JPH0891848A - Vertical glass fusing furnace - Google Patents

Vertical glass fusing furnace

Info

Publication number
JPH0891848A
JPH0891848A JP22777194A JP22777194A JPH0891848A JP H0891848 A JPH0891848 A JP H0891848A JP 22777194 A JP22777194 A JP 22777194A JP 22777194 A JP22777194 A JP 22777194A JP H0891848 A JPH0891848 A JP H0891848A
Authority
JP
Japan
Prior art keywords
heating element
glass
furnace
plate
resistance heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22777194A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Inaka
禎之 伊中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Glass Fiber Co Ltd
Original Assignee
Nippon Glass Fiber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Glass Fiber Co Ltd filed Critical Nippon Glass Fiber Co Ltd
Priority to JP22777194A priority Critical patent/JPH0891848A/en
Publication of JPH0891848A publication Critical patent/JPH0891848A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/033Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by using resistance heaters above or in the glass bath, i.e. by indirect resistance heating
    • C03B5/0336Shaft furnaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Furnace Details (AREA)

Abstract

PURPOSE: To obtain a vertical glass fusing furnace capable of stably producing glass having excellent quality. CONSTITUTION: The glass raw material heating section of the glass fusing furnace consists of a planar resistance heating element 6 over the nearly entire area of the horizontal cross section of the fusing furnace. The thickness of the side parts of the heating element 6 facing the furnace side walls of a furnace body 10 is set at the thick part 6c thicker than the thickness of the other heating element surface (heating plate). The thick part 6c is then heated to a temp. higher than the temp. of the heating plate 6a and the glass body near the thick part 6c is heated higher at the time of fusing the glass raw material by impression of voltage from a terminal part 6b. Ascending flow is them generated in the glass body of this part and descending flow in the clearance is decreased. Since the glass body past the clearances is heated in the higher temp. region of the thick part 6c of the heating element 6, melting or heating is sufficiently executed and the passing through of the glass body insufficient in fusing or insufficient in heating from the spacing between the heating element 6 and the furnace side walls is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は竪型ガラス溶融炉に関す
る。
FIELD OF THE INVENTION The present invention relates to a vertical glass melting furnace.

【0002】[0002]

【従来の技術】ガラスの竪型電気溶融炉として図5に示
すように炉内の溶融ガラスに浸漬した電極5よりガラス
に直接通電し、発生するジュール熱によってガラスを加
熱してガラス素地4表面に原料投入口1から供給したガ
ラス原料(バッチ)3を溶融、清澄した後、炉の底部に
設けたガラス素地出口2よりガラスを作業部に搬送する
構造のものが一般的であった。しかしながら、棒状の電
極5を用い、ガラスのジュール熱による加熱を利用する
図5に示す従来の竪型電気溶融炉においては、炉の平面
内の電力分布を均一にすることは困難であり、特に電極
5の先端部近傍における電流密度が高くなり、電極5の
先端間のガラスの温度が高くなり易い。ガラスの電気抵
抗は温度が高いほど小さくなるので、その高温部にはま
すます電流が流れるようになり、局所加熱は更に助長さ
れることとなる。このような温度分布の不均一は炉内の
ガラス素地4に熱対流を起こさせ、その結果、熱履歴の
短いガラス素地4、つまり加熱が不十分で泡や未溶融物
を含んだガラス素地4がガラス素地出口2から流出する
こととなり、これが作業部に供給され製品に不具合が生
じる原因となる。更に、不均一な温度分布およびそれに
よって生じるガラス素地4の熱対流は、ガラス素地4の
表面のバッチ3の不均一な溶解を引き起こし、ガラス素
地4に局所的にバッチ層で覆われない部分が生じて、熱
損失が大きくなるとともに、ガラス温度の低下を招く。
このような問題は、アルカリ成分を含まない電気抵抗の
大きいガラスを溶融する場合において顕著になる。すな
わち、かかる無アルカリガラスは電気抵抗が大きいの
で、溶融に必要な電力をガラスに与えるためには、電極
5間の距離を小さくする必要があることから、上記の不
均一な温度分布が顕著となるのである。
2. Description of the Related Art As a vertical electric melting furnace for glass, as shown in FIG. 5, electricity is directly applied to the glass from an electrode 5 immersed in the molten glass in the furnace, and the glass is heated by Joule heat generated to heat the surface of the glass substrate 4. In general, the glass raw material (batch) 3 supplied from the raw material inlet 1 is melted and clarified, and then the glass is conveyed to the working portion from the glass base outlet 2 provided at the bottom of the furnace. However, in the conventional vertical electric melting furnace shown in FIG. 5, which uses the rod-shaped electrode 5 and uses the heating by the Joule heat of glass, it is difficult to make the electric power distribution in the plane of the furnace uniform, and The current density in the vicinity of the tip of the electrode 5 increases, and the temperature of the glass between the tips of the electrodes 5 tends to increase. Since the electrical resistance of glass decreases as the temperature rises, more and more electric current flows in the high temperature part, which further promotes local heating. Such non-uniform temperature distribution causes heat convection in the glass base material 4 in the furnace, and as a result, the glass base material 4 having a short thermal history, that is, the glass base material 4 containing insufficient heat and containing bubbles and unmelted materials. Will flow out from the glass base outlet 2, and this will be supplied to the working part and cause a problem in the product. Furthermore, the non-uniform temperature distribution and the resulting thermal convection of the glass body 4 causes the non-uniform melting of the batch 3 on the surface of the glass body 4, causing the glass body 4 to be locally covered by the batch layer. As a result, heat loss increases and the glass temperature decreases.
Such a problem becomes remarkable when melting glass having a large electric resistance that does not contain an alkali component. That is, since the alkali-free glass has a large electric resistance, it is necessary to reduce the distance between the electrodes 5 in order to supply the glass with electric power necessary for melting. Therefore, the above-mentioned non-uniform temperature distribution becomes remarkable. It will be.

