JPH02198352A - Sensor element of oxygen sensor - Google Patents

Sensor element of oxygen sensor

Info

Publication number
JPH02198352A
JPH02198352A JP1016466A JP1646689A JPH02198352A JP H02198352 A JPH02198352 A JP H02198352A JP 1016466 A JP1016466 A JP 1016466A JP 1646689 A JP1646689 A JP 1646689A JP H02198352 A JPH02198352 A JP H02198352A
Authority
JP
Japan
Prior art keywords
pellet
oxygen
electrodes
sensor element
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1016466A
Other languages
Japanese (ja)
Other versions
JP2883092B2 (en
Inventor
Takafumi Kajima
孝文 鹿嶋
Akiyoshi Asada
浅田 昭良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1016466A priority Critical patent/JP2883092B2/en
Publication of JPH02198352A publication Critical patent/JPH02198352A/en
Application granted granted Critical
Publication of JP2883092B2 publication Critical patent/JP2883092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To obtain an element characterized with high accuracy and easy realization of machinability, thin-film formation and mass productivity by forming many pin holes whose number per unit area, diameters and arrangement are regulated in a cap. CONSTITUTION:This element is composed of the following parts: a pellet comprising solid-state electrolyte; electrodes formed on both surfaces of the pellet; and a porous body having many pin holes whose number per unit area, diameters and arrangement are regulated and which are formed on one electrode. A sensor having the pin holes is inputted into a measuring gas atmosphere. A voltage is applied across both electrodes. Then, oxygen is uniformly diffused to the electrodes and the pellet by way of each pin hole. The voltage- current characteristic is stabilized by the uniform oxygen pin hole action. The limit current value without dispersion can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種雰囲気中の酸A f1度測定に使用され
る酸素センサのセンサエレメントに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a sensor element of an oxygen sensor used for measuring acid A f1 degree in various atmospheres.

〔従来の技術〕[Conventional technology]

まず、Pa糸センサの基本的構成及び作用について簡単
に説明する。
First, the basic configuration and operation of the Pa yarn sensor will be briefly explained.

第3図(A)(B)に示すように、酸素センサ△は、固
体電解質のペレットla(例えば、酸化ジルコニウム(
ZrO:ジルコニア)に金aM化物(例えば、YO%C
aOなど)を固溶させた安定化ジルコニアよりなる〕と
、該ペレット1aの両面に形成した電極1b(例えば、
白金等)と、該電極1bの一方の電極1b側のベレット
1aに接合され、上部に拡散律速の小孔1C1を有する
と共に加熱用ヒーターC2を備えたキャップ1Cとから
なるセンサエレメント1と、センサエレメント1を支持
する端子2aを有するステム2と、該ステム2に嵌合し
たメツシュカバー3とから構成されている。
As shown in FIGS. 3(A) and 3(B), the oxygen sensor Δ is composed of solid electrolyte pellets la (for example, zirconium oxide (
ZrO: zirconia) with gold aM compound (for example, YO%C
made of stabilized zirconia with a solid solution of aO, etc.) and an electrode 1b formed on both sides of the pellet 1a (for example,
(platinum, etc.); and a cap 1C that is bonded to the pellet 1a on the one electrode 1b side of the electrode 1b, has a diffusion-controlled small hole 1C1 in the upper part, and is equipped with a heating heater C2; It is composed of a stem 2 having a terminal 2a that supports the element 1, and a mesh cover 3 fitted to the stem 2.

そし工、上記酸素センサAを#i素雰囲気中におき、電
極1b間に電圧E1を、加熱用ヒーターCに電圧E2を
夫々印加すると、小孔1C1よりキャップ1C内に入っ
た酸素は加熱下のベレット1aの酸素ボンピング作用(
安定化ジルコニアのベレット1aの酸素イオン伝導性に
より、酸素イオン空孔を介してベレット1aを通って酸
素を移動させる現象)により、酸素イオンをキャリアと
する電流が流れ、キレツブ1C内の酸素分子がベレット
1aを介して損出される。
Then, when the above-mentioned oxygen sensor A is placed in #i elemental atmosphere and a voltage E1 is applied between the electrodes 1b and a voltage E2 is applied to the heating heater C, the oxygen that enters the cap 1C from the small hole 1C1 is heated. Oxygen bombing effect of pellet 1a (
Due to the oxygen ion conductivity of the stabilized zirconia pellet 1a, a phenomenon in which oxygen moves through the pellet 1a via the oxygen ion vacancies), a current using oxygen ions as carriers flows, and the oxygen molecules in the pellet 1C flow. The loss is made through the pellet 1a.

