JPH02198181A - Manufacture of thermoelectric element - Google Patents

Manufacture of thermoelectric element

Info

Publication number
JPH02198181A
JPH02198181A JP1017963A JP1796389A JPH02198181A JP H02198181 A JPH02198181 A JP H02198181A JP 1017963 A JP1017963 A JP 1017963A JP 1796389 A JP1796389 A JP 1796389A JP H02198181 A JPH02198181 A JP H02198181A
Authority
JP
Japan
Prior art keywords
film
type semiconductor
thermoelectric element
mask
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1017963A
Other languages
Japanese (ja)
Inventor
Yoshiaki Yamamoto
義明 山本
Hiroyoshi Tanaka
博由 田中
Fumitoshi Nishiwaki
文俊 西脇
Yasushi Nakagiri
康司 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1017963A priority Critical patent/JPH02198181A/en
Publication of JPH02198181A publication Critical patent/JPH02198181A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To reduce a production cost by feeding a long insulating film, varying the quantity of a doping element, and alternately forming a P-type semiconductor and an N-type semiconductor in a feeding direction. CONSTITUTION:A long insulating film 21 is fed, the quantity of a doping element is varied, and a P-type semiconductor film and an N-type semiconductor film are alternately formed. In order to form the N-type semiconductor and the P-type semiconductor, doping element is evaporated from a crucible. The doping element of the crucible 24 is formed in a film or not formed in the film repeatedly by a circular shutter 26 synchronized with the feeding speed of the film 21 by a control system 25. Accordingly, the P-type semiconductor and the N-type semiconductor are alternately connected to the surface of the film 21, a metal film is then continuously formed. Therefore, a large area can be continuously formed. In this manner, a production cost can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はペルチェ効果を利用し、電気的に冷房もしくは
暖房を行う空調装置、もしくはゼーベック効果により温
度差を用いて発電を行う発電装置等に有用な熱電素子の
製造方法に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention is useful for air conditioners that electrically cool or heat air using the Peltier effect, or power generation devices that generate electricity using temperature differences due to the Seebeck effect. The present invention relates to a method of manufacturing a thermoelectric element.

、従来の技術 従来、熱を電気に変換し、もしくは電気を熱に変換する
熱電素子は、第4図に示す従来例の様に金属板l、及び
金属板2によってN型半導体3、もしくはP型の半導体
4を挟み込む構成を有し、両側の金属板l、2の温度差
により発電を行い、もしくは金属板1.2に電流を通ず
ることにより冷却を行うものである。すなオ〕ち、冷却
を行う場合は、N型の半導体3とP型の半導体4を交互
に直列的に配列した熱電素子であり、端子5と端子6間
に電位を与えると、金属板の一方が冷却され、他方が加
熱されるものである。
, Prior Art Conventionally, a thermoelectric element that converts heat into electricity or electricity into heat has been used to convert N-type semiconductor 3 or P It has a configuration in which a type of semiconductor 4 is sandwiched between the metal plates 1 and 2, and generates electricity by the temperature difference between the metal plates 1 and 2 on both sides, or cools the metal plates 1 and 2 by passing an electric current through them. In other words, when performing cooling, a thermoelectric element is used in which N-type semiconductors 3 and P-type semiconductors 4 are arranged alternately in series, and when a potential is applied between terminals 5 and 6, a metal plate One side is cooled and the other side is heated.

このような熱雷素子の製造方法は以下のように行なわれ
ている。まず、半導体の製造は、2種類または3種類の
金属または半金属に、P型およびN型を形成するドープ
元素を混入し、焼結成形することにより得られている。
A method of manufacturing such a thermal lightning element is carried out as follows. First, semiconductors are manufactured by mixing two or three types of metals or semimetals with doping elements that form P-type and N-type, and sintering the mixture.

このようにして得られた半導体の両面に、金属板をろう
付けすることによって素子形成がなされている。
Elements are formed by brazing metal plates on both sides of the semiconductor thus obtained.