【0003】このような問題を解決するものとして、本
出願人は、先に図6に示すように最上部に原料投入口1
を有し、最下部にガラス素地出口2を備えた竪型のガラ
ス溶融炉において、該炉内のガラス素地4に浸漬するレ
ベルに、当該レベルにおける炉の水平断面のほぼ全領域
にわたって板状抵抗発熱体6を設けたことを特徴する竪
型ガラス溶融炉を開発し、特許出願を行った(特開平1
−167237号、特開平2−199029号)。図6
は本出願人の先の発明に関する一実施例の竪型ガラス溶
融炉の縦断面図、図7は図1のA−A線に沿う断面図で
ある。図6および図7に示す竪型ガラス溶融炉において
は、炉本体10内のガラス素地4の表面にはガラス原料
(バッチ)3が均等に供給されている。そして、炉内の
ガラス素地4に浸漬した板状抵抗発熱体6は、均一に分
布した多数の開口7を有する板状の発熱体6aと、その
両端から上方に立ち上るターミナル部6bを備えてお
り、板状抵抗発熱体6の炉外の端部は電源Vに接続され
ている。
In order to solve such a problem, the applicant of the present invention has previously shown that the raw material charging port 1 is provided at the top as shown in FIG.
In a vertical type glass melting furnace having a glass base outlet 2 at the bottom, and at a level where it is immersed in the glass base 4 in the furnace, plate resistance is maintained over almost the entire area of the horizontal cross section of the furnace at that level. A vertical glass melting furnace characterized by having a heating element 6 has been developed and a patent application has been filed (Japanese Patent Laid-Open No. Hei 1
-167237, JP-A-2-199029). Figure 6
Is a vertical cross-sectional view of a vertical glass melting furnace according to an embodiment of the applicant's earlier invention, and FIG. 7 is a cross-sectional view taken along the line AA of FIG. In the vertical glass melting furnace shown in FIGS. 6 and 7, the glass raw material (batch) 3 is uniformly supplied to the surface of the glass base material 4 in the furnace body 10. The plate-shaped resistance heating element 6 immersed in the glass substrate 4 in the furnace is provided with a plate-shaped heating element 6a having a large number of uniformly distributed openings 7 and terminal portions 6b rising from both ends thereof. The end of the plate-shaped resistance heating element 6 outside the furnace is connected to a power supply V.

