JPH02199030A - Homogenization of glass material - Google Patents

Homogenization of glass material

Info

Publication number
JPH02199030A
JPH02199030A JP2032289A JP2032289A JPH02199030A JP H02199030 A JPH02199030 A JP H02199030A JP 2032289 A JP2032289 A JP 2032289A JP 2032289 A JP2032289 A JP 2032289A JP H02199030 A JPH02199030 A JP H02199030A
Authority
JP
Japan
Prior art keywords
glass
heating element
melting
furnace
resistance heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2032289A
Other languages
Japanese (ja)
Inventor
Masanori Kumano
熊野 正典
Kanehito Nagashima
長嶋 兼仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2032289A priority Critical patent/JPH02199030A/en
Publication of JPH02199030A publication Critical patent/JPH02199030A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • C03B5/0275Shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/033Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by using resistance heaters above or in the glass bath, i.e. by indirect resistance heating
    • C03B5/0336Shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/183Stirring devices; Homogenisation using thermal means, e.g. for creating convection currents
    • C03B5/185Electric means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain a high-quality glass material having excellent homobgenity by blending effects of heat convection, by equipping a heating member for homogenization of glass material below a resistance heating element for melting glass material in a vertical glass melting furnace. CONSTITUTION:A resistance heating element 4 for melting glass material which is provided with a raw material feed opening 1 at the top, with a glass outlet 6 at the bottom and has lamellar heating part having formed on opening 5 approximately along the whole zone of a horizontal section of furnace at a level to be immersed in glass material G in the furnace is equipped. A resistance heating element 12 for homogenizing glass material, having a lamellar heating part provided with an opening 11 is equipped at a level below the resistance heating element 4 approximately along the whole zone of horizontally section of furnace. The glass material G is efficiently mixed and stirred by heat convection produced in zones 9a and 9b by the resistance heating element 4 and 12 and the material having reached the outlet 6 becomes a material having excellently improved homegenity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はガラス素地均質化方法に係り、特にガラス素地
中に浸漬した抵抗発熱体によりガラスを溶融する方法に
おいて、ガラス素地を高度に均質化する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for homogenizing glass substrates, and in particular, in a method of melting glass using a resistance heating element immersed in the glass substrate, the present invention relates to a method for homogenizing glass substrates to a high degree of homogenization. Regarding how to.

[従来の技術及び先行技術] ガラス溶融炉によりガラスの溶融を行なう場合、バッチ
溶解のためにガラス素地内あるいは素地外に設けられた
熱源に起因する炉内の温度分布によりガラス素地に熱対
流や様々な流れが生じるが、これにより、素地の引き伸
ばしあるいは剪断をひき起こす、その結果、素地の混合
が起こり均質化が進む。特に、熱対流による均質化効果
は大きい。このようなことから、ガラス溶融炉において
は、ガラス溶解用の熱源は、溶解と均質化が最適になる
ように配置して、ガラス溶融処理を行なう。
[Prior Art and Prior Art] When glass is melted in a glass melting furnace, heat convection and other effects occur in the glass substrate due to the temperature distribution inside the furnace caused by a heat source installed inside or outside the glass substrate for batch melting. Various flows occur, which cause stretching or shearing of the substrate, resulting in mixing and homogenization of the substrate. In particular, the homogenization effect due to thermal convection is significant. For this reason, in a glass melting furnace, a heat source for glass melting is arranged so as to optimize melting and homogenization, and glass melting processing is performed.

その他、ガラス溶融炉におけるガラス素地均質化方法と
しては、炉底部あるいは炉壁部に配した開口部から素地
中に窒素等のガスを送り出し、ガス泡の上昇により生じ
る素地の流れにより均質化を行なう方法(いわゆるバブ
リング法)もある。
Another method for homogenizing the glass substrate in a glass melting furnace is to send gas such as nitrogen into the substrate from an opening placed in the bottom of the furnace or the furnace wall, and homogenize the substrate by the flow of the substrate caused by the rise of gas bubbles. There is also a method (so-called bubbling method).

