ましくない。
If it is less than 0.25% by weight, it is unfavorable in terms of electrical conductivity, while if it exceeds 46% by weight, it is unfavorable in terms of yarn physical properties and dyeability.

さらに、本発明における混繊の状態は、合糸、合撚、流
体交絡、電気混繊、機械混繊による状態を意味する。い
ずれにしても両者が分離しないよう適当な手段で一体化
することが望ましい0例えばそのために加熱することや
、エアジェツトなどによって交絡させることが有効であ
る。この目的のための撚数は10回/m以上特に20〜
500回/m程度が好適である。同様に交絡数はlO個
個所型以上、特に20〜100個所/m程度が好適であ
る。
Furthermore, the state of mixed fibers in the present invention means a state of yarn doubling, twisting, fluid entanglement, electric mixing, and mechanical mixing. In any case, it is desirable to integrate them by appropriate means so that they do not separate; for example, it is effective to heat them or entangle them using air jets. The number of twists for this purpose is 10 twists/m or more, especially 20~
Approximately 500 times/m is suitable. Similarly, the number of entanglements is preferably 10 or more, particularly about 20 to 100/m.

また合繊の一体化を強めるために、適当な接着剤で、繊
維を相互に接着させることが有効である。
Furthermore, in order to strengthen the integration of synthetic fibers, it is effective to bond the fibers together using a suitable adhesive.

この様な接着は通常の方法によって行うことができ特に
限定するものではない、芯鞘型導電性複合繊維と非導電
性繊維との混繊比率や夫々の繊度、繊維を構成する単繊
維の本数などは特に限定されず、使用目的に応じて任意
に選べばよい、芯鞘型導電性複合繊維の繊度としては例
えば5〜100デニール、構成フィラメント数は1〜3
0本程度が、同様に非導電性繊維の繊度としては5〜3
00デニ一ル程度、構成フィラメント数は1〜100本
程度が好適なことが多い。
Such adhesion can be done by a normal method, and there are no particular limitations. The fineness of the core-sheath type conductive composite fiber is, for example, 5 to 100 deniers, and the number of constituent filaments is 1 to 3.
Similarly, the fineness of non-conductive fibers is about 5 to 3.
It is often preferable that the filament has a diameter of about 0.00 denier and the number of constituent filaments is about 1 to 100.

次に本発明の導電性混繊糸を製造する方法を図面を用い
て具体的に説明する。第1図、第2図および第3図は本
発明の導電性混繊糸を製造するための装置の一実施1!
様例の概略断面図である。第1図において溶融タンク5
で溶融した金属をギヤーポンプ4で溶融タンク6に・移
送し、溶融タンク6のレベルを一定にコントロールする
Next, the method for manufacturing the conductive mixed fiber yarn of the present invention will be specifically explained using the drawings. FIGS. 1, 2, and 3 show one embodiment of the apparatus for manufacturing the conductive mixed fiber yarn of the present invention!
It is a schematic sectional view of an example. In Figure 1, the melting tank 5
The molten metal is transferred to a melting tank 6 by a gear pump 4, and the level of the melting tank 6 is controlled to be constant.