【0004】[0004]

【発明が解決しようとする課題】上記本出願人の図6、
図7に示す竪型ガラス溶融炉によれば、図5に示す電極
5を用いた加熱方法に比べ、温度分布が均一で熱対流が
小さくなり、熱履歴の短いガラス素地4が流出し難くな
るため、高品質のガラスを効率的に製造することが可能
となった。しかし、板状抵抗発熱体6と炉本体10の炉
壁表面が共に白金製なので、両者が接触すると融着し
て、板状抵抗発熱体6が炉本体10からはずれなくなっ
たり、また板状抵抗発熱体6に流れる加熱電流が炉本体
10の白金部分にも流れる不都合がある。したがって、
例えば図3に示すように板状抵抗発熱体6と炉本体10
の炉壁との間には数cmの隙間が必要である。
FIG. 6 of the above applicant,
According to the vertical glass melting furnace shown in FIG. 7, compared with the heating method using the electrode 5 shown in FIG. 5, the temperature distribution is uniform and the thermal convection is small, and the glass base material 4 having a short thermal history is less likely to flow out. Therefore, it has become possible to efficiently manufacture high-quality glass. However, since both the plate-shaped resistance heating element 6 and the furnace wall surface of the furnace body 10 are made of platinum, when they come into contact with each other, they are fused and the plate-shaped resistance heating element 6 does not come off from the furnace body 10, or the plate-shaped resistance heating element 6 does not move. There is a disadvantage that the heating current flowing through the heating element 6 also flows through the platinum portion of the furnace body 10. Therefore,
For example, as shown in FIG. 3, the plate resistance heating element 6 and the furnace body 10 are
A gap of several cm is required between the wall and the furnace wall.

【0005】ところが、前記隙間から溶解不十分または
加熱不十分なガラス素地4が図3(b)の矢印のように
流出することがあった。この隙間をガラス素地4が通り
抜けていくため、泡が多く、不均質または微弱な組成ム
ラである脈理が大きくなる。この脈理が得られるとガラ
スの屈折率の差となってあらわれ、スジ状の欠点として
観察され、リボイルしやすい品質の悪いガラスとなるこ
とがあった。本発明の目的は品質の優れたガラスを安定
生産することができる竪型ガラス溶融炉を提供すること
である。また、本発明の目的は板状抵抗発熱体と炉本体
の炉壁との隙間に溶解不十分または加熱不十分なガラス
素地の通り抜けを防いだ竪型ガラス溶融炉を提供するこ
とである。
However, the glass substrate 4 insufficiently melted or insufficiently heated sometimes flows out from the gap as shown by the arrow in FIG. 3 (b). Since the glass base material 4 passes through this gap, there are many bubbles, and the striae, which are inhomogeneous or weak composition unevenness, become large. When this striae is obtained, it appears as a difference in the refractive index of the glass, and it is observed as a streak-like defect, and in some cases, the glass is poor in quality and easily reboiled. An object of the present invention is to provide a vertical glass melting furnace capable of stably producing high quality glass. Another object of the present invention is to provide a vertical glass melting furnace which prevents the glass base material from being insufficiently melted or insufficiently heated in the gap between the plate resistance heating element and the furnace wall of the furnace body.

【0006】[0006]

【課題を解決するための手段】本発明の上記目的は次の
構成によって達成される。すなわち、ガラス原料投入部
とガラス原料を溶融する加熱部とガラス素地出口部とを
備えた竪型ガラス溶融炉において、ガラス原料加熱部は
溶融炉の水平断面のほぼ全域にわたる板状の抵抗発熱体
からなり、該抵抗発熱体の炉側壁と対向する辺部分の厚
さを他の発熱体面のそれよりも厚い肉厚部とした竪型ガ
ラス溶融炉である。また、図2に示すように、板状抵抗
発熱体の肉厚部6cの厚みをTとし、肉厚部6cの幅を
Aとして、板状抵抗発熱体の一辺の長さをaとして、そ
の発熱板6a部分の厚みをtとすると、 t<T≦3t a/100<A≦a/10 であることが好ましく、より好ましくは3t/2≦T≦
3tである。
The above objects of the present invention can be achieved by the following constitutions. That is, in a vertical glass melting furnace provided with a glass raw material charging part, a heating part for melting the glass raw material, and a glass base outlet part, the glass raw material heating part is a plate-shaped resistance heating element over almost the entire horizontal section of the melting furnace. And a vertical glass melting furnace in which the thickness of the side portion of the resistance heating element facing the side wall of the furnace is thicker than that of the other heating element surface. As shown in FIG. 2, the thickness of the thick portion 6c of the plate-shaped resistance heating element is T, the width of the thick portion 6c is A, and the length of one side of the plate-shaped resistance heating element is a. When the thickness of the heating plate 6a is t, it is preferable that t <T ≦ 3t a / 100 <A ≦ a / 10, and more preferably 3t / 2 ≦ T ≦.
It is 3t.