一方、本出願人は、高品質のガラスを製造することが可
能なガラス溶融炉として、最上部に原料投入部を有し、
最下部にガラス素地出口を備えた竪型のガラス溶融炉に
おいて、ガラス素地に浸漬する少くとも1つのレベルに
、当該レベルにおける炉の水平断面のほぼ全領域゛にわ
たって抵抗発熱体を設けたことを特徴とするガラス溶融
炉を開発し、先に特許出願を行なった(特願昭62−3
27892号、以下「先願」という。)第6図は先願に
係るガラス溶融炉の一例を示す断面図であり、第7図は
第6図中のガラス溶解用抵抗発熱体4の斜視図である。
On the other hand, the present applicant has developed a glass melting furnace capable of producing high quality glass, which has a raw material input section at the top,
In a vertical glass melting furnace with a glass substrate outlet at the bottom, a resistance heating element is provided at least on one level immersed in the glass substrate over almost the entire area of the horizontal cross section of the furnace at that level. He developed a distinctive glass melting furnace and filed a patent application (patent application 1986-3).
No. 27892, hereinafter referred to as the "prior application". ) FIG. 6 is a sectional view showing an example of the glass melting furnace according to the prior application, and FIG. 7 is a perspective view of the glass melting resistance heating element 4 in FIG. 6.

第6図及び第7図中1は原料投入口、2は炉本体、3は
バッチ層、4はガラス溶解用抵抗発熱体、5は開口、6
はガラス素地出口、7は交流電源である。
In Figures 6 and 7, 1 is a raw material inlet, 2 is a furnace body, 3 is a batch layer, 4 is a resistance heating element for glass melting, 5 is an opening, 6
7 is a glass substrate outlet, and 7 is an AC power source.

先願に係るガラス溶融炉は、電極を素地中に挿入し素地
に電気を流すことで加熱する従来の直接通電加熱とは異
なり、できるだけ熱対流をなくし発熱体上部におけるバ
ッチの均一溶解を目的としており、上部素地領域8の水
平断面における温度分布ができるだけ少なくなるようガ
ラス溶解用抵抗発熱体4は設計されている。
Unlike conventional direct current heating, which heats the substrate by inserting an electrode into the substrate and passing electricity through it, the glass melting furnace according to the prior application aims to eliminate heat convection as much as possible and uniformly melt the batch above the heating element. The resistance heating element 4 for glass melting is designed so that the temperature distribution in the horizontal section of the upper substrate region 8 is as small as possible.

[発明が解決しようとする課題] 先願のガラス溶融炉においては、原料投入口1から投入
された原料は、バッチ層3と上部素地領域8の境界領域
においてほぼ均一に溶解し、この領域8では殆ど対流を
起こさずガラス溶解用抵抗発熱体4の開口5に達する。
[Problems to be Solved by the Invention] In the glass melting furnace of the prior application, the raw material input from the raw material input port 1 is almost uniformly melted in the boundary region between the batch layer 3 and the upper substrate region 8, and this region 8 Then, it reaches the opening 5 of the resistance heating element 4 for glass melting without causing almost any convection.

開口5を通過して下部素地領域9へと流れた素地は、ガ
ラス溶解用抵抗発熱体4の水平方向の温度分布がほぼ均
一であるために下部素地領域9においても温度の差はつ
き難い。このため素地の対流は殆どみられず、矢印Aの
如く出口11へ流下する流れが大半となり、この領域9
における素地の混合はそれほどなされない。その結果、
−得られる素地の均質性は、用途によっては十分でない
場合があった。
The substrate that has passed through the opening 5 and has flowed to the lower substrate region 9 has a substantially uniform temperature distribution in the horizontal direction of the resistance heating element 4 for glass melting, so that there is hardly any difference in temperature in the lower substrate region 9 as well. Therefore, there is almost no convection in the substrate, and most of the flow flows down to the outlet 11 as shown by arrow A, and this region 9
There is not much mixing of the substrates. the result,
- The homogeneity of the resulting substrate may not be sufficient depending on the application.