次に制御回路3、パワーアンプ2および電気制御パルプ
1でコントロールされた0、1〜10kg/cj・Gの
一定圧力の不活性ガス10で溶融タンク5.6を加圧し
、一定量の溶融金属12を紡糸ノズル8に供給し、金属
より融点が高い熱可塑性重合体と芯鞘比が0.2:99
.8〜50 : 5Gとなるように複合し、導電性複合
繊維9を作製する0本発明における紡糸時の紡速は最終
糸質面を考えると600〜2000 m7分の範囲が好
ましい、芯鞘型導電性繊19は、7ルチフィラメント糸
又はモノフィラメントの形で紡糸され船が、この芯鞘型
導電性複合ll1w19はローラー13を経て、予熱ロ
ーラー14に導かれ、加熱延伸後、加熱器15を経゛て
混繊用ローラー16に送られる。導電性複合繊維の延伸
は通常の延伸方法を適用できるが、延伸前に加熱ローラ
等により芯成分を融点以上、に加熱することが必要で、
この工程が付与されないで延伸すると芯成分は著しく断
線し、糸質に斑が生じるので好ましくない、延伸倍率は
2.5倍以上好ましくは2.7倍〜4.0倍にする。
Next, the melting tank 5.6 is pressurized with an inert gas 10 at a constant pressure of 0, 1 to 10 kg/cj・G controlled by the control circuit 3, power amplifier 2, and electric control pulp 1, and a constant amount of molten metal is 12 is supplied to the spinning nozzle 8, and a thermoplastic polymer having a higher melting point than metal and a core/sheath ratio of 0.2:99 are supplied.
.. 8 to 50: Composite to give 5G to produce conductive composite fiber 90 The spinning speed during spinning in the present invention is preferably in the range of 600 to 2000 m7 min considering the final yarn quality, core-sheath type. The conductive fiber 19 is spun in the form of 7 multifilament yarns or monofilaments. The fibers are then sent to a mixing roller 16. Normal stretching methods can be used to stretch conductive composite fibers, but it is necessary to heat the core component to a temperature above its melting point using a heating roller or the like before stretching.
If the fiber is stretched without this step, the core component will be significantly broken and unevenness will occur in the yarn quality, which is undesirable.The stretching ratio should be 2.5 times or more, preferably 2.7 times to 4.0 times.

また、加熱器15の温度は130℃以上好ましくは15
0〜200℃とする。
Further, the temperature of the heater 15 is 130°C or higher, preferably 15°C.
The temperature shall be 0 to 200°C.

他方、非導電性繊維18はローラー17を経て合糸用ロ
ーラー16に送られ、ここで延伸された芯鞘型導電性複
合繊維と99.75:0.25〜54246の重量比で
混繊されて、更にリング撚糸法19によって加熱されて
2種の繊維は一体化される。
On the other hand, the non-conductive fiber 18 is sent to the roller 16 for doubling through the roller 17, where it is mixed with the drawn core-sheath type conductive composite fiber at a weight ratio of 99.75:0.25 to 54246. Then, the two types of fibers are further heated by a ring twisting method 19 to integrate the two types of fibers.

(実施例) 以下実施例により本発明を説明するが、本発明は実施例
に限定されるものではない、なお実施例中の各特性は以
下に示す方法で測定した。
(Example) The present invention will be described below with reference to Examples, but the present invention is not limited to the Examples. Each characteristic in the Examples was measured by the method shown below.

■ 強伸度は引張り試験機により測定した・強度(g/
d)は100%/分の速度で伸長した時の切断強度であ
る。
■Strength and elongation were measured using a tensile tester.・Strength (g/
d) is the cutting strength when elongated at a rate of 100%/min.

・伸度(%)は100%/分の速度で伸長した時の切断
強度である。
- Elongation (%) is the cutting strength when elongated at a rate of 100%/min.

■ 芯成分の混率 光学顕微鏡で観察した複合繊維全断面積に対する面積割
合(%)である。
■ Mixing ratio of core component This is the area ratio (%) to the total cross-sectional area of the composite fiber observed with an optical microscope.

■ 芯成分の連続部長 複合繊維の側面を光学顕微鏡で観察した1m当りの合計
長さ(1)である。
(2) Continuous length of the core component This is the total length (1) per 1 m of the side surface of the composite fiber observed with an optical microscope.

■ 電気比抵抗 25℃、65%R11において混繊側面と導電性混繊糸
などにより金属と接続し、IOVの直流電圧を印加して
測定した(Ω・1、糸長5C1)。
(2) Electrical specific resistance Measured by connecting the side surface of the mixed fiber to a metal using a conductive mixed fiber yarn at 25° C. and 65% R11, and applying a DC voltage of IOV (Ω·1, yarn length 5C1).

■ 摩擦帯電電荷量 ポリエステル加工糸使い白色ツイルに混繊糸および合撚
糸を縫込み(1本/10■)、20℃、30%■でJI
S L−1094−1980法により測定した(μC/
が)。
■ Triboelectric charge amount Mixed fiber yarn and plied yarn are sewn into white twill using processed polyester yarn (1 thread/10 ■), JI at 20℃, 30%■
Measured by SL-1094-1980 method (μC/
but).