【0007】[0007]

【作用】図3(a)に示すように板状抵抗発熱体の炉側
壁と対向する辺部分の厚さを他の発熱体面(発熱板)の
それよりも厚い肉厚部とすることにより、該肉厚部を他
の発熱体面より高い温度にすることができる。この発熱
体面の肉厚部の高温化により板状抵抗発熱体と炉側壁と
の隙間近傍のガラス素地4をより高温に加熱することが
でき、ガラス素地4に上昇流Aが生じ、かつ前記隙間で
の下降流を減少させる。また、前記隙間を通過したガラ
ス素地4も板状抵抗発熱体の肉厚部の高温化領域で加熱
されたものであるので、溶解または加熱が十分に行われ
る。こうして、溶解不十分または加熱不十分なガラス素
地4が板状抵抗発熱体と炉側壁との隙間から通り抜ける
ことを防ぐことができる。
As shown in FIG. 3 (a), the thickness of the side portion of the plate resistance heating element facing the furnace side wall is made thicker than that of the other heating element surface (heating plate). The thick portion can be made to have a higher temperature than other heating element surfaces. By increasing the temperature of the thick portion of the heating element surface, the glass base material 4 near the gap between the plate resistance heating element and the furnace side wall can be heated to a higher temperature, and an upward flow A is generated in the glass base material 4, and Reduce downflow at. Further, since the glass base material 4 that has passed through the gap is also heated in the high temperature region of the thick portion of the plate-shaped resistance heating element, it is sufficiently melted or heated. In this way, it is possible to prevent the insufficiently melted or insufficiently heated glass substrate 4 from passing through the gap between the plate-shaped resistance heating element and the furnace side wall.

【0008】図2に示すように、板状抵抗発熱体の肉厚
部6cの厚みをTとし、肉厚部6cの幅をAとして、板
状抵抗発熱体の一辺の長さをaとして、その発熱板6a
部分の厚みをtとすると、 t<T≦3t a/100<A≦a/10 であることが好ましく、より好ましくは3t/2≦T≦
3tである。t≧Tであると肉厚部6cを他の発熱体面
(発熱板)6aより高い温度にすることができない。ま
たT>3tであると肉厚部6cが他の発熱体面(発熱
板)6aよりも異常に高い温度となり、発熱板6a部分
が破断する可能性が生じる。また、a/100≧Aであ
ると十分な熱量を得ることができず、発熱板6a部分の
肉厚部6c近傍に存在するガラス素地を十分に加熱する
ことができない。また、A>a/10であると高温化領
域が広くなり、板状抵抗発熱体と炉側壁との隙間近傍に
発生する上昇流が弱くなり、本発明の板状抵抗発熱体が
実現すべき温度分布が均一で熱対流が小さい加熱を実現
することができなくなる。
As shown in FIG. 2, the thickness of the thick portion 6c of the plate resistance heating element is T, the width of the thick portion 6c is A, and the length of one side of the plate resistance heating element is a. The heating plate 6a
When the thickness of the portion is t, it is preferable that t <T ≦ 3t a / 100 <A ≦ a / 10, and more preferably 3t / 2 ≦ T ≦.
It is 3t. If t ≧ T, the thick portion 6c cannot be heated to a temperature higher than that of the other heating element surface (heating plate) 6a. If T> 3t, the thick portion 6c has an abnormally higher temperature than the other heating element surface (heating plate) 6a, and the heating plate 6a may break. Further, if a / 100 ≧ A, a sufficient amount of heat cannot be obtained, and the glass substrate existing near the thick portion 6c of the heat generating plate 6a cannot be sufficiently heated. Further, when A> a / 10, the high temperature region is widened, and the upward flow generated near the gap between the plate resistance heating element and the furnace side wall is weakened, and the plate resistance heating element of the present invention should be realized. It becomes impossible to realize heating with uniform temperature distribution and small heat convection.

【0009】[0009]

【実施例】本発明の一実施例を図面とともに説明する。
以下、図面を参照して本発明の実施例について詳細に説
明する。本発明の一実施例の竪型ガラス溶融炉は板状抵
抗発熱体6の形状を除いて図6に示すものとほぼ同一構
造を備えたものである。なお、本実施例の板状抵抗発熱
体6の材料としては、白金、白金−ロジウム合金、モリ
ブデン、モリブデンの表面に白金を被覆したものなどが
用いられるが、特に白金または白金−ロジウム合金が望
ましい。これらの材料の電気抵抗の温度係数はガラスの
それに比べるとはるかに小さいことから、温度制御が非
常に容易となるという利点がある。
An embodiment of the present invention will be described with reference to the drawings.
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The vertical glass melting furnace of one embodiment of the present invention has substantially the same structure as that shown in FIG. 6 except for the shape of the plate resistance heating element 6. As the material of the plate-shaped resistance heating element 6 of the present embodiment, platinum, platinum-rhodium alloy, molybdenum, molybdenum coated with platinum on the surface is used, and platinum or platinum-rhodium alloy is particularly preferable. . Since the temperature coefficient of electric resistance of these materials is much smaller than that of glass, there is an advantage that temperature control becomes very easy.

【0010】本実施例のガラス溶融炉においては、板状
抵抗発熱体6の発熱板6aが一辺100cmの正方形の
板状であって、90%Pt−10%Rh製の板状抵抗発
熱体6を設置した。開口7は直径10mmの円形とし、
隣り合う開口の間隔は20mmと設定した。また、図1
の斜視図と図2の板状抵抗発熱体6の断面図(図1のA
−A線断面)に示すように本実施例のガラス溶融炉の板
状抵抗発熱体6は厚さ0.5mmのパンチングプレート
でできていて、板状抵抗発熱体6のターミナル部6bに
ある辺を除く、炉本体10の炉壁と対向する辺(長さ約
100cm、厚さ約0.5mm)近傍の幅約20mm分
のみ厚さ約1.0mmの肉厚部6cとする。そして、板
状抵抗発熱体6に通電することによりガラスの加熱がな
される。このとき、板状抵抗発熱体6の抵抗値は温度に
応じて一義的に定められるものであり、所定の電力を供
給することにより正確に所定量の熱を発生させることが
できる。また、この板状抵抗発熱体6は、その発熱板6
aが炉本体10の水平断面の全領域にわたって均等に設
けられているからガラス素地4が該水平断面の全領域で
均等に加熱されるようになり、当該水平断面におけるガ
ラス素地4の温度分布は著しく均一になる。
In the glass melting furnace of this embodiment, the heating plate 6a of the plate resistance heating element 6 is a square plate having a side of 100 cm, and the plate resistance heating element 6 made of 90% Pt-10% Rh. Was installed. The opening 7 has a circular shape with a diameter of 10 mm,
The distance between adjacent openings was set to 20 mm. Also, FIG.
And a cross-sectional view of the plate resistance heating element 6 of FIG. 2 (A in FIG. 1).
As shown in (A line cross section), the plate-shaped resistance heating element 6 of the glass melting furnace according to the present embodiment is made of a punching plate having a thickness of 0.5 mm, and the side of the plate-shaped resistance heating element 6 at the terminal portion 6b. Except for the width of about 20 mm near the side (length of about 100 cm, thickness of about 0.5 mm) facing the furnace wall of the furnace main body 10 is a thick portion 6c having a thickness of about 1.0 mm. Then, the glass is heated by energizing the plate-shaped resistance heating element 6. At this time, the resistance value of the plate-shaped resistance heating element 6 is uniquely determined according to the temperature, and a predetermined amount of heat can be accurately generated by supplying a predetermined power. Further, the plate-shaped resistance heating element 6 is
Since a is evenly provided over the entire area of the horizontal cross section of the furnace body 10, the glass base material 4 is heated evenly over the entire area of the horizontal cross section, and the temperature distribution of the glass base material 4 in the horizontal cross section is Remarkably uniform.

【0011】このようなことから、水平面内の温度ムラ
に起因するガラス素地4の対流が防止される。また、こ
のガラス溶融炉内のガラス素地4は、発熱板6aと接触
する部分が最高温度になり、該発熱板6aより下方に向
けて深くなるに従って温度が低くなる。従ってこの発熱
板6aよりも下側ではガラス素地4に熱対流が殆ど生じ
ない。また、ターミナル部6bに8.5ボルトの電圧を
印加すると板状抵抗発熱体6の厚さ約0.5mmの面が
1600℃に加熱されたときに、肉厚部6cである厚さ
1.0mmの辺部分は1650℃まで発熱する。こうし
て、図3(a)に示すように、板状抵抗発熱体6の肉厚
部6cの高温化により該発熱体6と炉本体10の炉側壁
との隙間近傍のガラス素地4をより高く加熱することが
でき、矢印で示すようにガラス素地4に上昇流Aが生
じ、かつ該隙間での下降流を減少させる。また、前記隙
間を通過したガラス素地4も、該発熱体6の肉厚部6c
の高温化領域で加熱されたものであるので、溶解または
加熱が十分に行われる。以上のように、溶解不十分また
は加熱不十分なガラス素地4が板状抵抗発熱体6と炉本
体10の炉側壁との隙間から通り抜けることを防ぐこと
ができる。
As a result, convection of the glass substrate 4 due to temperature unevenness in the horizontal plane is prevented. Further, the glass base material 4 in the glass melting furnace has a maximum temperature at a portion in contact with the heat generating plate 6a, and the temperature becomes lower as the depth becomes lower than the heat generating plate 6a. Therefore, thermal convection hardly occurs in the glass substrate 4 below the heat generating plate 6a. When a voltage of 8.5 V is applied to the terminal portion 6b, when the surface of the plate resistance heating element 6 having a thickness of about 0.5 mm is heated to 1600 ° C., the thick portion 6c having a thickness of 1. The 0 mm side part generates heat up to 1650 ° C. Thus, as shown in FIG. 3A, the glass base material 4 near the gap between the heating element 6 and the furnace side wall of the furnace body 10 is heated to a higher temperature by increasing the temperature of the thick portion 6c of the plate-shaped resistance heating element 6. As a result, an ascending flow A is generated in the glass substrate 4 as shown by the arrow, and a descending flow in the gap is reduced. In addition, the glass substrate 4 that has passed through the gap is also the thick portion 6c of the heating element 6.
Since it has been heated in the high temperature region, melting or heating is sufficiently performed. As described above, it is possible to prevent the insufficiently melted or insufficiently heated glass substrate 4 from passing through the gap between the plate resistance heating element 6 and the furnace side wall of the furnace body 10.

【0012】また、本発明の実施例の板状抵抗発熱体6
において、その開口7の直径(開口形状が多角形の場合
はその最も長い対角線の長さ)D、隣り合う開口7、
7’の中心間距離P、発熱板6aの最も長い対角線の長
さ(円形の場合はその直径)Lの間には次のような関係
にあることが望ましい(なお、直径D、隣接する二つの
開口間の中心間距離P、発熱板6aの最も長い対角線の
長さLについては図7を参照)。 D>1mm、 D/L<0.5 D/P>0.1 D>1mmと設定することで開口7の開口の加工性を高
め、また、未溶解物による開口の目詰まりを防ぐ。ま
た、D/L<0.5と設定することでガラス素地の平面
内温度分布の均一性を損なわないようにし、D/P>
0.1と設定することでガラス素地4の熱履歴の不均質
性を防ぐ。また、板状抵抗発熱体6は図4に示すような
断面形状(図1のA−A線断面)を有するものを用いて
もよい。すなわち、平板状のものだけでなく、波板状
(図4(a))、丸板状(図4(b))、平板と波板と
の組み合わせ形状(図4(c))、平板と丸板との組み
合わせ形状(図4(d))などである。
Further, the plate-shaped resistance heating element 6 of the embodiment of the present invention
, The diameter of the opening 7 (the longest diagonal length when the opening shape is a polygon) D, the adjacent openings 7,
It is desirable to have the following relationship between the center-to-center distance P of 7'and the length (diameter in the case of a circle) L of the longest diagonal of the heat generating plate 6a (note that the diameter D and the two adjacent diameters are the same). (See FIG. 7 for the center-to-center distance P between the two openings and the length L of the longest diagonal of the heating plate 6a). By setting D> 1 mm and D / L <0.5 D / P> 0.1 D> 1 mm, the workability of the opening of the opening 7 is improved and the clogging of the opening due to undissolved material is prevented. Further, by setting D / L <0.5, the uniformity of the in-plane temperature distribution of the glass substrate is not impaired, and D / P>
By setting the value to 0.1, the nonuniformity of the heat history of the glass base material 4 is prevented. The plate-shaped resistance heating element 6 may have a sectional shape as shown in FIG. 4 (a sectional view taken along the line AA in FIG. 1). That is, it is not limited to a flat plate shape, but a corrugated plate shape (FIG. 4 (a)), a round plate shape (FIG. 4 (b)), a combined shape of a flat plate and a corrugated plate (FIG. 4 (c)), and a flat plate. A combination shape with a round plate (FIG. 4D) and the like.

