JPH02200744A - Manufacture of tungsten carbide-base sintered hard alloy for cutting tools having less dimension in void defect - Google Patents

Manufacture of tungsten carbide-base sintered hard alloy for cutting tools having less dimension in void defect

Info

Publication number
JPH02200744A
JPH02200744A JP1017722A JP1772289A JPH02200744A JP H02200744 A JPH02200744 A JP H02200744A JP 1017722 A JP1017722 A JP 1017722A JP 1772289 A JP1772289 A JP 1772289A JP H02200744 A JPH02200744 A JP H02200744A
Authority
JP
Japan
Prior art keywords
solid solution
coated
carbide
powder
cutting tools
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1017722A
Other languages
Japanese (ja)
Inventor
Akira Katayama
片山 昌
Tatsuya Imai
達也 今井
Tetsuo Sawajima
哲郎 澤島
Hiroto Imamura
博人 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Kinzoku Co Ltd
Nippon Steel Corp
Nittetsu Choko KK
Original Assignee
Toho Kinzoku Co Ltd
Nippon Steel Corp
Nittetsu Choko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Kinzoku Co Ltd, Nippon Steel Corp, Nittetsu Choko KK filed Critical Toho Kinzoku Co Ltd
Priority to JP1017722A priority Critical patent/JPH02200744A/en
Publication of JPH02200744A publication Critical patent/JPH02200744A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the sintered hard alloy for cutting tools having less defect caused by the segregation of cobalt by using coated power of which the surface of hard carbide material powder is coated with Co as a raw material. CONSTITUTION:The surface of respective hard material powder constituted of (A) WC, (B) the solid solution carbide and solid solution nitride of W and Ti and (C) the solid solution carbide and solid solution nitride of W and Ti with one or more kinds among the transition metals in the groups IVa, Va and VIa (except W and Ti) is coated with Co as a bonding phase. The coated powder is added with a forming auxiliary, which is subjected to press forming and sintering to obtain the WC-base sintered hard alloy for cutting tools. The coating of Co is executed by electroless plating, a deposition method or the like. In this way, dimension in void defection caused by aggregated Co is re duced, by which the effect of showing excellent capacity when used to tools for intermittent cutting applied with impact loads can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は衝撃荷重の負荷する断続切削用]−具の製造に
関わるもので、特にコバルト偏析に起因する欠陥寸法の
小さい、耐破壊特性の優れた切削工具用炭化タングステ
ン基超硬合金の製造法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to the production of tools for interrupted cutting under impact loads, and is particularly concerned with the production of tools with small defect sizes caused by cobalt segregation and with fracture-resistant properties. The present invention relates to a method for producing an excellent tungsten carbide-based cemented carbide for cutting tools.

(従来の技術) 従来の切削工具用超硬合金は、−例をあげると、炭化タ
ングステン粉末とCo粉末、あるいは炭化タングステン
粉末、固溶体炭化物粉末およびCo粉末を原料粉末とし
て使用し、これらの原料粉末を所定の組成に配合し、粉
砕、混合、プレス成形2、最後に焼結することによって
製造されている。
(Prior Art) Conventional cemented carbide for cutting tools uses, for example, tungsten carbide powder and Co powder, or tungsten carbide powder, solid solution carbide powder, and Co powder as raw material powders, and these raw material powders are It is manufactured by blending into a predetermined composition, crushing, mixing, press molding 2, and finally sintering.

(発明が解決しよ・うとする課題) ところで、これらの従来の製造工程においては粉砕、混
合の際、Co原料粉に混在する数μm−数十μmに凝・
集したCo粒子を充分に細粒化することが出来ないため
、これら凝集したCoが炭化物間に分散して存在し、焼
結時に溶融して炭化物粒子間に吸い上げられるために空
孔が形成される。空孔の直径は数J1m−数1−μmで
空孔が炭化タングステ゛/基超硬合金の破壊の起点とな
るため;こ衝撃荷重のft荷する用途に使用すると工具
寿命の変動が大きく寿命が短かった。
(Problem to be solved by the invention) By the way, in these conventional manufacturing processes, during pulverization and mixing, coagulation and coagulation of several micrometers to several tens of micrometers mixed in the Co raw material powder occur.
Since the aggregated Co particles cannot be made sufficiently fine, these aggregated Co particles exist dispersed between the carbide particles, and during sintering, they are melted and sucked up between the carbide particles, resulting in the formation of pores. Ru. The diameter of the pores is several J1m-several 1-μm, and the pores are the starting point for fracture of tungsten carbide/base cemented carbide; when used in applications that carry impact loads of ft. It was short.