発明が解決しようとする課題 しかしながら、このような従来の熱電素子では、半導体
材料および金属板をバルクで使用する構成となっている
ため、 1、 Te、Bi等の希少材料を大量に必要とし、熱電
素子の重量および容積が大きくなり、材料コストがあが
る、 2、半導体の断面積が大きいため、加熱部から冷却部へ
の熱流が大きく、効率が低下する、3、熱電素子材料を
焼結後、金属をろう付けすることから、生産性が低くコ
ストの低減が困難である、 等の問題があった。
Problems to be Solved by the Invention However, such conventional thermoelectric elements have a structure that uses semiconductor materials and metal plates in bulk, so 1. They require large amounts of rare materials such as Te and Bi; The weight and volume of the thermoelectric element increases, increasing the material cost. 2. Because the cross-sectional area of the semiconductor is large, the heat flow from the heating part to the cooling part is large, reducing efficiency. 3. After sintering the thermoelectric element material , since metals are brazed, productivity is low and it is difficult to reduce costs.

本発明は、上記従来技術の課題を考慮し、熱電素子の材
料コスト、重量および容積を低減するとともに、連続工
程により生産コストの低減を可能にし、あわせて、接触
抵抗および半導体内の熱流を抑えることにより、熱電性
能を向上させろことの出来る熱電素子の製造方法を提供
することを目的とするものである。
The present invention takes into account the problems of the prior art described above, and reduces the material cost, weight, and volume of thermoelectric elements, and also makes it possible to reduce production costs by using a continuous process, and at the same time, suppresses contact resistance and heat flow within the semiconductor. Therefore, it is an object of the present invention to provide a method for manufacturing a thermoelectric element that can improve thermoelectric performance.

課題を解決するための手段 本発明による熱電素子の製造方法は、長尺絶縁フィルム
を走行させ、ドープ元素の量を変化させることによりP
型半導体とN型半導体を交互に成膜し、その後、前記フ
ィルムの走行速度と同一速度でマスクを走行させて金属
膜を成膜するものである。
Means for Solving the Problems The method for manufacturing a thermoelectric element according to the present invention runs a long insulating film and changes the amount of doping elements to
A type semiconductor and an N-type semiconductor are alternately formed into films, and then a metal film is formed by running a mask at the same speed as the film running speed.

作用 り記のような手段によって、得られる本発明の作用は次
の通りである。
The effects of the present invention obtained by the means described in the operation description are as follows.

1、膜状になった熱電素子は、薄く構成することが可能
でありコンパクトで軽い素子とすることができる。また
、材料の使用量は、バルクで使用する場合に比べ大幅に
低減できる。
1. Film-shaped thermoelectric elements can be constructed thinly and can be made into compact and lightweight elements. Furthermore, the amount of material used can be significantly reduced compared to when used in bulk.

2、半導体の断面積が小さいことから、加熱部から冷却
部への熱流が抑えられる。
2. Since the cross-sectional area of the semiconductor is small, heat flow from the heating section to the cooling section is suppressed.

3、  P型半導体およびN型半導体が連続して形成さ
れ、かつ、その後金属膜も連続して形成されることから
、大面積の生産が容易であり°、生産コストが大幅に低
減される。
3. Since the P-type semiconductor and the N-type semiconductor are successively formed, and the metal film is also subsequently formed successively, it is easy to produce a large area, and the production cost is significantly reduced.

実施例 以下に本発明による実施例を図面により説明する。Example Embodiments according to the present invention will be described below with reference to the drawings.

第1図は本発明による一実施例であり、熱電素子の製造
方法の概略図を示すものである。
FIG. 1 is an embodiment of the present invention, and shows a schematic diagram of a method for manufacturing a thermoelectric element.