なお、先願に係るガラス溶融炉では、バブリングによる
均質化の適用は、次のような理由から好ましいものでは
ない。即ち、炉最上部にバッチ層を有する炉においては
、バブリングを行なうと、泡は発熱体やバッチ層に捕ら
えられ素地の流れとともに炉出口に流れるようになり、
結果的に得られるガラスは泡の多いガラスとなる。また
、バッチ層下に捕らえられた泡は断熱層を形成しバッチ
層の溶解にも悪影響を及ぼす。
In addition, in the glass melting furnace according to the prior application, application of homogenization by bubbling is not preferable for the following reasons. That is, in a furnace that has a batch layer at the top of the furnace, when bubbling is performed, bubbles are captured by the heating element and the batch layer and flow to the furnace outlet along with the flow of the substrate.
The resulting glass is a bubbly glass. In addition, the bubbles trapped under the batch layer form a heat insulating layer and have an adverse effect on the dissolution of the batch layer.

本発明は上記先願の問題点を解決し、ガラス素地の均質
化をより効果的に行なうことにより、著しく高品質なガ
ラスを得ることができるガラス素地均質化方法を提供す
ることを目的とする。
An object of the present invention is to solve the problems of the above-mentioned prior application and provide a method for homogenizing glass substrates that can more effectively homogenize glass substrates and thereby obtain glass of extremely high quality. .

[課題を解決するための手段] 本発明のガラス素地均質化方法は、最上部に原料投入部
を有し、最下部にガラス素地出口を備え、ガラス素地に
浸漬するレベルに、少なくとも一つの開口を有する板状
のガラス素地溶解用抵抗発熱体を設けた竪型ガラス溶融
炉にてガラスを溶融するにあたり、炉内の前記ガラス素
地溶解用抵抗発熱体より下のレベルにガラス素地均質化
用加熱体を設け、該ガラス素地均質化用加熱体による加
熱によりガラス素地に熱対流を生じさせて均質化するこ
とを特徴とする。
[Means for Solving the Problems] The glass substrate homogenization method of the present invention has a raw material input section at the top, a glass substrate outlet at the bottom, and at least one opening at a level for immersion into the glass substrate. When melting glass in a vertical glass melting furnace equipped with a plate-shaped resistance heating element for melting glass substrates, a heating element for homogenizing the glass substrate is placed at a level below the resistance heating element for melting glass substrates in the furnace. The present invention is characterized in that a heating element is provided for homogenizing the glass base, and heat convection is generated in the glass base by heating with the heating body for homogenizing the glass base.

なお、本発明の方法において、ガラス素地均質化用加熱
体は、抵抗発熱方式、電極を使用したガラス素地の直接
通電加熱方式のいずれの加熱体でも良い。
In the method of the present invention, the heating element for homogenizing the glass substrate may be either a resistance heating type heating element or a heating element using a direct current heating method of the glass substrate using an electrode.

[作用] ガラス素地溶解用抵抗発熱体はガラス素地を通してガラ
スバッチを均質に溶解させる。溶解した素地はこの発熱
体の開口部を通り、ガラス素地均質化用加熱体の存在す
る領域において、この加熱体により生じる熱対流により
混合が促進される。
[Function] The resistance heating element for melting glass substrate homogeneously melts the glass batch through the glass substrate. The melted substrate passes through the opening of this heating element, and mixing is promoted in the region where the heating element for homogenizing the glass substrate is present by thermal convection generated by this heating element.

即ち、ガラス素地溶解用抵抗発熱体下部のガラス素地領
域に、ガラス素地均質化用加熱体を設け、この加熱体の
加熱で当該領域の熱対流を盛んにし、素地の混合を促進
させることによって、熱対流を抑制して熱履歴の短いガ
ラス素地すなわち加熱が不十分で泡や未溶解物を含んだ
ガラス素地が流出して製品に欠点を生じさせることや、
ガラス素地表面のバッチの不均一な溶解を引き起こすこ
とを防止できるという、先願に係るガラス溶解炉の板状
発熱体による溶解方式の利点を損なうことなく、ガラス
素地の均質性を向上させることができる。
That is, a heating element for homogenizing the glass substrate is provided in the glass substrate region below the resistance heating element for melting the glass substrate, and heating by this heating element increases thermal convection in the region to promote mixing of the substrate. By suppressing thermal convection, the glass substrate with a short thermal history, that is, the glass substrate containing bubbles and undissolved substances due to insufficient heating, may flow out and cause defects in the product.
It is possible to improve the homogeneity of the glass substrate without sacrificing the advantage of the melting method using the plate-shaped heating element of the glass melting furnace according to the prior application, which can prevent uneven melting of the batch on the surface of the glass substrate. can.