■ 染色性 ポリエステル加工糸使い白色ツイルに混繊糸および合撚
糸を縫込み(1本/10m)、分散染料にて下記条件下
で染色し、染色性の目視で、測定した。
■ Dyeability Mixed fiber yarn and plied yarn were sewn into white twill using processed polyester yarn (1 yarn/10m), and dyed with disperse dye under the following conditions, and the dyeability was visually measured.

Dianix  Blue  EC−w  2χ 01
1f130℃×60 ■  色  相 混繊糸および合撚糸をポリプロピレン製袋(15■X1
5−X3m)に詰めて色差計で測色したL値、a値、b
値である。
Dianix Blue EC-w 2χ 01
1 f130℃
5-X3m) and measured with a color difference meter. L value, a value, b
It is a value.

実施例−■ 〔η)−0,85、酸化チタンを2%含有したポリエチ
レンテレフタレートを鞘成分としく融点258℃)、融
点が78.8℃の合金(ビスマス/スズ/インジウム系
)を第1図に示した装置を用いて溶融、加圧(N富ガス
、0.40kg/cj) L、第2図に示した複合ノズ
ルに供給し、紡糸温度285°C紡速700m/分で複
合紡糸した後、予熱ローラー(85℃)、加熱器(15
0℃)を備えた延伸機で2.5倍延伸した。
Example-■ [η)-0.85, polyethylene terephthalate containing 2% titanium oxide as a sheath component and an alloy (bismuth/tin/indium system) with a melting point of 78.8°C) was used as the first Using the equipment shown in the figure, melt and pressurize (N-rich gas, 0.40 kg/cj) L, and supply it to the composite nozzle shown in Figure 2, and perform composite spinning at a spinning temperature of 285°C and a spinning speed of 700 m/min. After that, use a preheating roller (85℃) and a heater (15℃).
The film was stretched 2.5 times using a stretching machine equipped with a temperature of 0°C.

得られた複合繊維のデニールは18d(モノフィラメン
ト)で、強度は3.1g/dで伸度は38%であった。
The resulting composite fiber had a denier of 18 d (monofilament), a strength of 3.1 g/d, and an elongation of 38%.

尚、複合繊維横断面における芯部の占める面積割合は1
0.0%で、芯部の長さ方向1m当りの不連続部の合計
は0.20であった。しかも、芯部の面積の変動率は2
%であった。
In addition, the area ratio occupied by the core in the cross section of the composite fiber is 1
At 0.0%, the total number of discontinuities per 1 m of the core length was 0.20. Moreover, the rate of variation in the area of the core is 2
%Met.

次に第3図に示した方法で、上記導電性複合繊維と30
デニール15フイラメント、強度4.8g/d。
Next, by the method shown in FIG.
Denier 15 filament, strength 4.8g/d.

沸水収縮率8%のポリエチレンテレフタレート(酸化チ
タン2%含有)の延伸糸(非導電性)と撚数50T/M
で合撚し混繊糸をえた。
Drawn yarn (non-conductive) of polyethylene terephthalate (containing 2% titanium oxide) with boiling water shrinkage rate of 8% and number of twists of 50T/M
The yarn was combined and twisted to obtain a mixed yarn.

比較例−1 実施例−1と同様の条件で複合紡糸、延伸をした(デニ
ール15d1強度4 、5g/d 、伸度40%、芯部
の占める面積割合0.1%、面積変動率33%、沸水収
縮率8%、芯部の長さ方向1m当りの不連続部の合計は
10C11)芯鞘型導電性複合繊維を用い、実施例−1
に示した条件下で実施例1と同し非導電性繊維と重量%
で合撚し導電性混繊糸を得た。
Comparative Example-1 Composite spinning and drawing were carried out under the same conditions as in Example-1 (denier 15 d1 strength 4.5 g/d, elongation 40%, area ratio occupied by core 0.1%, area variation rate 33%) , the boiling water shrinkage rate is 8%, and the total number of discontinuous parts per 1 m in the length direction of the core is 10C11) Using a core-sheath type conductive composite fiber, Example-1
Same as Example 1 under the conditions shown in Example 1 with non-conductive fiber and weight%
A conductive mixed fiber yarn was obtained by twisting and twisting.