巻出しロール20を出た長尺絶縁フィルム21は、キャ
ン22の表面に沿って走行する。キャン22の下部では
、坩堝23から蒸発した複数の半導体元素が成膜されろ
。このときN型半導体およびP型半導体を形成するため
、坩堝24よりドープ元素も蒸着させている。坩堝24
のドープ元素は、制御系25によりフィルム21の走行
速度と同期した円形シャッター26により成膜、非成膜
が繰り返される。これによりフィルム21の表面にはP
型半導体とN型半導体が交互に成膜される。
The long insulating film 21 that has come out of the unwinding roll 20 runs along the surface of the can 22 . At the bottom of the can 22, a plurality of semiconductor elements evaporated from the crucible 23 are formed into a film. At this time, a doping element is also deposited from the crucible 24 in order to form an N-type semiconductor and a P-type semiconductor. Crucible 24
The doping element is repeatedly formed and not formed into a film by a circular shutter 26 synchronized with the traveling speed of the film 21 by a control system 25. As a result, the surface of the film 21 has P
A type semiconductor and an N type semiconductor are alternately deposited.

なお、各半導体の長さは、円形シャター26の回転数と
固定マスク27のフィルム走行方向の長さを変えろこと
によって決められる。半導体が成膜された後、そのフィ
ルム21はキャン28に沿って走行する。キャン28の
下部には坩堝29が設置されており、蒸発金属が前記半
導体面に蒸着される。坩堝29とキャン28の間には、
固定マスク30と移動マスク31が設置されている。移
動マスク31は制御系25によりフィルム21の走行速
度と一致して同一方向に回転する。
The length of each semiconductor is determined by changing the rotation speed of the circular shutter 26 and the length of the fixed mask 27 in the film running direction. After the semiconductor is deposited, the film 21 runs along the can 28. A crucible 29 is installed at the bottom of the can 28, and evaporated metal is deposited on the semiconductor surface. Between crucible 29 and can 28,
A fixed mask 30 and a moving mask 31 are installed. The moving mask 31 is rotated by the control system 25 in the same direction as the traveling speed of the film 21 .

その移動マスク31の形状を第2図に示す。走行マスク
31には等間隔でスリット32が並んでおり、前記蒸着
金属はスリット32と同一形状で成膜される。金属成膜
後、フィルム21は巻取りロール33に巻取られる。
The shape of the moving mask 31 is shown in FIG. Slits 32 are lined up at equal intervals in the traveling mask 31, and the vapor-deposited metal is formed in the same shape as the slits 32. After the metal film is formed, the film 21 is wound onto a winding roll 33.

本実施例では、移動マスク31の走行安定確保と成膜精
度の向上のために、2つの改良も加えている。固定マス
ク30の幅は、移動マスク31のスリット32の幅より
も小さくなっており、移動マスク31の両端部には蒸着
金属が付着しないようになっている。また、移動マスク
31の駆動ローラー34と移動マスク31は両端部のみ
で駆動を伝える構造になっており、これにより、移動マ
スク31の安定走行を確保している。また、加熱ランプ
35により、移動マスク31に付着した金属を再蒸発さ
せ、マスク精度の確保を行なっている。
In this embodiment, two improvements have been made in order to ensure stable running of the moving mask 31 and improve film forming accuracy. The width of the fixed mask 30 is smaller than the width of the slit 32 of the movable mask 31, so that the deposited metal does not adhere to both ends of the movable mask 31. Further, the drive roller 34 of the movable mask 31 and the movable mask 31 have a structure in which drive is transmitted only at both ends, thereby ensuring stable running of the movable mask 31. Further, the metal attached to the moving mask 31 is reevaporated by the heating lamp 35 to ensure mask accuracy.

なお、本実施例では、半導体のドープ元素を1つとした
が、複数個であっても同様な効果が得られる。また、実
施例は真空蒸着法を用いて示したが、イオンブレーティ
ングやクラスターイオンビーム法等にも同様に対応でき
る。
In this embodiment, the semiconductor is doped with one element, but the same effect can be obtained even with a plurality of elements. Furthermore, although the embodiments have been shown using a vacuum evaporation method, ion blating, cluster ion beam methods, etc. can be used in the same manner.

