JPH0220078A - Linear led light source - Google Patents

Linear led light source

Info

Publication number
JPH0220078A
JPH0220078A JP63170472A JP17047288A JPH0220078A JP H0220078 A JPH0220078 A JP H0220078A JP 63170472 A JP63170472 A JP 63170472A JP 17047288 A JP17047288 A JP 17047288A JP H0220078 A JPH0220078 A JP H0220078A
Authority
JP
Japan
Prior art keywords
light
linear
emitting element
optical waveguide
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63170472A
Other languages
Japanese (ja)
Other versions
JP2679132B2 (en
Inventor
Yoshinobu Suehiro
好伸 末広
Shigeru Yamazaki
繁 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP63170472A priority Critical patent/JP2679132B2/en
Publication of JPH0220078A publication Critical patent/JPH0220078A/en
Application granted granted Critical
Publication of JP2679132B2 publication Critical patent/JP2679132B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Led Device Packages (AREA)

Abstract

PURPOSE:To improve the projection efficiency to a plane to which light is projected and to prevent deterioration of a light emitting element by reflecting the light emitted from the light emitting element so as to form the convergent light, converting the light into the linear light through lightguides, and radiating the light to the outside. CONSTITUTION:A light emitting element 1 is mounted on one lead frame 2 and electrically connected to another lead frame 3 with a piece of wire 4. The tip parts of the light emitting element 1 and the lead frames 2 and 3 are molded with a light transmitting materiel 5. The surface of a reflecting surface 5a of the light transmitting material 5 faces the light emitting surface of the light emitting element 1. Said surface is formed as an elliptical surface shape. The surface is machined as a mirror surface by plating, metal evaporation and the like. Each linear lightguide 6a in a lightguide part 6 is formed as follows: the lightguides 6a are bundled in a bundle shape at an input port 6b where the light is inputted; and the lightguides 6a are arranged in the linear shape at emitting port 6c through which the light is emitted to the outside. The light emitting element 1 is arranged at one focal point of the reflecting surface 5a which is formed in an elliptical surface shape. The input port 6b of the lightguide part 6 is arranged in the vicinity of the other focal point.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、発光ダイオードを光源として用いたLED線
状光源に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an LED linear light source using a light emitting diode as a light source.

〔従来の技術〕[Conventional technology]

従来より、発光ダイオードを光源とするLED線状光源
において、各発光ダイオードの発光素子が発する光を有
効に前面方向に放射するため、種々の構造のものが案出
されている。第13図はレンズと反射鏡を利用した従来
のLED線状光源の概略斜視図、第14図はそのB−3
概略断面図である。第13図及び第14図においてlは
発光素子、11は絶縁基板、12及び13は回路パター
ン、14はワイヤ、15は高反射樹脂材料で形成された
反射鏡、16は円柱状の樹脂レンズである。
BACKGROUND ART Conventionally, in LED linear light sources using light emitting diodes as light sources, various structures have been devised in order to effectively radiate the light emitted by the light emitting elements of each light emitting diode in the front direction. Fig. 13 is a schematic perspective view of a conventional LED linear light source using a lens and a reflector, and Fig. 14 is its B-3.
It is a schematic sectional view. In FIGS. 13 and 14, l is a light emitting element, 11 is an insulating substrate, 12 and 13 are circuit patterns, 14 is a wire, 15 is a reflective mirror made of a highly reflective resin material, and 16 is a cylindrical resin lens. be.

同一直線−Lに複数個配列された各発光素7−1は絶縁
基板11の中央に等間隔で密にマウントされており、回
路パターン12・13及びワ・イヤ14によりそれぞれ
電気的に接続されている。また、絶縁基板11」−には
、直線状に配置された発光素子に沿って、その両側面に
は反射鏡15が設けられ、その」二部には円柱状の樹脂
レンズ16が設りられている。
A plurality of light emitting elements 7-1 arranged in the same straight line -L are closely mounted at equal intervals in the center of the insulating substrate 11, and are electrically connected to each other by circuit patterns 12 and 13 and wires 14. ing. In addition, reflective mirrors 15 are provided on both sides of the insulating substrate 11 along the linearly arranged light emitting elements, and a cylindrical resin lens 16 is provided on the second part of the insulating substrate 11. ing.