【0013】[0013]

【発明の効果】板状抵抗発熱体の炉側壁と対面する辺を
他の発熱体面よりも厚くすることにより該肉厚部が他の
発熱体面より高い温度にすることができる。これによっ
て、溶解または加熱不十分なガラス素地の発熱体と炉側
壁との隙間からの通過を防ぐことができる。
EFFECTS OF THE INVENTION By making the side of the plate resistance heating element facing the side wall of the furnace thicker than the other heating element surface, the thick portion can have a higher temperature than the other heating element surface. As a result, it is possible to prevent passage through the gap between the heating element of the glass base material that is melted or insufficiently heated and the furnace side wall.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例のガラス溶融炉の板状抵抗
発熱体とその近傍の炉本体の側壁とを示す斜視図であ
る。
FIG. 1 is a perspective view showing a plate-shaped resistance heating element of a glass melting furnace according to an embodiment of the present invention and a side wall of a furnace body in the vicinity thereof.

【図2】 図1の板状抵抗発熱体の断面図(図1のA−
A線断面)である。
2 is a sectional view of the plate-shaped resistance heating element of FIG. 1 (A- in FIG.
(A line cross section).

【図3】 本発明と従来技術の板状抵抗発熱体の肉厚部
と炉側壁との隙間近傍のガラス素地の流れを説明する図
である。
FIG. 3 is a diagram for explaining the flow of the glass base material in the vicinity of the gap between the thick portion and the furnace side wall of the plate resistance heating element of the present invention and the prior art.

【図4】 本発明の実施例のガラス溶融炉の板状抵抗発
熱体の断面図(図1のA−A線断面)の変形例である。
FIG. 4 is a modification of the cross-sectional view (cross section taken along the line AA of FIG. 1) of the plate resistance heating element of the glass melting furnace of the example of the present invention.

【図5】 従来技術のガラス溶融炉の断面図である。FIG. 5 is a cross-sectional view of a conventional glass melting furnace.

【図6】 板状抵抗発熱体を用いる従来技術のガラス溶
融炉の断面図である。
FIG. 6 is a cross-sectional view of a conventional glass melting furnace using a plate-shaped resistance heating element.

【図7】 図6の平面図である。FIG. 7 is a plan view of FIG.

【符号の説明】[Explanation of symbols]

1…原料投入口、2…ガラス素地出口、3…ガラス原
料、4…ガラス素地、6…板状抵抗発熱体、6a…発熱
板、6b…ターミナル部、6c…肉厚部、7…開口
1 ... Raw material inlet, 2 ... Glass base outlet, 3 ... Glass raw material, 4 ... Glass base, 6 ... Plate resistance heating element, 6a ... Heating plate, 6b ... Terminal part, 6c ... Thick part, 7 ... Opening