このときの電圧−′?11流特性は第4図に示すように
、電圧の成る領域で電流のフラット域が現れる。
Voltage at this time -′? As shown in FIG. 4, the current characteristics are such that a flat region of current appears in the region of voltage.

このフラット域は空気の流入が小孔1C1によって制限
される(拡散律速)ために生ずるもので、このときの電
流を限界電流と呼んでいる。
This flat region occurs because the inflow of air is restricted by the small hole 1C1 (diffusion rate limiting), and the current at this time is called a limiting current.

第5図は種々の酸素濃度における限界電流特性を示し、
また第6図は#l索濃度と限界電流値の関係を示すもの
であり、これらの図からみられるように、酸素l1度と
限界電流値は一対一の関係(対数でとった場合にリニア
な関係)にあることから、一定電圧vwを電極1b聞に
印加して、そのときの限界電流値から酸素濃度を検知す
ることができるものである。
Figure 5 shows the limiting current characteristics at various oxygen concentrations,
In addition, Figure 6 shows the relationship between the oxygen concentration and the limiting current value.As can be seen from these figures, there is a one-to-one relationship between the oxygen level and the limiting current value (linear when taken logarithmically). relationship), it is possible to apply a constant voltage vw across the electrodes 1b and detect the oxygen concentration from the limiting current value at that time.

以上のように、酸素センサAは例えばキャップ1Gに拡
Rttl+速の小孔1C1を設けるものであるが、従来
は、この小孔1C1を1個有する単穴式のものが通常で
あった。
As described above, the oxygen sensor A has, for example, a small hole 1C1 of expansion Rttl+speed in the cap 1G, but conventionally, a single-hole type having one small hole 1C1 has been usual.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

単穴式のものは、′キャップの成形厚みの11度が高い
場合には限界電流値のバラツキも少なく、精度の^いセ
ンサエレメントが得られる。
In the case of the single-hole type, if the molded thickness of the cap is 11 degrees, there will be little variation in the limiting current value, and a highly accurate sensor element can be obtained.

しかし、穿穴加工(例えば静水圧加工)時における穴の
位置の差異は電極、ベレットへの酸素拡散にタイムラグ
が発生し、ために、酸素イオン伝導に支障を来たし、限
界電流値のバラツキ発生の要因となることから、高度な
加工精度が要求され、特に1lll化、大量生産を考慮
した場合の加工性に問題があり、また穴が詰った場合に
はセンサエレメントとしての機能を喪失してしまうとい
う問題があった。
However, differences in hole position during drilling (for example, hydrostatic drilling) cause a time lag in oxygen diffusion to the electrode and pellet, which impedes oxygen ion conduction and causes variations in the limiting current value. Because of this, a high level of machining accuracy is required, and there are problems with machinability, especially when considering 1llllization and mass production, and if the hole becomes clogged, it will lose its function as a sensor element. There was a problem.

本発明は、上記従来技術の問題点に鑑み、キャップに単
位面積当りの個数、穴径、配列を規整した多数のピンホ
ールを形成することによって、加工性が有利でかつ^精
成にして、S脱化、量産化に適するセンサエレメントの
提供を1的とする。
In view of the above-mentioned problems of the prior art, the present invention provides an advantageous processability and refinement by forming a large number of pinholes in a cap with a regulated number of pinholes per unit area, hole diameter, and arrangement. One of our objectives is to eliminate S and provide a sensor element suitable for mass production.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達するために、本発明のM素センナのセンサ
エレメントは、固体電VN質のベレットと、該ベレット
の両面に形成した電極と、この電極の一方の電極側に形
成した単位面積当りの個数、穴径、配列を規整した多数
のピンホールを右する多穴体とから構成したことを特i
11とする。
In order to achieve the above object, the sensor element of the M-sensor sensor of the present invention includes a pellet made of solid-state VN material, electrodes formed on both sides of the pellet, and a sensor element formed on one electrode side of the pellet. The special feature is that it is composed of a multi-hole body and a large number of pinholes whose number, hole diameter, and arrangement are regulated.
11.