以上の本発明の製造方法によって得られる熱電素子の一
実施例を第3図に示す。
An example of a thermoelectric element obtained by the above manufacturing method of the present invention is shown in FIG.

フィルム21には、坩堝23および24から蒸着された
P型半導体36とN型半導体37が交互に等間隔で並ん
でいる。その上方には、P型半導体36とN型半導体3
7を電気的につなぐ金属膜38が形成される。金属膜3
8は、移動マスク31と同一形状に成膜されている。
On the film 21, P-type semiconductors 36 and N-type semiconductors 37 deposited from the crucibles 23 and 24 are arranged alternately at equal intervals. Above it, a P-type semiconductor 36 and an N-type semiconductor 3
A metal film 38 that electrically connects 7 is formed. metal film 3
8 is formed into a film having the same shape as the moving mask 31.

このような熱電素子の両端面に電位を加えた場合、各半
導体36.37と金属膜38との界面において吸熱また
は発熱が生じ、各金属膜38は交互に吸熱部または発熱
部を生じる。したがって、この素子を、金属膜38を凹
部凸部とするコルゲート状に加工することにより、従来
と同様に使用することができる。この構成では、P型半
導体37とN型半導体38が接する構造としているが、
−船釣に半導体の抵抗は金属よりもかなり大きいことか
ら、P型半導体37とN型半導体38の界面を流れる電
流はわずかであり、性能の低下はほとんどない。また、
本発明の製造方法では、P型半導体36とN型半導体3
7へのドープ元素の変化を、固定マスク27の長さと円
形シャッター26の回転により行なっていることから、
半導体36と37の界面におけるドープ元素の変化は急
峻にはならず、ある長さにわたってなだらかに変化する
。しかしながら、この点についても上記理由により性能
への影響はない。
When a potential is applied to both end faces of such a thermoelectric element, heat absorption or heat generation occurs at the interface between each semiconductor 36, 37 and the metal film 38, and each metal film 38 alternately produces a heat absorption portion or a heat generation portion. Therefore, this element can be used in the same manner as before by processing the metal film 38 into a corrugated shape with concave and convex portions. In this configuration, the P-type semiconductor 37 and the N-type semiconductor 38 are in contact with each other.
- Since the resistance of semiconductors for boat fishing is considerably greater than that of metals, the current flowing through the interface between the P-type semiconductor 37 and the N-type semiconductor 38 is small, and there is almost no deterioration in performance. Also,
In the manufacturing method of the present invention, the P-type semiconductor 36 and the N-type semiconductor 3
Since the doping element to 7 is changed by the length of the fixed mask 27 and the rotation of the circular shutter 26,
The change in the doping element at the interface between the semiconductors 36 and 37 is not steep, but changes gradually over a certain length. However, this point also has no effect on performance for the reasons mentioned above.

以上のように本発明においては、フィルムの表面に成膜
しているため、薄く構成することが可能でありコンパク
トで軽い素子とすることができる。
As described above, in the present invention, since the film is formed on the surface of the film, it is possible to have a thin structure, and a compact and light element can be obtained.

また、連続成膜により、大面積化も容易で安価な熱電素
子が提供される。
In addition, continuous film formation provides an inexpensive thermoelectric element that can be easily made into a large area.

発明の効果 本発明によろ熱電素子の製造方法は、長尺絶縁フィルム
を走行させ、ドープ元素の量を変化させろことによりP
型半導体とN型半導体を交互に成膜し、その後、前記フ
ィルムの走行速度と同一速度でマスクを走行させて金属
膜を成膜することにより、次の効果を生ずる。
Effects of the Invention The method for manufacturing a thermoelectric element according to the present invention includes running a long insulating film and changing the amount of doping elements.
The following effects are produced by alternately depositing a type semiconductor and an N-type semiconductor, and then depositing a metal film by running a mask at the same speed as the film.