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガラス原料投入部とガラス原料を溶融す
る加熱部とガラス素地出口部とを備えた竪型ガラス溶融
炉において、 ガラス原料加熱部は溶融炉の水平断面のほぼ全域にわた
る板状の抵抗発熱体からなり、該抵抗発熱体の炉側壁と
対向する辺部分の厚さを他の発熱体面のそれよりも厚い
肉厚部としたことを特徴とする竪型ガラス溶融炉。
1. A vertical glass melting furnace comprising a glass raw material charging section, a heating section for melting the glass raw material, and a glass base outlet section, wherein the glass raw material heating section has a plate-like shape over substantially the entire horizontal section of the melting furnace. 1. A vertical glass melting furnace, comprising a resistance heating element, wherein a side portion of the resistance heating element facing a side wall of the resistance heating element has a thickness thicker than that of another heating element surface.
【請求項2】 板状抵抗発熱体の肉厚部の厚みをTと
し、肉厚部の幅をAとして、板状抵抗発熱体の一辺の長
さをaとして、その発熱体面部分の厚みをtとするとき
に、 t<T≦3t a/100<A≦a/10 なる関係が成立することを特徴とする請求項1記載の竪
型ガラス溶融炉。
2. The thickness of the thick portion of the plate resistance heating element is T, the width of the thick portion is A, the length of one side of the plate resistance heating element is a, and the thickness of the heating element surface portion is The vertical glass melting furnace according to claim 1, wherein a relation of t <T ≦ 3t a / 100 <A ≦ a / 10 is satisfied when t is set.
JP22777194A 1994-09-22 1994-09-22 Vertical glass fusing furnace Pending JPH0891848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22777194A JPH0891848A (en) 1994-09-22 1994-09-22 Vertical glass fusing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22777194A JPH0891848A (en) 1994-09-22 1994-09-22 Vertical glass fusing furnace

Publications (1)

Publication Number Publication Date
JPH0891848A true JPH0891848A (en) 1996-04-09

Family

ID=16866129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22777194A Pending JPH0891848A (en) 1994-09-22 1994-09-22 Vertical glass fusing furnace

Country Status (1)

Country Link
JP (1) JPH0891848A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011528841A (en) * 2008-07-08 2011-11-24 ビ−エイイ− システムズ パブリック リミテッド カンパニ− Electrical circuit assembly and structural components incorporating it
CN113646273A (en) * 2019-04-12 2021-11-12 格拉斯费雷克有限公司 Heating element, system and method for melting material using the heating element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011528841A (en) * 2008-07-08 2011-11-24 ビ−エイイ− システムズ パブリック リミテッド カンパニ− Electrical circuit assembly and structural components incorporating it
CN113646273A (en) * 2019-04-12 2021-11-12 格拉斯费雷克有限公司 Heating element, system and method for melting material using the heating element

Similar Documents

Publication Publication Date Title
US8857219B2 (en) Apparatus for use in direct resistance heating of platinum-containing vessels
US8274018B2 (en) Apparatus for use in direct resistance heating of platinum-containing vessels
KR20050095825A (en) Method and device for heating melts
US2267537A (en) Electric furnace
JP5075395B2 (en) Method for producing flat glass, especially float glass, which tends to become glass ceramic
EP0236486A1 (en) Related cases.
JP4277118B2 (en) Method and apparatus for manufacturing thin glass
JP2570350B2 (en) Glass melting furnace
JPS6114143A (en) Glass melter and molten glass preparation
JPH0891848A (en) Vertical glass fusing furnace
US4227909A (en) Electric forehearth and method of melting therein
JP2005053757A (en) Glass manufacturing apparatus and method
JPH06227822A (en) Outflow apparatus for glass preform
US4246432A (en) Method and apparatus for melting frits for inorganic oxidic surface coatings by electric resistance heating
JP2615966B2 (en) Glass melting furnace
US4514851A (en) Arc circuit electrodes for arc glass-melting furnace
US3806396A (en) Control of flow of glass to a glass ribbon being drawn
JP2008069025A (en) Bushing block for glass fiber manufacture and method of manufacturing glass fiber
JPS6183634A (en) Electric heating furnace
JP2002060226A (en) Glass melting furnace
KR20020046075A (en) Glass Furnace
US3527590A (en) Apparatus for melting glass
JP2005060194A (en) Method of manufacturing optical glass
JP2003192354A (en) Glass fusing furnace and method for heating fused glass
JPH0133624Y2 (en)