[実施例] 以下、図面を参照して本発明の実施例について詳細に説
明する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の実施に好適なガラス溶融炉の一例を示
す断面図、第2図は第1図II −II線に沿う断面図
、第3図はガラス素地均質化用抵抗発熱体の斜視図、第
4図は本発明の実施に好適なガラス溶融炉の他の例を示
す断面図、第5図は第4図V−V#i!に沿う断面図で
ある。
Fig. 1 is a sectional view showing an example of a glass melting furnace suitable for carrying out the present invention, Fig. 2 is a sectional view taken along line II-II in Fig. 1, and Fig. 3 is a cross-sectional view of a resistance heating element for homogenizing glass substrates. FIG. 4 is a sectional view showing another example of a glass melting furnace suitable for carrying out the present invention, and FIG. 5 is a perspective view of FIG. 4 V-V#i! FIG.

まず、第1図〜第3図を参照して本発明の第1の実施態
様について説明する。
First, a first embodiment of the present invention will be described with reference to FIGS. 1 to 3.

本実施例のガラス溶融炉においては、種瓦よりなる炉本
体2は平面視で四角形をなし、上部に原料没入口1、底
部にガラス出口(本例では下方へ突出するスロート)6
が設けられ、内部には溶融したガラス素地Gが保持され
ている。このガラス素地Gの表面にはガラス原料(バッ
チ)が均等に供給され、バッチ層3が形成されている。
In the glass melting furnace of this embodiment, the furnace body 2 made of seed tiles has a rectangular shape in plan view, with a raw material inlet 1 at the top and a glass outlet (in this example, a throat projecting downward) 6 at the bottom.
is provided, and a molten glass base G is held inside. A glass raw material (batch) is evenly supplied to the surface of this glass base G, and a batch layer 3 is formed.

しかして、炉内のガラス素地Gに浸漬されるレベルに、
当該レベルにおける炉の水平断面のほぼ全領域にわたっ
て、開口5が形成された板状の発熱部4aを有するガラ
ス素地溶融用抵抗発熱体4が設置されている。
Therefore, at the level where it is immersed in the glass base G in the furnace,
A resistance heating element 4 for melting glass substrates having a plate-shaped heating section 4a in which an opening 5 is formed is installed over almost the entire horizontal section of the furnace at this level.

そして、このガラス素地溶解用抵抗発熱体4より下のレ
ベルに、開口11が形成された板状の発熱部を有するガ
ラス素地均質化用抵抗発熱体12が、当該レベルにおけ
る炉の水平断面のほぼ全領域にわたって設けられている
At a level below this resistance heating element 4 for melting glass substrates, a resistance heating element 12 for homogenizing glass substrates having a plate-shaped heating section in which an opening 11 is formed is installed, at a level approximately equal to the horizontal cross section of the furnace at this level. It is provided throughout the entire area.

溶解用抵抗発熱体4は、均一に分布した多数の開口5を
有する板状の発熱部4aと、その両端から上方に立ち上
るターミナル部4bを備えてなり、溶解用抵抗発熱体4
の炉外の端部は電源10に接続されている。溶解用抵抗
発熱体4の開口5は、ガラス素地Gの平面内温度分布を
できるだけ均一にするべく、等径、等形状のものを等間
隔で形成したものが良い。
The resistance heating element 4 for melting includes a plate-shaped heating part 4a having a large number of uniformly distributed openings 5, and terminal parts 4b rising upward from both ends of the heating part 4a.
The end outside the furnace is connected to a power source 10. The openings 5 of the resistance heating element 4 for melting are preferably formed with equal diameters and shapes at equal intervals in order to make the in-plane temperature distribution of the glass base G as uniform as possible.