比較例−2 実施例−1と同様の条件で複合紡糸、延伸をして得られ
た導電性複合繊維(デニール30d、強度2.3g/d
、伸度25%芯部の占める面積割合は65%、面積変動
率8%、芯部の長さ方向1m当りの不連続部の合計はO
,,5cm)を用い、実施例−1に示した条件下で非導
電性繊維と50重量%合撚し、混繊糸を得た。実施例−
1、比較例−1および比較例−2から得られた混繊糸の
特性を第1表に各々示した。
Comparative Example-2 Conductive composite fiber obtained by composite spinning and drawing under the same conditions as Example-1 (denier 30 d, strength 2.3 g/d
, the elongation is 25%, the area ratio occupied by the core is 65%, the area variation rate is 8%, the total number of discontinuous parts per 1 m in the length direction of the core is O
,, 5 cm) and was twisted with 50% by weight of non-conductive fibers under the conditions shown in Example 1 to obtain a mixed fiber yarn. Example-
1. The properties of the mixed fiber yarns obtained from Comparative Example-1 and Comparative Example-2 are shown in Table 1.

第1表 農洒−15刈0”  76.3−0.91.0    
’第1表中で比較例−1は芯鞘型複合繊維中の芯部合金
が少ないために色相、染色製は良いが導電性が非常に低
い、他方、比較例−2は芯部合金が多いため導電性があ
るものの色相および染色性がw4Mに悪い、これに対し
て本発明の実施例−1のものは好ましい導電性と色相を
有し、しかもすぐれた染色性を有していた。
Table 1 Agriculture - 15 mowing 0" 76.3 - 0.91.0
'In Table 1, Comparative Example-1 has a small amount of core alloy in the core-sheath type composite fiber, so the hue and dyeing are good, but the conductivity is very low. Because of the large amount, although it has conductivity, the hue and dyeability are poor compared to w4M. In contrast, the material of Example 1 of the present invention had favorable conductivity and hue, and also had excellent dyeability.

実施例−2 実施例−1と同様な条件でイロン6を鞘部とした導電性
複合繊維(デニール6d、強度2 g/d、伸度50%
、芯部の占める面積割合は8%、面積変動率3%、清水
収縮率8%、・芯部の長さ方向1m当りの不連続部の合
計は0.5CI)を用いて24デニール/4フイラメン
ト、強度3g/d、沸水収縮重水収縮率ナイロン6と実
施例−1同様に20重量%合撚し混繊糸を得た。この混
繊糸と75デニール/26フイラメント(酸化チタン0
.5%含有)ポリエチレンテレフタレート延伸糸2木七
を撚数150丁/Mで合撚した。
Example 2 Conductive composite fibers with iron 6 sheathed under the same conditions as Example 1 (denier 6d, strength 2 g/d, elongation 50%)
, the area ratio occupied by the core is 8%, the area variation rate is 3%, the fresh water shrinkage rate is 8%, and the total discontinuous part per 1 m of the core length is 0.5 CI), and 24 denier / 4 A filament having a strength of 3 g/d and boiling water shrinkage and heavy water shrinkage rate of nylon 6 was combined and twisted at 20% by weight in the same manner as in Example 1 to obtain a mixed fiber yarn. This blended yarn and 75 denier/26 filament (0 titanium oxide)
.. (containing 5%) polyethylene terephthalate drawn yarn 2 Kishichi was combined and twisted at a twist number of 150 twists/M.

従来例1 ナイロン6使い市販の導電性繊維(導電層:カーボン・
ブラック)を用い実施例−2同様にして合撚糸を得た。
Conventional example 1 Commercially available conductive fiber using nylon 6 (conductive layer: carbon
A plied and twisted yarn was obtained in the same manner as in Example 2 using (black).

従来例2 ナイロン6使い市販の導電性繊維(導電層:金属化合物
を用い実施例−2と同様にして合撚糸を得た。実施例−
2、従来例1および従来例2で用いられた導電性混繊糸
の特性を第2表に、また実施例−2、従来例1および従
来例2から得られた合撚糸をポリエステル加工糸使い白
色ツイルに縫込んだ布帛の導電性および染色性を第3表
に示した。
Conventional Example 2 A plied and twisted yarn was obtained in the same manner as in Example-2 using commercially available conductive fibers (conductive layer: metal compound) using nylon 6. Example-
2. Table 2 shows the characteristics of the conductive mixed fiber yarns used in Conventional Example 1 and Conventional Example 2, and the characteristics of the twisted yarns obtained from Example-2, Conventional Example 1 and Conventional Example 2 using polyester processed yarn. Table 3 shows the conductivity and dyeability of the fabric sewn into the white twill.

第2表 従来例1 24d/4f 1.8  150 140’  43.4−1.13.7 第3表 従来例1 2.0 基布との差顕著、黒筋 第2表、第3表から、従来例1は導電性が良いものの、
強度が低く伸度が高すぎるなど糸質が悪(、布帛°の色
相(染色後)も悪かった。従来例2は、伸度が高いなど
糸品質が悪く、導電性も悪かった。実施例−・2は厚電
性良好で糸品質、色相も良好であった。
Table 2 Conventional Example 1 24d/4f 1.8 150 140' 43.4-1.13.7 Table 3 Conventional Example 1 2.0 Significant difference from base fabric, black streaks From Tables 2 and 3 Although conventional example 1 has good conductivity,
The yarn quality was poor, such as low strength and too high elongation (and the hue of the fabric (after dyeing) was also poor. Conventional Example 2 had poor yarn quality such as high elongation, and poor conductivity. Example -・2 had good thickness conductivity and good yarn quality and hue.

実施例−3 溶融合金の供給圧のみ一変更し、他は実施例−1と同様
の方法で°複合紡糸、延伸をした。その後得られた芯鞘
型導電性複合繊維を実施例−1に示した方法で非導電性
tsIlと合撚し混繊糸を得た。
Example 3 Composite spinning and drawing were carried out in the same manner as in Example 1 except that only the supply pressure of the molten alloy was changed. Thereafter, the obtained core-sheath type conductive composite fiber was combined and twisted with non-conductive tsIl by the method shown in Example 1 to obtain a mixed yarn.

それぞれの染色特性を第4表に示した。The staining properties of each are shown in Table 4.

本発明の領域からはずれると、染色物の目ムキ程度は著
しく悪化する。しかし本発明の領域をすべて満足するも
のは、染色物の目ムキがなく、すぐれた染色性を有した
If it deviates from the range of the present invention, the degree of eye peeling of the dyed product will deteriorate significantly. However, those that satisfied all the requirements of the present invention had no unevenness in the dyed product and had excellent dyeing properties.

(発明の効果) 本発明の導電性混繊糸は低融点金属からなる芯部の混率
および長さ方向の形態を十分制御した芯鞘型導電性複合
繊維と非導電性繊維との混線からなるもので、その結果
導電性能はもちろん糸物性、色相、染色性面ですぐれた
特質を有しており、本発明の導電性混繊糸を用いて帯電
防止作業衣、ユニフォーム、カーペット、カーシート、
電磁波シールド材としての利用が可能である。
(Effects of the Invention) The conductive mixed fiber yarn of the present invention is made of a mixture of core-sheath type conductive composite fibers and non-conductive fibers in which the mixture ratio of the core made of a low-melting point metal and the shape in the length direction are sufficiently controlled. As a result, it has excellent properties in terms of not only conductive performance but also yarn physical properties, hue, and dyeability.The conductive mixed fiber yarn of the present invention can be used to produce antistatic work clothes, uniforms, carpets, car seats,
It can be used as an electromagnetic shielding material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で用いる芯鞘型導電性複合繊維を製造す
る際の溶融金属の供給装置の一実施態欅例の概略断面図
で、第2図は第1図に示した装置に用いられる複合化ノ
ズルの概略断面図であり、第3図は導電性複合繊維と非
導電性繊維との混繊化装置の一実施態様例の概略断面図
である。 電気制御パルプ、 制御回路、 溶融タンク、 圧力計、 導電性複合繊維、 熱可塑性重合体、 ローラー 加熱器、 ローラー スピンドル、 パワーアンプ ギヤーポンプ 溶融タンク 複合化ノズル 不活性ガス 溶融金属 予熱ローラー ローフ− 非導電性繊維
FIG. 1 is a schematic cross-sectional view of an embodiment of a molten metal supply device used in the production of core-sheath type conductive composite fibers used in the present invention, and FIG. FIG. 3 is a schematic cross-sectional view of an embodiment of a device for mixing conductive composite fibers and non-conductive fibers. Electric control pulp, control circuit, melting tank, pressure gauge, conductive composite fiber, thermoplastic polymer, roller heater, roller spindle, power amplifier gear pump melting tank composite nozzle inert gas molten metal preheating roller loaf - non-conductive fiber