1、膜状になった熱電素子は、薄く構成することが可能
でありコンパクトで軽い装置とすることができる。また
、材料の使用量は、バルクで使用する場合に比べ非常に
少なくできろ。
1. A thermoelectric element in the form of a film can be constructed thinly, resulting in a compact and lightweight device. Additionally, the amount of material used can be significantly reduced compared to when used in bulk.

2、半導体の断面積が小さいことから、加熱部から冷却
部への熱伝導を減少できる。
2. Since the cross-sectional area of the semiconductor is small, heat conduction from the heating part to the cooling part can be reduced.

3、  P型半導体およびN型半導体が連続して形成さ
れ、かつ、その後金属膜も連続して形成されることから
、連続して大面積の生産が可能となり、生産コストが大
幅に低減される。
3. Since P-type semiconductors and N-type semiconductors are formed successively, and then the metal film is also formed successively, it becomes possible to continuously produce large areas, and production costs are significantly reduced. .

このように、本発明を実施することで、非常に軽量、コ
ンパクトでコストも低く、しかも性能の高い熱電素子の
実現が可能となる。
As described above, by carrying out the present invention, it is possible to realize a thermoelectric element that is extremely lightweight, compact, low cost, and has high performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の熱電素子の製造方法を説明
するための製造装置の概略斜視図、第2図は同実施例に
おける移動マスクの一実施例を示す斜視図、第3図は本
発明の製造方法によって作製された熱電素子の一実施例
の構造を示す斜視図、第4図は従来の熱電素子の構成を
示す斜視図である。 22 、28・・・キャン、31・・・移動マスク、2
6・・・円形シャッター 3.4.36.37・・・半
導体、21・・・フィルム、38・・・金属膜。 代理人の氏名 弁理士 粟野重孝はか1名嶋 ■ 瘍 図 384tJL暎 第 区 3N型半導体 乙端子
FIG. 1 is a schematic perspective view of a manufacturing apparatus for explaining a method for manufacturing a thermoelectric element according to an embodiment of the present invention, FIG. 2 is a perspective view showing an embodiment of a moving mask in the same embodiment, and FIG. 4 is a perspective view showing the structure of an embodiment of a thermoelectric element manufactured by the manufacturing method of the present invention, and FIG. 4 is a perspective view showing the structure of a conventional thermoelectric element. 22, 28... Can, 31... Moving mask, 2
6...Circular shutter 3.4.36.37...Semiconductor, 21...Film, 38...Metal film. Name of agent: Patent attorney Shigetaka Awano Hakaichi Nashima

Claims (5)

【特許請求の範囲】[Claims] (1)長尺絶縁フィルムを走行させ、ドープ元素の量を
変化させることによりP型半導体とN型半導体を走行方
向に交互に成膜することを特徴とする熱電素子の製造方
法。
(1) A method for manufacturing a thermoelectric element, which comprises running a long insulating film and changing the amount of doping elements to alternately form P-type semiconductors and N-type semiconductors in the running direction.
(2)ドープ元素の供給源の上部に取り付けられたシャ
ッターを、前記フィルム走行と同期させることを特徴と
する請求項1記載の熱電素子の製造方法。
(2) The method for manufacturing a thermoelectric element according to claim 1, characterized in that a shutter attached to an upper part of the doping element supply source is synchronized with the film running.
(3)フィルムの走行速度と同一速度でマスクを走行さ
せて金属膜を成膜することを特徴とする請求項1記載の
熱電素子の製造方法。
(3) The method for manufacturing a thermoelectric element according to claim 1, characterized in that the metal film is formed by running the mask at the same speed as the film running speed.
(4)マスクをベルト状に形成したことを特徴とする請
求項3記載の熱電素子の製造方法。
(4) The method for manufacturing a thermoelectric element according to claim 3, wherein the mask is formed into a belt shape.
(5)マスクを加熱する手段を設けたことを特徴とする
請求項3又は4記載の熱電素子の製造方法。
(5) The method for manufacturing a thermoelectric element according to claim 3 or 4, further comprising means for heating the mask.
JP1017963A 1989-01-27 1989-01-27 Manufacture of thermoelectric element Pending JPH02198181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1017963A JPH02198181A (en) 1989-01-27 1989-01-27 Manufacture of thermoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1017963A JPH02198181A (en) 1989-01-27 1989-01-27 Manufacture of thermoelectric element