」二部のように構成されたLED綿状光源によれば、発
光素子1が発する光のうらI一部方向に発した光は直接
樹脂レンズ16の下端面を通過し、レンズ効果により指
向性が強められて外部に放射される。また、側面方向に
発した光は高反射樹脂材料で形成された反射鏡15で拡
散反射された後、樹脂レンズ16を通って外部に放射さ
れる。更に、各発光素子1は同一直線上に密にマウント
されているので、照射面は均一な照度となる。
According to the LED flocculent light source configured as shown in FIG. is intensified and radiated to the outside. Further, the light emitted in the side direction is diffusely reflected by a reflecting mirror 15 made of a highly reflective resin material, and then passed through a resin lens 16 and radiated to the outside. Furthermore, since the light emitting elements 1 are closely mounted on the same straight line, the irradiation surface has uniform illuminance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来のLED線状光源では、発光素子l
が側面方向に発した光は、高反射樹脂材料で形成された
反射鏡15により拡散反射されるので、効率よく樹脂レ
ンズ16の下端面へ達するものは少ない。また、反射鏡
15によって反射されて樹脂レンズ16に達した光は、
樹脂レンズ16の下端面への入射角が区区になるので、
前面方向に放射されるものは少ない。このため、従来の
LIF、D線状光源では、反射鏡[5により拡散反射さ
れた光の多くはL ED VA状光源の前面方向の光度
に寄与せず無駄な光となり、前面方向の光の放射効率が
悪いという欠点があった。
However, in the conventional LED linear light source, the light emitting element l
Since the light emitted in the side direction is diffusely reflected by the reflecting mirror 15 made of a highly reflective resin material, only a small amount of the light efficiently reaches the lower end surface of the resin lens 16. In addition, the light reflected by the reflecting mirror 15 and reaching the resin lens 16 is
Since the angle of incidence on the lower end surface of the resin lens 16 is the difference,
There is little radiation directed toward the front. For this reason, in conventional LIF and D linear light sources, most of the light that is diffusely reflected by the reflector [5] does not contribute to the luminous intensity in the front direction of the LED VA light source and becomes wasted light. It had the disadvantage of poor radiation efficiency.

また、従来のLED線状光源は、均一な照射光を得るた
めに、発光素子Iを密にマウントする必要があるので、
点灯時の発熱により発光素子lの出力が低下し、発光素
7−1の寿l危が>ii くなるという欠点があった。
In addition, in conventional LED linear light sources, it is necessary to mount the light emitting elements I closely in order to obtain uniform irradiation light.
There was a drawback that the output of the light emitting element 1 decreased due to heat generated during lighting, and the lifespan of the light emitting element 7-1 became >ii.

本発明は上記事情に基づいてなされたものであり、発光
素子が発する先の照射面・\の照射効率の向」二を図る
ことができ、しかも点灯時の発光素子の発熱による発光
素子の出力の低下や、発光素子の劣化を防止することが
できろLED線状光dIλを提供することを目的とする
ものである。
The present invention has been made based on the above circumstances, and it is possible to improve the irradiation efficiency of the irradiation surface to which the light emitting element emits light, and also to reduce the output of the light emitting element due to the heat generated by the light emitting element during lighting. It is an object of the present invention to provide LED linear light dIλ that can prevent a decrease in energy consumption and deterioration of a light emitting element.

〔課題を解決するための手段〕[Means to solve the problem]

−1−記のI]的を達成するための本発明であるLED
線状光源は、発光素子と、該発光素子に電力を供給する
リード部と、i;1記発光素子の発光面に対向して設け
られ前記発光素子が発する光を反射して集束光とする凹
面状反射面と、該凹面状反射面によって集束された光を
線状光に変換する光導波路と、前記凹面状反射面と前記
光導波、路との空間であって、かつ前記発光素子と前記
リード部の先端部が配置された空間を埋める光透過性材
料とを具備し、前記発光素子が発する光を前記凹面状反
射面で反射して集束光とし、該集束光を光導波路で線状
光に変換して外部に放射するように構成したものである
-1- I] LED which is the present invention for achieving the objective
The linear light source includes a light emitting element, a lead portion for supplying power to the light emitting element, and i; 1, the linear light source is provided facing the light emitting surface of the light emitting element, and reflects the light emitted by the light emitting element to form a focused light. a concave reflective surface, an optical waveguide that converts light focused by the concave reflective surface into linear light, and a space between the concave reflective surface and the optical waveguide, and the light emitting element. a light-transmitting material that fills a space in which the tip end of the lead portion is arranged, the light emitted by the light emitting element is reflected on the concave reflective surface to become a focused light, and the focused light is transmitted into a line through an optical waveguide. It is configured to convert the light into light and radiate it to the outside.

また、上記構成のLED線状光源を、発光素子の発光波
長を違えて複数組み合わせてもよい。
Furthermore, a plurality of LED linear light sources having the above configuration may be combined with different emission wavelengths of the light emitting elements.

また、前記凹面状反射面は楕円面状に形成するのが好ま
しい。
Further, it is preferable that the concave reflective surface is formed into an ellipsoidal shape.

更に、前記光導波路は、複数の線状光導波路の入射口を
束状に、放射口を線状に形成したものでもよく、その複
数の線状光導波路の放射口に面状光導波路を接合して形
成したものでもよく、あるいは面状光導波路の入射口を
円形状に、放射口を線形状に形成したものでもよい。
Further, the optical waveguide may be formed by forming a plurality of linear optical waveguides, with the entrance ports formed in a bundle and the radiation ports formed in a linear shape, and a planar optical waveguide may be bonded to the radiation ports of the plurality of linear optical waveguides. Alternatively, the entrance port of the planar optical waveguide may be formed in a circular shape, and the emission port may be formed in a linear shape.

〔作用〕[Effect]

本発明は前記の構成によって、リード部から発光素子に
電力を供給し、発光素子が発する光を一度凹面状反射面
で反射して集束光とし、更にその集束光を光導波路によ
り線状光に変換した後、外部に放射する。
With the above configuration, the present invention supplies power to the light emitting element from the lead part, once reflects the light emitted by the light emitting element on a concave reflective surface to form a focused light, and further converts the focused light into linear light through an optical waveguide. After conversion, it is radiated to the outside.

また、LED線状光源を、発光素子の発光波長を違えて
複数組み合わせることにより1.多色光又は混合色光を
放射することができる。
In addition, by combining a plurality of LED linear light sources with different emission wavelengths of light emitting elements, 1. Polychromatic or mixed colored light can be emitted.

また、凹面状反射面を楕円面状に形成することにより、
たとえばその一方の焦点に発光素子を、他方の焦点の近
傍に光導波路の入射口を配置して、発光素子が発した光
を効率良く集束光として、光導波路に投入することがで
きる。
In addition, by forming the concave reflective surface into an elliptical shape,
For example, by arranging a light emitting element at one focal point and an entrance of the optical waveguide near the other focal point, the light emitted by the light emitting element can be efficiently focused and input into the optical waveguide.

更に、光導波路に、入射口を束状に放射口を線状に形成
した複数の線状光導波路を用いるか、その複数の線状光
導波路の放射口に面状光導波路を接合したものを用いる
か、あるいは入射口を円形状に放射(:1を線形状に形
成した面状光4彼路を用いることにより、集束光を容易
かつ確実に線状光に変換することができる。尚、光導波
路に面状光j3波路を用いたときには、面状光?、す波
路により外部に放射する放射光が均一化される。
Furthermore, the optical waveguide may include a plurality of linear optical waveguides in which an entrance port is formed in a bundle and a radiation port is formed in a linear shape, or a planar optical waveguide may be bonded to the radiation port of the plurality of linear optical waveguides. The focused light can be easily and reliably converted into linear light by using a circular light beam or by using a planar light beam with a circular incident aperture (:1) formed into a linear shape. When a planar light waveguide is used as an optical waveguide, the emitted light emitted to the outside is made uniform by the planar light wavepath.

〔実施例〕〔Example〕

以下に本発明の第1の実施例を第1図乃至第3図を参1
1<(して説明する。第1図は本発明の第1の実施例で
あるL E D線状光源の概略概念図、第2図(a)は
その光導波路の入射口の概略拡大図であり、同図(b)
はその光導波路の放射口の概略部分拡大図、第3図はそ
の発光素子が発する光の光路図である。第1図乃至第3
図において、1は発光素子、2・3は発光素子lに電力
を供給するリードフレーム、4はワイヤ、5は光透過性
材料、5aは発光素子lが発した光を反射し集束する楕
円面状に形成された反射面、6は複数の線状光導波路6
aよりなり集束光を線状光に変換する光導波路である。
The first embodiment of the present invention will be described below with reference to FIGS. 1 to 3.
1<(This will be explained as follows. Fig. 1 is a schematic conceptual diagram of an LED linear light source that is the first embodiment of the present invention, and Fig. 2 (a) is a schematic enlarged view of the entrance of the optical waveguide. , and the same figure (b)
3 is a schematic partial enlarged view of the radiation aperture of the optical waveguide, and FIG. 3 is an optical path diagram of the light emitted by the light emitting element. Figures 1 to 3
In the figure, 1 is a light emitting element, 2 and 3 are lead frames that supply power to the light emitting element l, 4 is a wire, 5 is a light-transmitting material, and 5a is an ellipsoid that reflects and focuses the light emitted by the light emitting element l. 6 is a plurality of linear optical waveguides 6
This is an optical waveguide that converts focused light into linear light.

尚、矢印は発光素子1が発した光の光路を示す。Note that the arrow indicates the optical path of light emitted by the light emitting element 1.

発光素子1は一方のリードフレーム2にマウントされ、
ワイヤ4により他方のリードフレーム3と電気的に接続
されている。また、発光素子1とリードフレーム2・3
の先端部は光透過性材料5でモールドされている。反射
面5aは、光i3過性材料5の発光素子lの発光面と対
向する面を楕円面状に形成し、その表面を鍍金や金属蒸
着等により鏡面加工したものである。光導波路6の各線
状光導波路6aは、第2図(a>に示すように光が入射
する入射口6bでは束状に結束され、同図(1))に示
すように光を外部に放射する放射16Cでは線状に配列
されている。そして、楕円面状に形成された反射面5a
の一方の焦点に発光素子1が配置され、他方の焦点近傍
に光導波路6の入射口6bが配置されている。尚、光導
波路6の入射口6bと反射面5aとの空間は光透過性材
ネ−15で埋められている。また、反射面5aを形成す
るための鍍金や金属蒸着の際には、リードフレーム2・
3間を絶縁する。
The light emitting element 1 is mounted on one lead frame 2,
It is electrically connected to the other lead frame 3 by a wire 4 . In addition, the light emitting element 1 and lead frames 2 and 3
The distal end portion is molded with a light-transmitting material 5. The reflective surface 5a is formed by forming the surface of the optical i3-transmissive material 5 that faces the light emitting surface of the light emitting element 1 into an ellipsoidal shape, and mirror-finishing the surface by plating, metal vapor deposition, or the like. Each linear optical waveguide 6a of the optical waveguide 6 is bundled into a bundle at the entrance 6b where light enters, as shown in FIG. 2 (a), and emits light to the outside as shown in FIG. The radiation 16C is arranged linearly. A reflective surface 5a formed in an elliptical shape
The light emitting element 1 is arranged at one focal point, and the entrance 6b of the optical waveguide 6 is arranged near the other focal point. Note that the space between the entrance 6b of the optical waveguide 6 and the reflective surface 5a is filled with a light-transmitting material 15. In addition, when performing plating or metal vapor deposition to form the reflective surface 5a, the lead frame 2.
Insulate between 3.

上記の構成によれば、リードフレーム2・3とワイヤ4
とにより発光素子1に電力が供給され、発光素子lが発
光する。そして、発光素子1が発した光は、第3図の矢
印に示すように反射面5aで反射され、集束された後、
光導波路6の入射口6bに放射され、光導波路6で線状
光に変換されて照射面7に放射される。使用する光4波
路6の各線状光導波路6aの径や本数は用途に応じて適
宜選択する。
According to the above configuration, the lead frames 2 and 3 and the wire 4
As a result, power is supplied to the light emitting element 1, and the light emitting element 1 emits light. The light emitted by the light emitting element 1 is reflected by the reflective surface 5a as shown by the arrow in FIG. 3, and after being focused,
The light is emitted to the entrance 6b of the optical waveguide 6, converted into linear light by the optical waveguide 6, and emitted to the irradiation surface 7. The diameter and number of each linear optical waveguide 6a of the four optical waveguides 6 to be used are appropriately selected depending on the application.

向、リードフレーム2・3の線幅は、容易ニ0゜1 H
1以下とすることができ、また発光素子1の占める面積
も約0 、 4 @I X Q 、  4 amである
ので、たとえば反射面5aの直径を5−黴とした場合で
も、発光素7−1とリードフレーム2・3との影による
損失は約3%であるので、効率−Eも特に問題とはなら
ない。
The line width of lead frames 2 and 3 is easily 20°1H.
1 or less, and the area occupied by the light emitting element 1 is approximately 0,4 @I Since the loss due to the shadow between lead frame 1 and lead frames 2 and 3 is about 3%, efficiency -E is not particularly problematic.

1:記の本実施例によれば、発光素子lが発する光を反
射面5aにより効率よく光導波路6に投入すると共に、
光導波路6により照射面7に線状に放射することができ
るので、従来のL v D vA状先光源比べて同数の
発光素子を使用した場合には、照射面7の照度を向上す
ることができる。また、従来のLED線状光源で使用し
ていた発光素子の数よりも、少ない数の発光素子で従来
のLED線状光源と同様の照度を得ることができる。
According to the present embodiment described in 1:, the light emitted by the light emitting element l is efficiently inputted into the optical waveguide 6 by the reflecting surface 5a, and
Since the light can be emitted linearly onto the irradiation surface 7 through the optical waveguide 6, the illuminance on the irradiation surface 7 can be improved when the same number of light emitting elements is used compared to the conventional LvDvA type light source. can. Furthermore, the same illuminance as the conventional LED linear light source can be obtained with a smaller number of light emitting elements than the number of light emitting elements used in the conventional LED linear light source.

また、上記の本実施例によれば、従来のLED線状光源
のように発光素子1を密にマウントしていないので、従
来のLED線状光源のように点灯時に発光素子Iの出力
が低下したり、発光素子lが劣化したりすることはない
Furthermore, according to the above embodiment, the light emitting elements 1 are not mounted closely as in conventional LED linear light sources, so the output of the light emitting elements I decreases when turned on, unlike in conventional LED linear light sources. There is no possibility that the light emitting element l will deteriorate.

また、上記の本実施例によれば、線状光の線幅を細くで
きるので、読取用の光源等として用いた場合、読取等の
精度の向上を図ることができる。
Further, according to the present embodiment described above, the line width of the linear light can be made thin, so when used as a light source for reading, etc., it is possible to improve the accuracy of reading, etc.

更に、発光素子lと反射面5a及び反射面5aと光導波
路6の入射口6bとの空間は光透過性材料5で埋められ
ており、空気層が介在しないので、界面反射による損失
光が少ない。
Furthermore, the spaces between the light emitting element l and the reflective surface 5a and between the reflective surface 5a and the entrance 6b of the optical waveguide 6 are filled with the light-transmitting material 5, and there is no intervening air layer, so there is little loss of light due to interface reflection. .

尚、上記の実施例であるしED線状光源を多数個配列す
るときには、発光素子lを透明な絶縁回路基板に配置し
て接続し、必要に応じて放熱板を設けてもよい。
In the above embodiment, when a large number of ED linear light sources are arranged, the light emitting elements 1 may be arranged and connected to a transparent insulating circuit board, and a heat sink may be provided as necessary.

第4図は本発明の第2の実施例であるLIED線状光源
の概略概念図、第5図はその放射口の概略部分拡大図、
第6図はその放射口の変形例を示す概略部分拡大図であ
る。第4図乃至第6図に示す第2の実施例及び以下に説
明する他の実施例において、上記第1図乃至第3図に示
す第1の実施例と同一の機能を有するものは同一の符号
を付すことよりその詳細な説明を省略する。
FIG. 4 is a schematic conceptual diagram of a LIED linear light source which is a second embodiment of the present invention, and FIG. 5 is a schematic partial enlarged view of its radiation aperture.
FIG. 6 is a schematic partially enlarged view showing a modified example of the radiation port. In the second embodiment shown in FIGS. 4 to 6 and other embodiments described below, those having the same functions as the first embodiment shown in FIGS. 1 to 3 above are the same. Detailed explanation will be omitted by adding the reference numerals.

第4図乃至第6図においてla、1bは、たとえば発光
色が各々赤色、黄緑色である発光素子、6dは赤色の光
を放射する線状光導波路、6eは黄緑色の光を放射する
線状光導波路である。本発明の第2の実施例は、第1の
実施例であるLED線状光源を2組配置し、一方の発光
素子1aを赤色光を発するもの、他方の発光素子1bを
黄緑色光を発するものとし、かつ放射口6cは第5図に
示すように赤色光を放射する線状光導波路6dと黄緑色
光を放射する線状光導波路6eとを交互に配置したもの
である。尚、放射口6cは、第6図に示すように線状光
導波路6dと線状光4波路6eとを並列に配置してもよ
い。
In FIGS. 4 to 6, la and 1b are light-emitting elements whose emission colors are red and yellow-green, respectively, 6d is a linear optical waveguide that emits red light, and 6e is a line that emits yellow-green light. It is a shaped optical waveguide. In the second embodiment of the present invention, two sets of LED linear light sources according to the first embodiment are arranged, one light emitting element 1a emits red light, and the other light emitting element 1b emits yellow-green light. As shown in FIG. 5, the radiation port 6c has linear optical waveguides 6d that emit red light and linear optical waveguides 6e that emit yellow-green light, which are alternately arranged. Incidentally, the radiation aperture 6c may have a linear optical waveguide 6d and a linear optical four-wave path 6e arranged in parallel, as shown in FIG.

第2の実施例によれば、発光素子1aと発光素子lbと
を交互に点灯することにより、多色のLE D N>’
it状光源となる。その他の作用・効果は第1の実施例
と同様である。尚、上記の第2の実施例では、第1の実
施例であるLED線状光源を2組配置した場合について
説明したが、これは3組以とを配置したもの、たとえば
赤色、青色、黄色を各々発光波長とする発光素子を備え
るものを3Mi配置し、3紺を同時に点灯して白色の照
明光を発するようにしてもよい。
According to the second embodiment, by alternately lighting up the light emitting element 1a and the light emitting element lb, the multicolor LED N>'
It becomes an IT-like light source. Other functions and effects are similar to those of the first embodiment. In addition, in the above-mentioned second embodiment, the case where two sets of LED linear light sources are arranged, which is the first embodiment, was explained, but this is the case where three or more sets of LED linear light sources are arranged, for example, red, blue, yellow. It is also possible to arrange 3Mi of light emitting elements each having an emission wavelength of , and to simultaneously light up the three navy blue lights to emit white illumination light.

第7図は本発明の第3の実施例であるLED徐状光源の
概略概念図、第8図はその光導波路の放射口の概略部分
拡大図、第9図は線状光導波路と面状光導波路との接合
部における光の放射状態を示す1Δである。第7図乃至
第9図において、5fは面状光4波路である。
FIG. 7 is a schematic conceptual diagram of an LED gradual light source which is a third embodiment of the present invention, FIG. 8 is a schematic partial enlarged view of the radiation opening of the optical waveguide, and FIG. 9 is a linear optical waveguide and a planar shape. It is 1Δ which indicates the radiation state of light at the junction with the optical waveguide. In FIGS. 7 to 9, 5f is a four-wave path of planar light.

第3の実施例は第1の実施例の複数の線状光4波路6a
の先端部に面状光導波路6fを接合したものである。す
なわち、第3の実施例の光導波路6は複数の線状光導波
路6aと面状光導波路6「とを接合したものである。面
状光導波路6fは、略シート状の光透過性高屈折率材料
の側面に低屈折率材料によるクラッド層を設けることに
より光導波路としたものである。
The third embodiment is a plurality of four linear optical wave paths 6a of the first embodiment.
A planar optical waveguide 6f is bonded to the tip of the optical waveguide. That is, the optical waveguide 6 of the third embodiment is a combination of a plurality of linear optical waveguides 6a and a planar optical waveguide 6''. An optical waveguide is formed by providing a cladding layer made of a low refractive index material on the side surface of the refractive index material.

各線状光導波路6aから放射される光は、第9図の紙面
に対して垂直方向へは拡がらず、第9図に示すように紙
面に対して水平方向に拡がる。このため、各線状光導波
路6aにより伝送される光にバラツキがあっても、面状
光導波路6「を通過する際に、均一化されて、外部へ放
射される。このように、第3の実施例によれば線状光導
波路6aの先端部に面状光導波路6fが設けであるので
、線状光導波路6aから放射された光は1■状光導波路
6f内で拡がり、均一化されて外部に放射される。その
他の作用・効果は第1の実施例と一1様である。尚、」
−記の実施例では第1の実施例の光導波路に面状光導波
路を接合した場合について説明したが、第2の実施例の
光導波路に面状光導波路を接合してもよい。これにより
、均一な赤色光や黄緑色光を放射することができる。
The light emitted from each linear optical waveguide 6a does not spread in the direction perpendicular to the plane of the paper in FIG. 9, but spreads in the horizontal direction with respect to the plane of the paper, as shown in FIG. Therefore, even if there is variation in the light transmitted by each linear optical waveguide 6a, it is made uniform when passing through the planar optical waveguide 6'' and is emitted to the outside. According to the embodiment, since the planar optical waveguide 6f is provided at the tip of the linear optical waveguide 6a, the light emitted from the linear optical waveguide 6a is spread within the one square optical waveguide 6f and is made uniform. It is emitted to the outside.Other functions and effects are the same as in the first embodiment.
- In the embodiment described above, a case has been described in which a planar optical waveguide is bonded to the optical waveguide of the first embodiment, but a planar optical waveguide may be bonded to the optical waveguide of the second embodiment. This makes it possible to emit uniform red light or yellow-green light.

第10図は本発明の第4の実施例であるLI2DI2光
源の概略概念図、第11図(a)はその光導波路の入射
口の概略拡大図、同図(b)はその光導波路の放射口の
概略部分拡大図、第12図はその発光素子が発する光の
光路図、第13図はその変形例を示すイ既略図である。
FIG. 10 is a schematic conceptual diagram of the LI2DI2 light source which is the fourth embodiment of the present invention, FIG. 11(a) is a schematic enlarged view of the entrance of the optical waveguide, and FIG. FIG. 12 is a schematic partial enlarged view of the mouth, FIG. 12 is an optical path diagram of light emitted by the light emitting element, and FIG. 13 is a schematic diagram showing a modification thereof.

本発明の第4の実施例が第1の実施例と異なるのは、光
4波路6を面状光導波路6rにより形成した点にある。
The fourth embodiment of the present invention differs from the first embodiment in that the four optical wave paths 6 are formed by planar optical waveguides 6r.

尚、面状光4波路5[は側面を低屈折率の物質によりコ
ート等を施すことによりクラット層を形成したものでも
よい。また、面状光導波路6fは平板状のものでなく、
たとえば湾曲したものであってもよい。
Note that the four planar light wave paths 5 may be formed by coating the side surfaces with a material having a low refractive index to form a crat layer. Moreover, the planar optical waveguide 6f is not a flat one,
For example, it may be curved.

本実施例のLCD線状光源は、第12図に示すように発
光素子lが発した光を凹面状の反射面5aにより反射し
て集束し、面状光導波路6rにより綿状光に変換して外
部に放射する。本実施例で使用する面状光導波路6fは
形成が容易であり、しかも発光素子1を光透過性材料5
によりモールドする際に、同時に面状光導波路6fを形
成することも可能である。このため、本実施例であるL
CD線状光源は量産化が容易である。その他の作用、効
果は第1の実施例と同様である。
As shown in FIG. 12, the LCD linear light source of this embodiment reflects and focuses light emitted by a light emitting element 1 on a concave reflecting surface 5a, and converts it into cotton-like light using a planar optical waveguide 6r. radiates to the outside. The planar optical waveguide 6f used in this example is easy to form, and the light emitting element 1 is
When molding, it is also possible to simultaneously form the planar optical waveguide 6f. Therefore, in this example, L
CD linear light sources are easy to mass produce. Other functions and effects are similar to those of the first embodiment.

また、第13図に示すように一つの面状光導波路6rに
対して複数組の発光素子lと反射面5aとを設けた構造
としてもよい、これにより用途に応じた明るさを有する
LCD線状光源を容易に製造することができる。
Further, as shown in FIG. 13, a structure may be adopted in which a plurality of sets of light emitting elements l and reflective surfaces 5a are provided for one planar optical waveguide 6r. A shaped light source can be easily manufactured.

尚、上記第1乃至第4の実施例においては、発光素子1
に電力を供給するリード部が主としてリードフレーム2
・3とワイヤ4からなるものである場合について説明し
たが、本発明はこれに限定されるものではなく、たとえ
ばリード部はステムやファインライン回路が形成された
透明ガラス基板であってもよい。
Note that in the first to fourth embodiments described above, the light emitting element 1
The lead part that supplies power to the lead frame 2 is mainly
3 and wire 4, the present invention is not limited to this. For example, the lead portion may be a transparent glass substrate on which a stem or fine line circuit is formed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、発光素子が発した
光を凹面状反射面で反射して集束した後、光導波路によ
り線状光に変換するので、発光素子が発する光の照射面
への照射効、仁の向−Fを図ることができ、しかも点灯
時の発光素子の発熱による発光素子の出力の低下や、発
光素子の劣化を防止することができるLCD線状光源を
徒供することができる。
As explained above, according to the present invention, the light emitted by the light emitting element is reflected and focused by the concave reflective surface, and then converted into linear light by the optical waveguide, so that the light emitted by the light emitting element is directed to the irradiation surface. To provide an LCD linear light source that can improve the irradiation effect and the direction of radiation, and can prevent a decrease in the output of the light emitting element due to heat generation of the light emitting element during lighting, and prevent deterioration of the light emitting element. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例であるり、 E [)線
状光源の概略概念図、第2図(a)はその光導波路の入
射L1の概略拡大図であり、同図(b)はその光導波路
の放射口の概略部分拡大図、第3図はその発光素子が発
する光の光路図、第4図は本発明の第2の実施例である
LI”、D線状光源の概略概念図、第5図はその放射口
の概略部分拡大図、第6図はその放射口の変形例を示す
概略部分拡大図、第7図は本発明の第3の実施例である
LCD線状光源の概略概念図、第8図はその光導波路の
放射口の概略部分拡大図、第9図は線状光導波路と面状
光導波路との接合部における光の放射状態を示す図、第
10図は本発明の第4の実施例であるLCD線状光源の
概略概念図、第11図(a)はその光導波路の入射口の
概略拡大図、同図(b)はその光導波路の放射口の概略
部分拡大図、第12図はその発光素子が発する先の光路
図、第13図はその変形例を示す概略図、第14図はレ
ンズと反射鏡を利用した従来のLCD線状光源の概略斜
視図、第15図はその13−I3概略断面図である。 1・・2発光素子、2・3.・、リードフレーム、4、
・・ワイヤ、5.・、光透過性材料、5a・・・反射面
、6・・・光導波路、6a・・・線状光導波路、6 f
 、、、面状光導波路。 出+a人 岩 崎 電 気 株式会社 第 図 第5図 第6図 第3図 第4図 第1○図 第11図 CG) (b) 第12図 第13図
FIG. 1 shows the first embodiment of the present invention, and FIG. 2(a) is a schematic enlarged view of the incident L1 of the optical waveguide. b) is a schematic partial enlarged view of the radiation aperture of the optical waveguide, FIG. 3 is an optical path diagram of the light emitted by the light emitting element, and FIG. 5 is a schematic partial enlarged view of the radiation port, FIG. 6 is a schematic partial enlarged view showing a modified example of the radiation port, and FIG. 7 is a third embodiment of the LCD of the present invention. A schematic conceptual diagram of a linear light source, FIG. 8 is a schematic partial enlarged view of the radiation aperture of the optical waveguide, and FIG. 9 is a diagram showing the state of light emission at the junction between the linear optical waveguide and the planar optical waveguide. FIG. 10 is a schematic conceptual diagram of an LCD linear light source which is a fourth embodiment of the present invention, FIG. 11(a) is a schematic enlarged view of the entrance of the optical waveguide, and FIG. 11(b) is the optical waveguide. Fig. 12 is a diagram of the optical path emitted by the light emitting element, Fig. 13 is a schematic diagram showing a modified example, and Fig. 14 is a conventional LCD line using lenses and reflectors. A schematic perspective view of a shaped light source, and FIG. 15 is a schematic sectional view of the light source along line 13-I3. 1...2 light emitting elements, 2, 3..., lead frame, 4,
...Wire, 5.・, Light-transmissive material, 5a... Reflective surface, 6... Optical waveguide, 6a... Linear optical waveguide, 6 f
,, Planar optical waveguide. Iwasaki Electric Co., Ltd. Figure 5 Figure 6 Figure 3 Figure 4 Figure 1○ Figure 11 CG) (b) Figure 12 Figure 13

Claims (6)

【特許請求の範囲】[Claims] (1)発光素子と、該発光素子に電力を供給するリード
部と、前記発光素子の発光面に対向して設けられ前記発
光素子が発する光を反射して集束光とする凹面・状反射
面と、該凹面状反射面によって集束された光を線状光に
変換する光導波路と、前記凹面状反射面と前記光導波路
との空間であって、かつ前記発光素子と前記リード部の
先端部が配置された空間を埋める光透過性材料とを具備
し、前記発光素子が発する光を前記凹面状反射面で反射
して集束光とし、該集束光を光導波路で線状光に変換し
て外部に放射するように構成したことを特徴とするLE
D線状光源。
(1) A light-emitting element, a lead portion that supplies power to the light-emitting element, and a concave reflective surface that is provided opposite to the light-emitting surface of the light-emitting element and that reflects the light emitted by the light-emitting element into focused light. an optical waveguide that converts the light focused by the concave reflective surface into linear light; a space between the concave reflective surface and the optical waveguide, and a tip portion of the light emitting element and the lead portion. and a light-transmitting material that fills a space in which the light emitting element is arranged, the light emitted by the light emitting element is reflected on the concave reflective surface to become a focused light, and the focused light is converted into linear light by an optical waveguide. LE characterized by being configured to radiate to the outside
D linear light source.
(2)第1項記載のLED線状光源を、発光素子の発光
波長を違えて複数組み合わせてなるLED線状光源。
(2) An LED linear light source formed by combining a plurality of LED linear light sources described in item 1 with different emission wavelengths of light emitting elements.
(3)前記凹面状反射面は楕円面状に形成されたもので
ある請求項1又は2記載のLED線状光源。
(3) The LED linear light source according to claim 1 or 2, wherein the concave reflective surface is formed in an ellipsoidal shape.
(4)前記光導波路は、複数の線状先導波路からなり、
光が入射する入射口は束状に、光を放射する放射口は線
状に形成したものである請求項1乃至3の何れかに記載
のLED線状光源。
(4) The optical waveguide is composed of a plurality of linear leading waveguides,
4. The LED linear light source according to claim 1, wherein the entrance port through which light enters is formed in a bundle shape, and the radiation port through which light is emitted is formed in a linear shape.
(5)前記光導波路は、入射口を束状に放射口を線状に
形成した複数の線状光導波路と、該複数の線状光導波路
の放射口に接合した面状光導波路とからなるものである
請求項1乃至3の何れかに記載のLED線状光源。
(5) The optical waveguide is composed of a plurality of linear optical waveguides in which an entrance port is formed in a bundle shape and a radiation port is formed in a linear shape, and a planar optical waveguide joined to the radiation port of the plurality of linear optical waveguides. The LED linear light source according to any one of claims 1 to 3.
(6)前記光導波路は、面状光導波路であり、その入射
口を円形状に、放射口を線形状に形成したものである請
求項1乃至3の何れかに記載のLED線状光源。
(6) The LED linear light source according to any one of claims 1 to 3, wherein the optical waveguide is a planar optical waveguide, and has an entrance port formed in a circular shape and a radiation port formed in a linear shape.
JP63170472A 1988-07-08 1988-07-08 LED linear light source Expired - Lifetime JP2679132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63170472A JP2679132B2 (en) 1988-07-08 1988-07-08 LED linear light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63170472A JP2679132B2 (en) 1988-07-08 1988-07-08 LED linear light source

Publications (2)

Publication Number Publication Date
JPH0220078A true JPH0220078A (en) 1990-01-23
JP2679132B2 JP2679132B2 (en) 1997-11-19

Family

ID=15905577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63170472A Expired - Lifetime JP2679132B2 (en) 1988-07-08 1988-07-08 LED linear light source

Country Status (1)

Country Link
JP (1) JP2679132B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529665A (en) * 1991-07-25 1993-02-05 Rohm Co Ltd Led light source device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529665A (en) * 1991-07-25 1993-02-05 Rohm Co Ltd Led light source device

Also Published As

Publication number Publication date
JP2679132B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
US10465873B2 (en) Light emitting device, vehicle headlamp, illumination device, and laser element
CN102411205B (en) Light source, light combination device and projector with light source
US8388190B2 (en) Illumination system and method for recycling light to increase the brightness of the light source
US11209132B2 (en) Light source device
US10173584B2 (en) Vehicle lamp
JP2011181794A (en) Light emitting device and back light module using the same
JP6446202B2 (en) Wide-angle diffusion optical system and illumination device using the same
US8562199B2 (en) Lighting device
TW201704683A (en) Lens and light-emitting element having same
KR20120027047A (en) Efficient light emitting device and method for manufacturing such a device
WO1989005524A1 (en) Planar led illuminant
WO2010103840A1 (en) Light-emitting module and lighting unit
JP2005235841A (en) Light emitting device
JPH01241184A (en) Reflection type photosensor
JPH0220078A (en) Linear led light source
JP2006005337A (en) Compound reflection type light-emitting device
US7033086B2 (en) Device for coupling light into an optical conductor
JPH01205480A (en) Light emitting diode and led surface light emission source
CN219606858U (en) Light mixing device and stage lamp with same
CN211629515U (en) Convergence integrated laser device
CN211976806U (en) Laser illumination optical system
CN212986806U (en) Achromatic light-emitting device
CN216431596U (en) Light-transmitting element, photoelectric module and lamp
CN216158886U (en) Reflecting device and white light laser light source
KR20120122168A (en) Lighting module