Claims (1)

【特許請求の範囲】 1、鞘部が熱可塑性重合体からなり芯部が該熱可塑性重
合体の融点より低い融点を有する金属からなる芯鞘型導
電性複合繊維と、非導電性繊維とからなる混繊糸であっ
て、前記芯鞘型導電性複合繊維の横断面における該芯部
の面積割合が0.2%〜50%であり該芯部の糸の長手
方向における面積の変動率が25%以下であって該芯部
が糸の長手方向に実質的につながっており、前記混繊糸
における該芯鞘型導電性複合繊維の割合が0.25重量
%〜46重量%であり、該非導電性繊維と該芯鞘型導電
性複合繊維の沸水収縮率がともに15%以下で両者の沸
水収縮率の差が0%〜15%の範囲にあることを特徴と
する導電性混繊糸。 2、熱可塑性重合体を紡糸ノズルの鞘部に供給するとと
もに該熱可塑性重合体の融点より低い融点の溶融金属を
該紡糸ノズルの芯部に、該鞘部に対する該芯部の面積割
合が0.2%〜50%となるように加圧供給して芯鞘型
導電性複合繊維を紡糸し、ついで芯成分をその融点以上
に加熱した後少なくとも2.5倍以上の延伸倍率で熱延
伸して沸水収縮率15%以下とし、さらに得られた芯鞘
型導電性複合繊維を沸水収縮率差が0%〜15%となる
ように沸水収縮率15%以下の非導電性繊維と組合わせ
て前者と後者との重量割合(%)を0.25:99.7
5〜46:54になるべく混繊することを特徴とする導
電性混繊糸の製造法。
[Scope of Claims] 1. A core-sheath type conductive composite fiber whose sheath portion is made of a thermoplastic polymer and whose core portion is made of a metal having a melting point lower than the melting point of the thermoplastic polymer, and a non-conductive fiber. The mixed fiber yarn is such that the area ratio of the core in the cross section of the core-sheath type conductive conjugate fiber is 0.2% to 50%, and the rate of variation in the area of the core in the longitudinal direction of the yarn is 25% or less, the core portion is substantially connected in the longitudinal direction of the yarn, and the proportion of the core-sheath type conductive conjugate fiber in the mixed yarn is 0.25% to 46% by weight, A conductive mixed fiber yarn characterized in that both the non-conductive fiber and the core-sheath type conductive composite fiber have a boiling water shrinkage rate of 15% or less, and a difference in boiling water shrinkage rate between the two is in the range of 0% to 15%. . 2. A thermoplastic polymer is supplied to the sheath of the spinning nozzle, and a molten metal having a melting point lower than the melting point of the thermoplastic polymer is supplied to the core of the spinning nozzle, so that the area ratio of the core to the sheath is 0. A core-sheath type conductive composite fiber is spun by supplying it under pressure so that it is 2% to 50%, and then the core component is heated to above its melting point and then hot-stretched at a draw ratio of at least 2.5 times. The resulting core-sheath type conductive composite fiber is combined with a non-conductive fiber having a boiling water shrinkage rate of 15% or less so that the difference in boiling water shrinkage rate is 0% to 15%. The weight ratio (%) of the former and the latter is 0.25:99.7
A method for producing a conductive mixed fiber yarn, characterized in that the fibers are mixed at a ratio of 5 to 46:54.
JP1853089A 1989-01-27 1989-01-27 Electroconductive combined filament yarn and production thereof Pending JPH02200827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1853089A JPH02200827A (en) 1989-01-27 1989-01-27 Electroconductive combined filament yarn and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1853089A JPH02200827A (en) 1989-01-27 1989-01-27 Electroconductive combined filament yarn and production thereof

Publications (1)

Publication Number Publication Date
JPH02200827A true JPH02200827A (en) 1990-08-09

Family

ID=11974185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1853089A Pending JPH02200827A (en) 1989-01-27 1989-01-27 Electroconductive combined filament yarn and production thereof