そして、ベレットは安定化ジルコニアからなり、電極は
白金をスパッタリングして形成りる。
The pellet is made of stabilized zirconia, and the electrodes are formed by sputtering platinum.

また、多穴体はポリイミドフィルム或いはグリーンシー
ト法により形成したジルコニア板にピンホール加工する
Further, the porous body is formed by forming pinholes in a polyimide film or a zirconia plate formed by a green sheet method.

〔作 用〕[For production]

上記構成のセンサエレメントを有する酸素センサを測定
ガス雰囲気中に入れ、両電極間に電圧を印加すると、多
穴体の各ピンホールを通して酸素が均一に電極、ベレッ
トに拡散し、均等な預素ボンピング作用により電圧−電
流特性の応答がシャープになり、各センサエレメント間
にバラツキのない限界電流値が得られる。
When an oxygen sensor having a sensor element with the above configuration is placed in a measurement gas atmosphere and a voltage is applied between both electrodes, oxygen is uniformly diffused into the electrode and pellet through each pinhole of the porous body, resulting in uniform deposit bombing. As a result, the response of the voltage-current characteristic becomes sharp, and a limit current value with no variation among each sensor element can be obtained.

(実施例) 本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described with reference to the drawings.

第1図は第1*施例を示1もので、10は固体電解質の
ベレットで、例えば酸化ジルコニウム(ZrO:ジルコ
ニア)に金属酸化物(例えば、Y  O、CaO等)を
固溶させた安定化ジルコニアからなり、該ペレット10
0両面には電極11(例えば、白金等)がスパッタリン
グにより形成されている。
Figure 1 shows the first example.10 is a solid electrolyte pellet, for example, a stable electrolyte made of zirconium oxide (ZrO: zirconia) with a metal oxide (e.g., Y O, CaO, etc.) dissolved in solid solution. The pellets 10 are made of oxidized zirconia.
Electrodes 11 (for example, platinum, etc.) are formed on both sides of the substrate 0 by sputtering.

12は、高分子化合物の多穴体で、例えばポリイミドフ
ィルム(厚さ約100μm)に、ニードルプレス機によ
って1#間隔で直径的5μ7rLのピンホール13が単
位面積当り所定個数の割合でピンホール加工されている
12 is a porous body made of a polymer compound, for example, a polyimide film (about 100 μm thick), in which pinholes 13 with a diameter of 5 μ7 rL are formed at 1# intervals at a predetermined number per unit area using a needle press machine. has been done.

そして、多穴体12は、その可撓性によって上記電極1
1の一方の′a1権表面表面着されている。
Due to its flexibility, the porous body 12 allows the electrode 1 to
The 'a1' right surface of one of the 1's is attached to the surface.

第2図は第2実施例を示すもので、10は固体電解質の
ペレット、11は電極であり、これらは#1配第1実施
例と同じである。
FIG. 2 shows a second embodiment, in which 10 is a solid electrolyte pellet, 11 is an electrode, and these are the same as in the #1 distribution first embodiment.

14は多穴体であり、グリーンシート法によって作成し
たジルコニア板(厚さ約0.5am)に、ニードルプレ
ス機によって1m間隔で直径的5μmのピンホール13
が単位面積当り所定個数の割合でピンホール加工されて
いる。
Reference numeral 14 is a porous body, in which pinholes 13 with a diameter of 5 μm are formed at 1 m intervals using a needle press machine in a zirconia plate (approximately 0.5 am thick) made by the green sheet method.
are machined with pinholes at a predetermined number per unit area.

なお、ジルコニア板は可撓性がないので、ベレット10
に接着された支持脚15に接着しである。
In addition, since the zirconia plate is not flexible, Bellet 10
It is glued to the support leg 15 which is glued to.

よって、単位面積当りのピンホールの数は、酸素ボンピ
ング作用の均等化に伴う限界at電流値決定するので、
加工性が有利であり、かつ薄膜化、量産化に適するF、
粘度な酸素センサのセンサエレメントが得られる。
Therefore, the number of pinholes per unit area determines the limit at current value associated with equalization of the oxygen bombing effect, so
F, which is advantageous in processability and suitable for thinning and mass production;
A sensor element of a viscous oxygen sensor is obtained.