Publications (1)

Publication Number Publication Date
JPH02198181A true JPH02198181A (en) 1990-08-06

Family

ID=11958398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1017963A Pending JPH02198181A (en) 1989-01-27 1989-01-27 Manufacture of thermoelectric element

Country Status (1)

Country Link
JP (1) JPH02198181A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009045862A2 (en) * 2007-09-28 2009-04-09 Battelle Memorial Institute Thermoelectric devices
US7834263B2 (en) 2003-12-02 2010-11-16 Battelle Memorial Institute Thermoelectric power source utilizing ambient energy harvesting for remote sensing and transmitting
US7851691B2 (en) 2003-12-02 2010-12-14 Battelle Memorial Institute Thermoelectric devices and applications for the same
US8455751B2 (en) 2003-12-02 2013-06-04 Battelle Memorial Institute Thermoelectric devices and applications for the same
US9281461B2 (en) 2003-12-02 2016-03-08 Battelle Memorial Institute Thermoelectric devices and applications for the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7834263B2 (en) 2003-12-02 2010-11-16 Battelle Memorial Institute Thermoelectric power source utilizing ambient energy harvesting for remote sensing and transmitting
US7851691B2 (en) 2003-12-02 2010-12-14 Battelle Memorial Institute Thermoelectric devices and applications for the same
US8455751B2 (en) 2003-12-02 2013-06-04 Battelle Memorial Institute Thermoelectric devices and applications for the same
US9281461B2 (en) 2003-12-02 2016-03-08 Battelle Memorial Institute Thermoelectric devices and applications for the same
WO2009045862A2 (en) * 2007-09-28 2009-04-09 Battelle Memorial Institute Thermoelectric devices
WO2009045862A3 (en) * 2007-09-28 2009-11-05 Battelle Memorial Institute Thermoelectric devices

Similar Documents

Publication Publication Date Title
US7317159B2 (en) Thermoelectric conversion element and method of manufacturing the same, and thermoelectric conversion device using the element
US4443650A (en) Thermoelectric converter element
US9595653B2 (en) Phononic structures and related devices and methods
US7851691B2 (en) Thermoelectric devices and applications for the same
CN110235261B (en) Flexible thermoelectric conversion element and method for manufacturing same
JPH09107129A (en) Semiconductor device and its manufacturing method
US11588091B2 (en) Thermoelectric devices based on nanophononic metamaterials
JPH11317548A (en) Thermoelectric conversion material and manufacture thereof
JP3032826B2 (en) Thermoelectric conversion material and method for producing the same
US4468854A (en) Method and apparatus for manufacturing thermoelectric devices
JPH02198181A (en) Manufacture of thermoelectric element
Yamaguchi et al. Thermal deposition method for p–n patterning of carbon nanotube sheets for planar-type thermoelectric generator
US20100269879A1 (en) Low-cost quantum well thermoelectric egg-crate module
US20190237646A1 (en) Superlattice thermoelectric material and thermoelectric device using same
US5562776A (en) Apparatus for microwave plasma enhanced physical/chemical vapor deposition
US20110100408A1 (en) Quantum well module with low K crystalline covered substrates
JP2523929B2 (en) Thermoelectric device and manufacturing method thereof
JP2003179275A (en) Thermoelectric converting module and thermoelectric converting device using the same
WO2018131532A1 (en) Thermoelectric conversion element and method for manufacturing same
JPH0669549A (en) Thermoelectric device
JPH08153898A (en) Thermoelectric element
JP2512213B2 (en) Thermoelectric device and manufacturing method thereof
JPH0629581A (en) Thermoelectric element
JPH04206884A (en) Thermoelectric device and manufacture thereof
JPH05259514A (en) Thermoelectric device, and its manufacturing method and device