Country Status (1)

Country Link
JP (1) JPH02200827A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105651A (en) * 2001-09-28 2003-04-09 Kanebo Ltd Cleaning fabric having antistatic performance
JP2010511799A (en) * 2006-12-01 2010-04-15 パスカル・インダストリーズ・インコーポレーテッド Microwire, method and production thereof, and product made using the same
CN102140707A (en) * 2010-12-21 2011-08-03 东华大学 Skin-core composite electromagnetic shielding fiber and preparation method thereof
CN111851093A (en) * 2019-04-30 2020-10-30 东华大学 Colored fiber, spinning pack and preparation method thereof
CN111850736A (en) * 2019-04-30 2020-10-30 东华大学 Conductive fiber, spinning pack and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50121518A (en) * 1974-03-12 1975-09-23
JPS5111909A (en) * 1974-07-16 1976-01-30 Teijin Ltd Seidenseisenino seizoho
JPS57183426A (en) * 1981-05-08 1982-11-11 Kanebo Gosen Kk Conductive blended fiber yarn
JPS57193532A (en) * 1981-05-25 1982-11-27 Teijin Ltd Composite yarn

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50121518A (en) * 1974-03-12 1975-09-23
JPS5111909A (en) * 1974-07-16 1976-01-30 Teijin Ltd Seidenseisenino seizoho
JPS57183426A (en) * 1981-05-08 1982-11-11 Kanebo Gosen Kk Conductive blended fiber yarn
JPS57193532A (en) * 1981-05-25 1982-11-27 Teijin Ltd Composite yarn

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105651A (en) * 2001-09-28 2003-04-09 Kanebo Ltd Cleaning fabric having antistatic performance
JP4726365B2 (en) * 2001-09-28 2011-07-20 Kbセーレン株式会社 Cleaning fabric having antistatic performance
JP2010511799A (en) * 2006-12-01 2010-04-15 パスカル・インダストリーズ・インコーポレーテッド Microwire, method and production thereof, and product made using the same
JP4865039B2 (en) * 2006-12-01 2012-02-01 パスカル・インダストリーズ・インコーポレーテッド Microwire, method and production thereof, and product made using the same
CN102140707A (en) * 2010-12-21 2011-08-03 东华大学 Skin-core composite electromagnetic shielding fiber and preparation method thereof
CN111851093A (en) * 2019-04-30 2020-10-30 东华大学 Colored fiber, spinning pack and preparation method thereof
CN111850736A (en) * 2019-04-30 2020-10-30 东华大学 Conductive fiber, spinning pack and preparation method thereof

Similar Documents

Publication Publication Date Title
US4207376A (en) Antistatic filaments having an internal layer comprising carbon particles and process for preparation thereof
CA1158816A (en) Conductive composite filaments and methods for producing said composite filaments
US4756969A (en) Highly electrically conductive filament and a process for preparation thereof
US4457973A (en) Conductive composite filaments and methods for producing said composite filaments
NO131732B (en)
JP3216131B2 (en) Two-component filament and its melt spinning method
JPH02200827A (en) Electroconductive combined filament yarn and production thereof
JPS5841910A (en) Electrically conductive mixed filament yarn
JP3212193U (en) Antistatic yarn and antistatic fabric
JPS6156334B2 (en)
JP3947975B2 (en) Fabrics and uses made of composite spun yarn
JP2913698B2 (en) Conductive composite fiber
JPS5831111A (en) Mixed yarn containing electrically conductive conjugated fiber
JP2731345B2 (en) Cross-dyed mixed yarn and method for producing the same
JPH10310944A (en) Antistatic sewing yarn
JP2000110042A (en) Antistatic machine sewing thread
JPH0424240A (en) Woven fabric of polyamide combined filament yarn
JPH0465522A (en) Electrically conductive conjugate fiber
JP4038769B2 (en) Long / short composite spun yarn
JPS63182430A (en) Production of composite processed yarn
JPS5860015A (en) Preparation of electrically conductive composite fiber
JP3020838B2 (en) Manufacturing method of hetero-dyed mixed yarn
JPS6346171B2 (en)
JP2530540Y2 (en) Antistatic polyester sewing thread
JP3029682B2 (en) Composite fiber aggregate having excellent retardation crimp