(発明の効果) 本発明は、単位面積当りの個数、穴(¥、配列を規整し
た多数のビン/1−−ルを有する多穴体をキャップとし
て設けているので、電極、ペレットへの酸素の分散が単
穴式の場合にみられるタイムラグがなく均等になり、そ
の酸素ボンピング作用の均等化により電圧−電流特性が
安定し、限界電流値のバラツキのない高精度なセンサエ
レメントが得られる。
(Effects of the Invention) The present invention is provided with a multi-hole body as a cap having a large number of bottles/holes with a defined number and arrangement of holes per unit area. The time lag seen in the case of a single-hole type is eliminated, and the distribution of the current becomes uniform, and the equalization of the oxygen bombing effect stabilizes the voltage-current characteristics, resulting in a highly accurate sensor element with no variation in limit current value.

また、多穴体であるため、単穴式の場合にみられるよう
な加工精度を要求されずに加工することができるので、
加工が容易であり、薄膜化、M産化が可能である。
In addition, since it is a multi-hole body, it can be machined without requiring the same precision as in the case of a single-hole type.
It is easy to process, and can be made into a thin film and produced in M size.

さらに、ピンホールの一部が詰るようなことがあっても
、センサエレメントの機能を直ちに喪失することがない
Furthermore, even if some of the pinholes become clogged, the sensor element will not immediately lose its functionality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の断面図、第2図は本発明
の第2実施例の断面図、第3図は従来例を示し、 同図(A>は酸素センサエレメントの断面図、同図(B
)は酸素センサの断面図、 第4図は電圧 電流特性図、 第5図は各酸素濃度−眼界電流特性図、第6図はM素濁
度−限界電流特性図である。 V(VOlrl 名4 図 V(volt) 某 5 因 10・・・ベレット、11・・・電極、12.14・・
・多穴体、13・・・ピンホール。
FIG. 1 is a sectional view of the first embodiment of the present invention, FIG. 2 is a sectional view of the second embodiment of the present invention, and FIG. 3 is a conventional example. Figure, same figure (B
) is a cross-sectional view of the oxygen sensor, FIG. 4 is a voltage-current characteristic diagram, FIG. 5 is each oxygen concentration-eye field current characteristic diagram, and FIG. 6 is an M-element turbidity-limiting current characteristic diagram. V (VOlrl Name 4 Figure V (volt) Certain 5 Cause 10...Bellet, 11...Electrode, 12.14...
・Multi-hole body, 13...pinhole.

Claims (6)

【特許請求の範囲】[Claims] 1.固体電解質のペレットと、該ペレットの両面に形成
した電極と、該電極の一方の電極側に形成した単位面積
当りの個数、穴径、配列を規整した多数のピンホールを
有する多穴体とからなる酸素センサのセンサエレメント
1. A solid electrolyte pellet, electrodes formed on both sides of the pellet, and a porous body having a large number of pinholes with a regulated number per unit area, hole diameter, and arrangement formed on one electrode side of the electrode. The sensor element of the oxygen sensor.
2. ペレットは安定化ジルコニアよりなる請求項1記
載の酸素センサのセンサエレメント。
2. The sensor element for an oxygen sensor according to claim 1, wherein the pellets are made of stabilized zirconia.
3. 電極は白金よりなる請求項1記載の酸素センサの
センサエレメント。
3. The sensor element for an oxygen sensor according to claim 1, wherein the electrode is made of platinum.
4. ペレット両面への電極はスパツタリングにより形
成してなる請求項1記載の酸素センサのセンサエレメン
ト。
4. 2. The sensor element for an oxygen sensor according to claim 1, wherein the electrodes on both surfaces of the pellet are formed by sputtering.
5. 多穴体はポリイミドフイルムにピンホール加工し
てなる請求項1記載の酸素センサのセンサエレメント。
5. 2. The sensor element for an oxygen sensor according to claim 1, wherein the porous body is formed by machining pinholes in a polyimide film.
6. 多穴休はグリーンシート法により形成したジルコ
ニア板にピンホール加工してなる請求項1記載の酸素セ
ンサのセンサエレメント。
6. 2. The sensor element for an oxygen sensor according to claim 1, wherein the multi-hole holes are formed by machining pinholes in a zirconia plate formed by a green sheet method.
JP1016466A 1989-01-27 1989-01-27 Method for manufacturing sensor element of oxygen sensor Expired - Fee Related JP2883092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1016466A JP2883092B2 (en) 1989-01-27 1989-01-27 Method for manufacturing sensor element of oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1016466A JP2883092B2 (en) 1989-01-27 1989-01-27 Method for manufacturing sensor element of oxygen sensor