その対策として加圧焼結、あるいは焼結した後、熱間静
水圧プレス(HI P)する方法が知られているが市販
超硬合金中には最大数十−径の空孔欠陥が内在しており
充分な効果は得られていない。
As a countermeasure, pressure sintering or hot isostatic pressing (HIP) after sintering is known, but commercially available cemented carbide contains void defects up to several tens of diameters deep. However, sufficient effects have not been obtained.

また、固溶体炭化物および固溶体炭窒化物の表面に鉄系
金属を被覆した複合被覆粉末とWC粉末および鉄族金属
の1種または2種以上の粉末を原料粉末として使用する
製造法が特開昭60−3918号公報に開示されている
が、この方法では固溶体粉末同士の焼結時における凝集
は防止出来るがCo原料わ)中に凝集した単体Co粒子
が存在し、これが上述したように空孔発生源となるため
に空孔対策としては十分でない。
In addition, a manufacturing method using a composite coated powder in which the surfaces of solid solution carbides and solid solution carbonitrides are coated with iron-based metals, WC powder, and powder of one or more types of iron-group metals is disclosed in JP-A-60 Although this method can prevent agglomeration of solid solution powders during sintering, there are agglomerated single Co particles in the Co raw material, which causes pores as described above. This is not sufficient as a countermeasure against pores.

(課題を解決するための手段) そこで、本発明者等は耐破壊特性の優れた超硬合金を製
造すべく研究を行った結果、WC原料粉末と固溶体原料
粉末の表面にCoを被覆した被覆粉末を原料粉末として
使用し、Co粉末を原料粉として使用しない場合、既存
製造法の場合に認められたCo凝集体は生成しないこと
、焼結後に超硬合金には最大十数μm径程度の空孔しか
残存しないことを見出した。
(Means for Solving the Problems) Therefore, the present inventors conducted research to produce a cemented carbide with excellent fracture resistance, and found that the surface of the WC raw material powder and the solid solution raw material powder was coated with Co. When powder is used as a raw material powder and Co powder is not used as a raw material powder, Co aggregates observed in existing manufacturing methods will not be generated, and after sintering, the cemented carbide will contain particles with a maximum diameter of about 10-odd micrometers. It was discovered that only vacancies remained.

(作用) 本発明は上記の知見に基づくものであって、その対象と
するWCC超超硬合金代表的組成は硬質物質として、A
)WC,B)固溶体成分として(WTi)炭化物及び炭
窒化物、C)(W、Ti、M)炭化物および炭窒化物(
但し、MはZr+ tlf+  V、 Ta。
(Function) The present invention is based on the above knowledge, and the typical composition of the target WCC cemented carbide is A as a hard substance.
) WC, B) (WTi) carbides and carbonitrides as solid solution components, C) (W, Ti, M) carbides and carbonitrides (
However, M is Zr+tlf+V, Ta.

Nl+の1種または2種以上を示す)の内のA)のみ、
A)とB)、またはA)とC)を市販の超硬工具と同程
度、即ち85〜96重量%含有し、残部4〜15重量%
は結合相となるCoである。
Only A) of (representing one or more types of Nl+),
Contains A) and B) or A) and C) to the same extent as commercially available cemented carbide tools, that is, 85 to 96% by weight, and the balance is 4 to 15% by weight.
is Co which becomes the bonding phase.

A)にCoを被覆して製造した工具は特に機械的な耐損
傷性能を重視した工具であり、A)とC)にCoを被覆
して製造した工具は特に熱的な耐損傷性能を重視した工
具であり、A)とB)にCoを被覆して製造した工具は
上述したA)またはA)とC)の場合の中間的性能を示
す工具である。
A tool manufactured by coating A) with Co is a tool with particular emphasis on mechanical damage resistance, and a tool manufactured with A) and C) coated with Co places particular emphasis on thermal damage resistance. The tool produced by coating A) and B) with Co is a tool that exhibits intermediate performance between A) or A) and C) described above.

結合相としてのCoは超硬合金中の含有量が4〜15重
量%になるように以下の方法で硬質化合物を被覆する形
で添加する。4%未満では抗折力が不足して衝撃的荷重
が工具に負荷すると欠損しやすいので4%以上必要であ
る。15%を越えると耐衝撃特性は良くなるものの耐摩
耗性が劣化するので15%以下とする必要がある。Co
の添加は無電解メツキ、化学蒸着法(熱CVD、プラズ
マCVD)物理蒸着法(真空蒸着、スパッタリング法)
などの方法により炭化物または炭窒化物にco@被覆す
ることにより行う。これらの方法を選定した理由は比較
的均一な厚さの被I模が形成されるためである。混合、
プレス成形後、焼結および研削加工して切削工具を製造
方法する。
Co as a binder phase is added in the form of coating a hard compound by the following method so that the content in the cemented carbide is 4 to 15% by weight. If it is less than 4%, the transverse rupture strength will be insufficient and if an impact load is applied to the tool, it will easily break, so 4% or more is required. If it exceeds 15%, the impact resistance properties will improve, but the abrasion resistance will deteriorate, so it is necessary to keep it below 15%. Co
Addition is done by electroless plating, chemical vapor deposition method (thermal CVD, plasma CVD), physical vapor deposition method (vacuum deposition method, sputtering method)
This is done by coating carbide or carbonitride with co@ by a method such as . The reason why these methods were selected is that a pattern with a relatively uniform thickness can be formed. mixture,
After press forming, the cutting tool is manufactured by sintering and grinding.

次に、本発明を実施例により具体的に説明する。Next, the present invention will be specifically explained using examples.

実施例1 平均粒径1.5μmの−C粉末の表面にCoを無電解メ
ツキ法により平均膜厚0.2 pmの厚さに被覆した被
覆粉末(重量比でWC: Co・90:10)に成形助
剤を適量添加してボールミルで混合し、1.5 L /
c+flの圧力でプレス成形した後、温度1380″C
1保持時間90m1n、圧力0.5 torrの条件で
焼結した。この焼結体から曲げ試験片と切削工具を研削
加工により切り出して所定の寸法に仕上げた。比較材は
平均粒径1.5μmの−C粉末と平均粒径1. O)t
mのCo粉末とを重量比で90:10に粉砕、混合して
、溶剤と潤滑剤とを加えて顆粒とした後、上記条件と同
じ条件で焼結して曲げ試験片と切削工具を切り出して作
製した。
Example 1 Coated powder in which the surface of -C powder with an average particle size of 1.5 μm was coated with Co to an average thickness of 0.2 pm by electroless plating method (WC: Co 90:10 in weight ratio) Add an appropriate amount of molding aid and mix in a ball mill to make 1.5 L/
After press molding at a pressure of c+fl, the temperature was 1380″C.
Sintering was carried out under conditions of a holding time of 90 ml and a pressure of 0.5 torr. A bending test piece and a cutting tool were cut out from this sintered body by grinding and finished to predetermined dimensions. Comparative materials were -C powder with an average particle size of 1.5 μm and -C powder with an average particle size of 1.5 μm. O)t
m of Co powder was crushed and mixed at a weight ratio of 90:10, and a solvent and a lubricant were added to form granules, which were then sintered under the same conditions as above to cut out bending test pieces and cutting tools. It was made by

曲げ試験後の破面上の破壊の起点部を電子顕微鏡で観察
した結果、比較材の場合は凝集したCoに起因する直径
60pmの空孔が検出された。一方、本発明材の場合は
破壊の起点部に5ptiの欠陥が検出され、そこにはc
oの偏析は認められなかった。
As a result of observing the fracture origin on the fracture surface after the bending test using an electron microscope, in the case of the comparative material, pores with a diameter of 60 pm caused by agglomerated Co were detected. On the other hand, in the case of the present invention material, a 5 pti defect was detected at the starting point of fracture, and there was a c.
No segregation of o was observed.

次いで、切削評価試験結果について述べる。Next, the cutting evaluation test results will be described.

被削材の材質はJIS 555C,形状は表面層に圧延
方向と平行方向に幅10mmの溝を等間隔に5本加工し
た径55ffII11、長さ350 amの丸鋼である
。切削条件はV = 160 m/lll1n、 d 
=2.0++ua、  f =0.25M/revであ
る。溝との衝突回数で工具寿命を比較すると比較材は2
.5X10”回でT共が欠損した。
The material of the work material is JIS 555C, and the shape is a round steel with a diameter of 55ffII11 and a length of 350 am, with five grooves of 10 mm width machined at equal intervals in the direction parallel to the rolling direction on the surface layer. The cutting conditions are V = 160 m/lll1n, d
=2.0++ua, f =0.25M/rev. Comparing the tool life based on the number of collisions with the groove, the comparison material was 2.
.. Both Ts were deleted in 5×10” cycles.

本発明材は5X10’回になっても工具欠損は生じなか
った。但し2、摩耗が進行し7で工具寿命になった。空
孔欠陥寸法を小さくすることが工具欠11を著しく改善
することが明らかである。
With the material of the present invention, tool breakage did not occur even after 5×10' cycles. However, the wear progressed at 2 and the tool life reached the end at 7. It is clear that reducing the hole defect size significantly improves tool chipping 11.

実施例2 平均粒径i、、 5 /1111の一部粉末及び(W、
 Ti、 Ta) C粉7にの表面にCoを真空蒸着法
により平均膜厚0゜2μmの+9−さに被覆した原料粉
末(重量比でWC:TiC:TaC:Co=80:5:
5:10)に成形助剤を適量添加し7てボールミルで混
合し、1.5 t /cdの圧力でプレス成形し、た後
、温度1380°C1保持時間90m1n、圧力0、5
 torrの条件で焼結し、た。この焼結体から曲げ試
験片と切削工具を研削加工により切り出し”C所定の・
1″法に仕上げた。比較材は平均粒径1.5峻の札粉末
、  (W、 Ti、 Ta) Cと平均粒径1.0−
のC。
Example 2 Partial powder with average particle size i,, 5/1111 and (W,
Ti, Ta) Raw material powder coated with Co on the surface of C powder 7 with an average film thickness of 0°2 μm by vacuum evaporation method (weight ratio: WC:TiC:TaC:Co=80:5:
5: Add an appropriate amount of molding aid to 10), mix in a ball mill, press mold at a pressure of 1.5 t/cd, then heat at 1380°C, hold time 90ml, pressure 0,5
It was sintered under conditions of torr. A bending test piece and a cutting tool are cut out from this sintered body by grinding, and a predetermined
1" method. Comparative materials are tag powder with an average particle size of 1.5, (W, Ti, Ta) C and an average particle size of 1.0-
C.

粉末(重量比でWC:TiC:TaC;Co=80:5
:5: 10)を粉砕、混合して、溶剤と潤滑剤とを加
えて顆粒とした後、上記条件と同じ条件で焼結して曲げ
試験片と切削工具を切り出して作製した。
Powder (weight ratio: WC:TiC:TaC; Co=80:5
:5:10) was crushed and mixed, and a solvent and a lubricant were added to form granules, which were then sintered under the same conditions as above, and bending test pieces and cutting tools were cut out.

曲げ試験後の破面−Lの破壊の起点部を電子顕微鏡で観
察した結果、比較材の場合はia集したCoに起因する
直径504の空孔が検出された。一方、本発明Hの場合
は破壊の起点部に8μIの欠陥が検出され、そこにはC
oの偏析は認められなかった。
As a result of observing the fracture origin of the fracture surface -L after the bending test using an electron microscope, in the case of the comparative material, pores with a diameter of 504 due to ia-aggregated Co were detected. On the other hand, in the case of Invention H, a defect of 8 μI was detected at the starting point of fracture, and there was a C
No segregation of o was observed.

次いで、切削評価試験結果についで述べる。Next, the cutting evaluation test results will be described.

被削材の材質は、INS 555C,形状は表面層に圧
延力向と平行方向に幅1.0111(Oの溝を等間隔に
5本加工し、た径55躯1 長さ350111111の
丸鋼である。切削条件はV = 160 +n/n1r
i、 d −2゜0ff1111.f−〇。25印/r
evである。溝との衝突回数でユ具寿命を比較すると比
較材は1.2X102回で」、只が欠1員した。本発明
材は3X106同になっても工具欠損は生じなかった。
The material of the work material is INS 555C, and the shape is a round steel with a diameter of 55 mm and a length of 350 mm, with 5 grooves of width 1.0111 mm (O) machined at equal intervals on the surface layer in the direction parallel to the rolling force direction. The cutting conditions are V = 160 +n/n1r
i, d -2°0ff1111. f-〇. 25 marks/r
It is ev. Comparing the tool life based on the number of collisions with the groove, the comparison material had 1.2 x 102 collisions, with only one member missing. With the present invention material, tool breakage did not occur even when 3×106 was used.

但し、摩耗が進行して]:具寿命になった。空孔欠陥寸
法を小さくすることが工具欠損を著しく改善することが
明かである。
However, wear has progressed]: The tool life has been reached. It is clear that reducing the hole defect size significantly improves tool chipping.

(発明の効果) 」二連の実施例かられかるように硬質炭化物原料粉末の
表面にCoを被覆した被覆粉末を原料として使用°4る
本発明によればコバルト偏析に起因する欠陥の少ない切
削工具用炭化タングステン基超硬合金を製造することが
可能で衝撃荷重な受(」る断続切削などの工具に使用し
た場合、優れた性能を示し2.産業上の効果は極めて顕
著なものがある。
(Effects of the Invention) As can be seen from the two series of examples, according to the present invention, which uses a coated powder in which the surface of a hard carbide raw material powder is coated with Co as a raw material, cutting with fewer defects caused by cobalt segregation can be achieved. It is possible to produce tungsten carbide-based cemented carbide for tools, and when it is used in tools for interrupted cutting that are subject to shock loads, it exhibits excellent performance. 2. The industrial effects are extremely remarkable. .

Claims (1)

【特許請求の範囲】[Claims] 硬質物質としてA)炭化タングステン、B)WとTiの
固溶体炭化物および固溶体炭窒化物、C)WおよびTi
を除く周期律表の4a、5a、および6a族の遷移金属
のうちの1種または2種以上とWおよびTiとの固溶体
炭化物および固溶体炭窒化物の内、上記A)のみ、上記
A)とB)、または上記A)とC)を含有し、さらに結
合相としてCoを含有する炭化タングステン基超硬合金
を製造するに際して、上記の硬質物質粉末の表面にCo
を被覆した被覆粉末のみを原料として使用することを特
徴とするコバルト偏析に起因する空孔欠陥寸法の小さい
切削工具用炭化タングステン基超硬合金の製造法。
Hard substances include A) tungsten carbide, B) solid solution carbide and solid solution carbonitride of W and Ti, and C) W and Ti.
Of the solid solution carbides and solid solution carbonitrides of W and Ti and one or more of the transition metals of Groups 4a, 5a, and 6a of the periodic table excluding B), or when producing a tungsten carbide-based cemented carbide containing A) and C) above and further containing Co as a binder phase, Co is added to the surface of the hard substance powder.
A method for producing a tungsten carbide-based cemented carbide for cutting tools with small pore defect sizes caused by cobalt segregation, characterized by using only coated powder coated with as a raw material.
JP1017722A 1989-01-30 1989-01-30 Manufacture of tungsten carbide-base sintered hard alloy for cutting tools having less dimension in void defect Pending JPH02200744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1017722A JPH02200744A (en) 1989-01-30 1989-01-30 Manufacture of tungsten carbide-base sintered hard alloy for cutting tools having less dimension in void defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1017722A JPH02200744A (en) 1989-01-30 1989-01-30 Manufacture of tungsten carbide-base sintered hard alloy for cutting tools having less dimension in void defect

Publications (1)

Publication Number Publication Date
JPH02200744A true JPH02200744A (en) 1990-08-09

Family

ID=11951641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1017722A Pending JPH02200744A (en) 1989-01-30 1989-01-30 Manufacture of tungsten carbide-base sintered hard alloy for cutting tools having less dimension in void defect

Country Status (1)

Country Link
JP (1) JPH02200744A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6213935B1 (en) * 2016-12-09 2017-10-18 ユーゲル株式会社 Manufacturing method of fine free carbon dispersion type cemented carbide and coated cemented carbide
WO2018105706A1 (en) * 2016-12-09 2018-06-14 ユーゲル株式会社 Method for manufacturing fine free carbon dispersion type cemented carbide, cutting tip with exchangeable cutting edge, machined product formed from alloy, and method for manufacturing same
JP2018094714A (en) * 2017-08-09 2018-06-21 ユーゲル株式会社 Blade edge exchangeable cutting tip using fine free carbon dispersion type high-accuracy hard metal, and hard metal product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6213935B1 (en) * 2016-12-09 2017-10-18 ユーゲル株式会社 Manufacturing method of fine free carbon dispersion type cemented carbide and coated cemented carbide
WO2018105706A1 (en) * 2016-12-09 2018-06-14 ユーゲル株式会社 Method for manufacturing fine free carbon dispersion type cemented carbide, cutting tip with exchangeable cutting edge, machined product formed from alloy, and method for manufacturing same
JP2018094714A (en) * 2017-08-09 2018-06-21 ユーゲル株式会社 Blade edge exchangeable cutting tip using fine free carbon dispersion type high-accuracy hard metal, and hard metal product

Similar Documents

Publication Publication Date Title
JP5619006B2 (en) Hard metal
US8936665B2 (en) Diamond metal composite
US7309373B2 (en) Method of making a ceramic body of densified tungsten carbide
CN111566241B (en) Cemented carbide and cutting tool
JP6703757B2 (en) Cermet and cutting tool
JP2019516007A (en) Cemented carbide with alternative binders
JP2008502576A (en) Consolidation method for hard coated hard powder
KR20090091803A (en) Cubic boron nitride compacts
WO2011136197A1 (en) Cermet and coated cermet
CN109070216A (en) Carbide with toughness enhancing structure
JP5289532B2 (en) Cemented carbide and rotary tool using the same
JP4065666B2 (en) High crater resistance High strength sintered body
JPH02254131A (en) Nitrogen-containing cermet having excellent various characteristics, its manufacture and coated nitrogen-containing cermet
JPS60162782A (en) Coated hard alloy tool
KR101306194B1 (en) Sintered body for cutting tools and manufacturing method for the same
JP2010500477A (en) Mixed powder containing solid solution powder and sintered body using the same, mixed cermet powder containing solid solution powder, cermet using the same, and method for producing them
JPH02200744A (en) Manufacture of tungsten carbide-base sintered hard alloy for cutting tools having less dimension in void defect
JP4366803B2 (en) Cemented carbide extruded material, method for producing the same, and cutting tool
JP2005133150A (en) Hard metal, manufacturing method therefor, and rotating tool using it
JP2014122425A (en) Method of compacting hard coated hard powder
JP3878334B2 (en) Cemented carbide and coated cemented carbide
KR101251599B1 (en) Sintered body for a cutting tool and manufacturing method for the same
JP2004292865A (en) Hard metal superior in fracture resistance and manufacturing method therefor
JPS635350B2 (en)
JPS6039137A (en) Manufacture of tungsten carbide-base sintered hard alloy