開口5の大きさ等は発熱部4aの大きさ等によっても異
なるが、例えば、発熱部4aが一辺約100cmの略正
方形の板である場合には、開口5としては、直径1〜2
80mm程度の円形のものを、隣接する開口との間隔(
隣接する開口の中心間距離)が5〜300mmとなるよ
うに4〜50000個形成するのが好ましい。
Although the size of the opening 5 varies depending on the size of the heat generating part 4a, for example, if the heat generating part 4a is a substantially square plate with a side of about 100 cm, the opening 5 has a diameter of 1 to 2 mm.
The distance between adjacent openings (
It is preferable to form 4 to 50,000 such that the center-to-center distance between adjacent openings is 5 to 300 mm.

均質化用抵抗発熱体12は、比較的直径の大きい1つの
開口11を有する板状の発熱部12aと、その両端から
上方に立ち上るターミナル部12bを備えてなり、均質
化用抵抗発熱体12の炉外の端部は電源10′に接続さ
れている。均質化用抵抗発熱体12の開口11は、溶解
用抵抗発熱体4とは異なり、ガラス素地Gにできるだけ
熱対流が盛んに起きるように、その大きさ、配置、形状
、個数等が設計される。本実施例においては、発熱部1
2aの中央に比較的直径の大きい円形の開口11を形成
したものを用いているこのように、1つの開口11を形
成したものを用いる場合、例えば発熱部12aが一辺約
100cmの略正方形の板状であれば、開口11として
は、直径10〜50cmのものを発熱部12aの中心位
置に形成するのが好ましい。
The homogenizing resistance heating element 12 includes a plate-shaped heating part 12a having one opening 11 with a relatively large diameter, and terminal parts 12b rising upward from both ends of the plate-shaped heating part 12a. The end outside the furnace is connected to a power source 10'. Unlike the resistance heating element 4 for melting, the size, arrangement, shape, number, etc. of the openings 11 of the homogenization resistance heating element 12 are designed so that heat convection occurs as actively as possible in the glass base G. . In this embodiment, the heat generating part 1
When using a device with a relatively large diameter circular opening 11 formed in the center of the heat generating portion 12a, for example, a substantially square plate with a side of about 100 cm is used. If the shape of the opening 11 is 10 to 50 cm in diameter, it is preferable to form the opening 11 at the center of the heat generating part 12a.

かかる構成のガラス溶融炉において、溶解用抵抗発熱体
4と均質化用抵抗発熱体12の各々に通電することによ
りガラスの加熱溶解及び均質化がなされる。この際、抵
抗発熱体4.12の抵抗値は温度に応じて一義的に定ま
るものであり、所定の電力を供給することにより正確に
所定量の熱を発生させることができる。
In the glass melting furnace having such a configuration, the glass is heated and melted and homogenized by energizing each of the resistance heating element 4 for melting and the resistance heating element 12 for homogenization. At this time, the resistance value of the resistance heating element 4.12 is uniquely determined depending on the temperature, and a predetermined amount of heat can be generated accurately by supplying a predetermined electric power.

しかして、溶解用抵抗発熱体4は、その発熱板部4aが
炉の水平断面の全領域にわたって均等に設けられており
、かつ開口5も多数均一に分散して形成されているため
、領域8から領域9aにいたるガラス素地Gが該水平断
面の全領域で均等に加熱されるようになり、当該水平断
面におけるガラス素地の温度分布は著しく均一になる。
Therefore, in the melting resistance heating element 4, the heating plate portions 4a are evenly provided over the entire horizontal cross section of the furnace, and a large number of openings 5 are also formed in a uniformly distributed manner. The glass base G from 9 to 9a is heated evenly over the entire area of the horizontal cross section, and the temperature distribution of the glass base G in the horizontal cross section becomes extremely uniform.

一方、均質化用抵抗発熱体12による加熱により、炉内
の溶解用抵抗発熱体4と出口6との間のガラス素地Gに
温度の高い部分が形成される。このため、溶解用抵抗発
熱体4と均質化用抵抗発熱体12との間の領域9aにお
いて、均質化用抵抗発熱体12の設置レベル付近から沸
き上がる熱対流(矢印B)を盛んに生じさせる。同時に
、均質化用抵抗発熱体12と出口6との間の領域9bに
おいても、均質化用抵抗発熱体12の温度分布により対
流(矢印C)が生じる。
On the other hand, due to the heating by the homogenizing resistance heating element 12, a high temperature portion is formed in the glass base G between the melting resistance heating element 4 in the furnace and the outlet 6. Therefore, in the region 9a between the melting resistive heating element 4 and the homogenizing resistive heating element 12, heat convection (arrow B) that rises from the vicinity of the installation level of the homogenizing resistive heating element 12 is actively generated. At the same time, convection (arrow C) occurs also in the region 9b between the homogenizing resistive heating element 12 and the outlet 6 due to the temperature distribution of the homogenizing resistive heating element 12.

このような領域9a、9bに生じる熱対流により、ガラ
ス素地Gは効率的に混合攪拌され、その結果、出口6に
達した素地は著しく均質性の良い素地となる。
Due to the heat convection generated in such regions 9a and 9b, the glass base G is efficiently mixed and stirred, and as a result, the base that reaches the outlet 6 becomes a base with extremely good homogeneity.

本実施例方法においては、均質化用抵抗発熱体の開口の
大きさや個数、形状、形成位置等を適宜調整することに
より、領域9aから領域9bへの流れに対して邪魔板的
効果が生じ、熱対流の強い炉でみられるような短時間で
炉出口に達するガラス素地の流れを防ぐことができる。
In the method of this embodiment, by appropriately adjusting the size, number, shape, formation position, etc. of the openings of the homogenizing resistance heating element, a baffle-like effect is produced on the flow from the region 9a to the region 9b. This prevents the glass substrate from flowing to the furnace outlet in a short period of time, which occurs in furnaces with strong heat convection.

次に、第4図及び第5図を参照して本発明の第2の実施
態様について説明する。
Next, a second embodiment of the present invention will be described with reference to FIGS. 4 and 5.

第4図及び′s5図に示す実施例は、ガラス素地均質化
用加熱体として直接通電方式のものを用いた点のみが異
なり、他の構成は第1図及び第2図に示すものと同様で
あるので、同一部材に同一符号を付し、その説明を省略
する。
The embodiment shown in Fig. 4 and 's5 differs only in that a direct current type heating element is used as the heating element for homogenizing the glass substrate, and the other configurations are the same as those shown in Fig. 1 and Fig. 2. Therefore, the same members are given the same reference numerals and their explanations will be omitted.

本実施例においては、炉内の溶解用抵抗発熱体4の下の
レベルに、4対の電極13A、13B。
In this embodiment, four pairs of electrodes 13A, 13B are provided at a level below the melting resistance heating element 4 in the furnace.

13C,13Dを設けた。IOA、IOB、10C,I
ODは各電極13A、13B、13C。
13C and 13D were provided. IOA, IOB, 10C, I
OD is each electrode 13A, 13B, 13C.

130に通電するための電源である。This is a power source for energizing 130.

本実施例によれ、ば、各電極13A、13B。According to this embodiment, each electrode 13A, 13B.

13C,131)間に電圧を印加することで、ガラス素
地Gを発熱させ、領域9a、9bに対流を盛んに発生さ
せ、混合を促進させることができる。
By applying a voltage between 13C and 131), it is possible to make the glass base G generate heat, actively generate convection in the regions 9a and 9b, and promote mixing.

また、溶解用抵抗発熱体4下の全領域9a、9bに対流
が及ぶので短時間でガラス素地Gが出口6に達する流れ
を防ぐことができ、その結果、均質化ヒータを用いた方
法と同様に均質性の良い素地が得られる。
In addition, since convection flows to the entire area 9a, 9b under the resistance heating element 4 for melting, it is possible to prevent the glass substrate G from flowing to the outlet 6 in a short time, and as a result, it is similar to the method using a homogenizing heater. A substrate with good homogeneity can be obtained.

なお、本発明において、均質化用加熱体の位置は、でき
るだけ対流による混合が起こる領域が大きくなるように
するために、溶解用抵抗発熱体と均質化用加熱体との間
隔は大きい方が良い。しかしながら、均質化用加熱体が
炉の出口に近過ぎると出口付近のガラス素地の流速は速
いために、均質化用加熱体の近傍の流れは素地引き出し
流に引っ張られ、発生する対流は弱められることとなる
。従って、均質化用加熱体の位置は素地引出し流の影響
を受けない範囲でできるだけ炉底部に近い位置とするの
が望ましい6通常の場合、溶解用抵抗発熱体と炉底部と
の間隔が80cm程度の炉であれば、溶解用抵抗発熱体
の下方20〜60cm程度の位置に形成するのが好まし
い。
In addition, in the present invention, the position of the homogenizing heating element is such that the distance between the melting resistance heating element and the homogenizing heating element is preferably large in order to maximize the area where mixing by convection occurs as much as possible. . However, if the homogenizing heating element is too close to the outlet of the furnace, the flow velocity of the glass substrate near the outlet is high, so the flow near the homogenizing heating element is pulled by the substrate drawing flow, and the generated convection is weakened. It happens. Therefore, it is desirable to position the homogenizing heating element as close to the bottom of the furnace as possible without being affected by the flow of drawing out the material.6 In normal cases, the distance between the resistance heating element for melting and the bottom of the furnace is about 80 cm. In the case of a furnace, it is preferable to form it at a position of about 20 to 60 cm below the resistance heating element for melting.

[発明の効果] 上記詳述した通り、本発明のガラス素地均質化方法によ
れば、均質化用加熱体により生じる熱対流によるガラス
素地の混合効果のために、著しく均質性の良い高品質な
ガラス素地を得ることができる。
[Effects of the Invention] As detailed above, according to the method for homogenizing glass substrates of the present invention, a high quality product with extremely good homogeneity can be obtained due to the mixing effect of the glass substrates due to the thermal convection generated by the homogenizing heating element. Glass base can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に好適なガラス溶融炉の一例を示
す断面図、第2図は第1図II −II [に沿う断面
図、第3図はガラス素地均質化用抵抗発熱体の斜視図、
第4図は本発明の実施に好適なガラス溶融炉の他の例を
示す断面図、第5図は第4図V−V線に沿う断面図、第
6図は先願に係るガラス溶融炉の一例を示す断面図、第
7図はガラス溶解用抵抗発熱体を示す斜視図である。 1・・・原料投入口、 2・・・炉本体、3・・・バッ
チ層、  4・・・溶解用抵抗発熱体1.5・・・開口
、     6・・・出口、12・・・均質化用抵抗発
熱体、 13A、13B、13C,13D・・・電極。 代理人  弁理士  重 野  剛 第1図 第2図 1、w 第3図 第4図 第5図
Fig. 1 is a sectional view showing an example of a glass melting furnace suitable for carrying out the present invention, Fig. 2 is a sectional view taken along Fig. 1 II-II [, and Fig. 3 is a cross-sectional view of a resistance heating element for homogenizing glass substrate Perspective view,
FIG. 4 is a sectional view showing another example of a glass melting furnace suitable for carrying out the present invention, FIG. 5 is a sectional view taken along the line V-V in FIG. 4, and FIG. 6 is a glass melting furnace according to the prior application. FIG. 7 is a sectional view showing an example of the present invention, and FIG. 7 is a perspective view showing a resistance heating element for glass melting. 1... Raw material inlet, 2... Furnace body, 3... Batch layer, 4... Resistance heating element for melting 1.5... Opening, 6... Outlet, 12... Homogeneous 13A, 13B, 13C, 13D...electrodes. Agent Patent Attorney Tsuyoshi Shigeno Figure 1 Figure 2 Figure 1, w Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)最上部に原料投入部を有し、最下部にガラス素地
出口を備え、ガラス素地に浸漬するレベルに、少なくと
も一つの開口を有する板状のガラス素地溶解用抵抗発熱
体を設けた竪型ガラス溶融炉にてガラスを溶融するにあ
たり、炉内の前記ガラス素地溶解用抵抗発熱体より下の
レベルにガラス素地均質化用加熱体を設け、該ガラス素
地均質化用加熱体による加熱によりガラス素地に熱対流
を生じさせて均質化することを特徴とするガラス素地均
質化方法。
(1) A vertical structure having a raw material input section at the top, a glass substrate outlet at the bottom, and a plate-shaped resistance heating element for melting glass substrates with at least one opening at the level at which it is immersed in the glass substrate. When melting glass in a molded glass melting furnace, a heating element for homogenizing the glass substrate is installed at a level below the resistance heating element for melting the glass substrate in the furnace, and the glass is heated by the heating element for homogenizing the glass substrate. A method for homogenizing glass substrates characterized by homogenizing the substrate by generating heat convection.
JP2032289A 1989-01-30 1989-01-30 Homogenization of glass material Pending JPH02199030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2032289A JPH02199030A (en) 1989-01-30 1989-01-30 Homogenization of glass material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2032289A JPH02199030A (en) 1989-01-30 1989-01-30 Homogenization of glass material

Publications (1)

Publication Number Publication Date
JPH02199030A true JPH02199030A (en) 1990-08-07

Family

ID=12023894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2032289A Pending JPH02199030A (en) 1989-01-30 1989-01-30 Homogenization of glass material

Country Status (1)

Country Link
JP (1) JPH02199030A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0504774A2 (en) * 1991-03-18 1992-09-23 Nippon Sheet Glass Co. Ltd. Vertical glass melting furnace
GB2582981A (en) * 2019-04-12 2020-10-14 Glassflake Ltd A system and method for melting materials

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0504774A2 (en) * 1991-03-18 1992-09-23 Nippon Sheet Glass Co. Ltd. Vertical glass melting furnace
US5241558A (en) * 1991-03-18 1993-08-31 Nippon Sheet Glass Co., Ltd. Vertical glass melting furnace
GB2582981A (en) * 2019-04-12 2020-10-14 Glassflake Ltd A system and method for melting materials
CN113646273A (en) * 2019-04-12 2021-11-12 格拉斯费雷克有限公司 Heating element, system and method for melting material using the heating element
GB2582981B (en) * 2019-04-12 2022-01-05 Glassflake Ltd A system and method for melting materials

Similar Documents

Publication Publication Date Title
JPH04292423A (en) Method for homogenizing glass material
JP6074502B2 (en) Equipment for use in direct resistance heating of platinum containing containers
KR20180081803A (en) Glass ribbon forming apparatus and method
JP6990010B2 (en) Equipment and methods for heating metal containers
US2360373A (en) Apparatus for feeding glass in the manufacture of fibers
US2267537A (en) Electric furnace
JPH07106913B2 (en) Glass melting method and melting tank
US3056846A (en) Method and apparatus for heat conditioning and feeding heat-softenable materials
US3810741A (en) Method and apparatus for processing glass and controlling the thermal pattern in a stream feeder
JPS63500937A (en) Forefurnace for transporting molten glass
Jebava et al. Role of glass melt flow in container furnace examined by mathematical modelling
US3268320A (en) Glass furnace with means to agitate the molten glass
US4906272A (en) Furnace for fining molten glass
US2225616A (en) Electric furnace for melting glass
JPH02199030A (en) Homogenization of glass material
JP2570350B2 (en) Glass melting furnace
US4994099A (en) Method for fining molten glass
US3028442A (en) Method and apparatus for melting and feeding heat-softenable materials
CS214665B2 (en) Method of melting the glass and glassmaker melting furnace for executing the said method
JP3127197B2 (en) Electric heating glass melting furnace
JP2002060226A (en) Glass melting furnace
US3013096A (en) Method and apparatus for melting and feeding heat-softenable materials
JP2615966B2 (en) Glass melting furnace
JPH0891848A (en) Vertical glass fusing furnace
JP2004524257A (en) Accelerated melting and better process control