Publications (2)

Publication Number Publication Date
JPH02198352A true JPH02198352A (en) 1990-08-06
JP2883092B2 JP2883092B2 (en) 1999-04-19

Family

ID=11917033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1016466A Expired - Fee Related JP2883092B2 (en) 1989-01-27 1989-01-27 Method for manufacturing sensor element of oxygen sensor

Country Status (1)

Country Link
JP (1) JP2883092B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811660A (en) * 1995-11-15 1998-09-22 Denso Corporation Air-fuel ratio sensing element
EP1873517A1 (en) * 2006-06-27 2008-01-02 Fujikura Ltd. Limiting current type oxygen sensor and method of sensing and measuring oxygen concentrations using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060547A (en) * 1983-09-13 1985-04-08 Richo Seiki Kk Gas detector
JPS6093342A (en) * 1983-10-27 1985-05-25 Toyota Motor Corp Method for regulating output of element for detecting oxygen concentration
JPS6292469U (en) * 1985-12-02 1987-06-12
JPS63259459A (en) * 1987-04-17 1988-10-26 Toshiba Corp Limiting current type gas sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060547A (en) * 1983-09-13 1985-04-08 Richo Seiki Kk Gas detector
JPS6093342A (en) * 1983-10-27 1985-05-25 Toyota Motor Corp Method for regulating output of element for detecting oxygen concentration
JPS6292469U (en) * 1985-12-02 1987-06-12
JPS63259459A (en) * 1987-04-17 1988-10-26 Toshiba Corp Limiting current type gas sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811660A (en) * 1995-11-15 1998-09-22 Denso Corporation Air-fuel ratio sensing element
EP1873517A1 (en) * 2006-06-27 2008-01-02 Fujikura Ltd. Limiting current type oxygen sensor and method of sensing and measuring oxygen concentrations using the same
US8052862B2 (en) 2006-06-27 2011-11-08 Fujikura Ltd. Limiting current type oxygen sensor and method of sensing and measuring oxygen concentrations using the same

Also Published As

Publication number Publication date
JP2883092B2 (en) 1999-04-19

Similar Documents

Publication Publication Date Title
US6936147B2 (en) Hybrid film type sensor
GB2293883A (en) Electrochemical protein biosensor
JPH02198352A (en) Sensor element of oxygen sensor
JPS56147057A (en) Production of oxygen sensor
US7601233B2 (en) Electrochemical gas sensor with passage for receiving gas
US4578173A (en) Ion selective electrode and method of making ion selective electrodes
DE2703390B2 (en) Sensor for determining the air / fuel ratio of the intake mixture supplied to an internal combustion engine
JPH0697222B2 (en) Gas sensor
EP0522118B1 (en) Device for the continuous monitoring of the concentrations of gaseous components of gas mixtures
JPS62198748A (en) Oxygen sensor
JPS57161544A (en) Ion selective electrode
JP2788640B2 (en) Gas concentration detection sensor
JP2570146Y2 (en) Ion-selective electrode
JPH04254749A (en) Laminated-type limiting-current-type oxygen sensor
EP0527888B1 (en) Electrochemical measuring electrode
JPS5847248A (en) Detection of air/fuel ratio
JPH0234605Y2 (en)
JPH02311754A (en) Limiting current type oxygen sensor
JPS6015552A (en) Output adjustment of oxygen concentration detecting element
JPH0682418A (en) Oxygen sensor
JPH07134115A (en) Manufacture of limiting current oxygen sensor
JPH0587770A (en) Sensor element of oxygen sensor
JPH06294768A (en) Limiting current type oxygen sensor
JPH02126150A (en) Oxygen sensor
DE19845653C2 (en) Electrochemical sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees