JPH0219817B2 - - Google Patents

Info

Publication number
JPH0219817B2
JPH0219817B2 JP59083893A JP8389384A JPH0219817B2 JP H0219817 B2 JPH0219817 B2 JP H0219817B2 JP 59083893 A JP59083893 A JP 59083893A JP 8389384 A JP8389384 A JP 8389384A JP H0219817 B2 JPH0219817 B2 JP H0219817B2
Authority
JP
Japan
Prior art keywords
reaction
general formula
represented
substituent
enamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59083893A
Other languages
Japanese (ja)
Other versions
JPS60228444A (en
Inventor
Kuniaki Goto
Masao Tsucha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP59083893A priority Critical patent/JPS60228444A/en
Publication of JPS60228444A publication Critical patent/JPS60228444A/en
Publication of JPH0219817B2 publication Critical patent/JPH0219817B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は置換基享有脂環式エナミンの新規な製
造法に関し、さらに詳しくは、前記一般式〔〕
で示される脂環式エナミンと前記一般式〔〕で
示されるアルデヒドを縮合させて前記一般式
〔〕に示される置換基含有脂環式エナミンを高
収率で製造する方法に関する。 置換基含有脂環式エナミン〔〕は医薬、農
薬、香料などの合成中間体として有用な2−置換
シクロアルカノンの原料として有用な物質であ
る。 かかる置換基含有脂環式エナミンの製造方法に
関してはすでにいくつかの方法が知られている。 例えば、ヘミツシエ・ベリヒテ(Chem.Ber.)
95,1495(1962)やケミカル・アンド・フアーマ
シユーテイカル・ブレテイン(Chem.Pharm.
Bull.)21,215(1973)には、N−(Δ1−シクロペ
ンテニル)−モルホリンと該当するアルデヒド類
とをベンゼン中で縮合反応させ、N−(2−アル
キリデン−Δ5−シクロペンテニル)−モルホリン
を製造する方法が記載されており、また特開昭57
−48935号には同様の反応をトルエン中で実施す
る方法が記載されている。 しかし、これらの公知方法では相当量の副生物
が発生するため収率の点で必ずしも充分と言え
ず、また反応時間が長いなどの問題があつた。 そこで本発明者らは従来技術のかかる欠点を解
消すべく鋭意検討を進めた結果、特定な反応条件
を選択することによりかかる欠点を解消しうるこ
とを見い出し本発明を完成するに到つた。 すなわち本発明の目的は、簡単な操作でかつ副
生成物発生を抑え効率良く高収率で前記一般式
〔〕で表わされる置換基含有脂環式エナミンを
製造する方法を提供することにあり、かかる本発
明の目的は、前記一般式〔〕で示される脂環式
エナミンと前記一般式〔〕で表わされるアルデ
ヒドを不活性溶剤の存在下に縮合させる際に、減
圧下で溶剤の還流凝縮によつて系内温度を85〜
105℃に維持しつつ反応を実施し、かつ生成水を
不活性溶剤と共沸させることにより系外に除去す
ることによつて達成される。 本発明において原料として用いられる脂環式エ
ナミンは前記一般式〔〕で示されるものであ
る。式中のR1は2級アミノ残基であり、その具
体的な例として、例えばモルホリノ基、ピペリジ
ノ基、ピロリジノ基、ジエチルアミノ基、ジメチ
ルアミノ基などのごとき水溶性2級アミンの残基
が例示され、なかでも炭素数4〜5の環状2級ア
ミンの残基が賞用される。またnは2〜9の整数
を表わすが、なかでも2または3であることが好
ましく、とくに2のときに良好な結果を与える。 一方、反応に供されるアルデヒドは前記一般式
〔〕で表わされるものであるが、その式中のR2
は通常炭素数2〜6の炭化水素残基であり、その
具体的な例として、例えばエチル基、プロピル
基、ブチル基、ペンチル基、ヘキシル基などのご
ときアルキル基;プロペニル基、ヘキセニル基な
どのごときアルケニル基;プロピニル基、ヘキシ
ニル基などのごときアルキニル基が例示される。 本発明における脂環式エナミン〔〕とアルデ
ヒド〔〕の縮合反応は、通常、以下のようにし
て行われる。すなわちアルデヒド〔〕1モル当
り脂環式エナミン〔〕0.7〜1.5モルを使用し、
かつアルデヒド〔〕100重量部当り、脱水反応
用触媒0.1〜10重量部、不活性溶媒50〜1000重量
部を適宜反応器内に仕込み、85〜105℃、好まし
くは90〜100℃の温度で減圧下に実施される。 脱水反応用触媒は、硫酸、パラトルエンスルホ
ン酸などのごとく一般に使用されているものであ
ればいずれでもよく、また不活性溶剤は反応条件
下で水と最低共沸混合物を形成し、かつ水と実質
的に相互溶解しないものであればいずれでもよ
い。かかる溶剤の具体例としては、例えばトルエ
ン、キシレン、エチルベンゼンなどが例示され
る。 また反応にあたつてはアルデヒド〔〕と脂環
式エナミン〔〕を予め全量仕込んでから開始し
てもよいが、必要に応じてアルデヒド〔〕を連
続的または断続的に添加することもできる。 本発明においては前記反応温度が重要な要件で
あり、反応温度が過度に高くなると、反応速度は
高まるが副生物が急激に増加し、逆に過度に低く
なると反応性が低下し、転化率を上げるために反
応時間を長くすると高沸点の副生物が増加する。
なお、反応の末期には系内の水が存在しなくなる
ため一時的に反応温度が前記範囲を越えることが
あるが、反応の大部分が前記範囲内で実施される
かぎり本発明に包含される。 反応圧力は反応温度が上記範囲内に入るように
適宜選択すればよいが、通常は600mmHg以下、好
ましくは500mmHg以下である。減圧にすることに
よつて反応系内からの脱水を促進するための還流
量を維持したまま反応温度を低下させる事がで
き、副反応を低減し高収率で効率良く目的化合物
を得ることができる。 不活性溶剤とともに揮発した水は、次いで常法
により系外に除去される。水の除去方法は常法に
従つて行えばよく、例えば油水分離槽を用いるデ
カンテーシヨン法、モレキユラーシープなどの脱
水剤を用いる方法などの適宜採用することができ
る。脱水後の溶剤は反応系に循環され、それによ
つて反応系の温度制御がなされる。 かくして本発明によれば、従来法に比して効率
よく高収率で前記一般式〔〕に示される置換基
含有脂環式エナミンを得る事ができ、しかも副生
物の発生を低く抑えることができる。 以下に実施例を拳げて本発明をさらに具体的に
説明する。なお実施例中の部は重量基準であり、
仕込み原料の( )内の数値はn−バレルアルデ
ヒド1モル当りのモル数である。 実施例 1 油水分離槽を付属する還流冷却器を備えた撹拌
機付きの反応器にN−(Δ1−シクロペンテニル)
−モルホリン161.8部(1.05モル)、パラトルエン
スルホン酸0.88部(0.005モル)およびトルエン
132.5部(1.44モル)を仕込み、400mmHgの圧力下
に沸謄状態に加熱した。この混合物中にn−バレ
ルアルデヒド86.1部(1モル)を2時間かけて
徐々に添加した後、さらに30分間反応を続けた。
揮発成分の凝縮液は油水分離槽において二層分離
し、水層を系外に抜き出しつつ有機層を反応系内
に還流した。反応系内温度はアルデヒド添加開始
時100℃であつたが、徐々に下り、アルデヒド添
加終了時には最低値90℃となり、その後、徐々に
上昇し、反応終了時には102℃となつた。約2.5時
間で生成水の留出が停止した。系内を常圧とし、
35%塩酸108部を加え、80℃で30分間撹拌したの
ち、5%炭酸水素ナトリウム水溶液88.3部を加え
撹拌した。静置し二層分離後、水層を系外へ除去
し、得られた有機層をサンプリングしてガスクロ
マトグラフイーにより分析して生成物の定量を行
つた。その結果、N−(Δ1−シクロペンテニル)
−モルホリンとn−バレルアルデヒドの縮合物で
あるN−(2−n−ペンチリデン−Δ5−シクロペ
ンテニル)−モルホリンの加水分解物である2−
n−ペンチリデンシクロペンタノンが主生成物で
あり、n−バレルアルデヒド基準の収率は91モル
%であつた。系中のシクロペンタノン残存量の測
定から反応中に副生成物(主として高沸点物)と
して失われたN−Δ1−シクロペンテニル)−モル
ホリン量は仕込みの4.6モル%であつた。 実施例 2 実施例1において反応温度をほぼ一定とする様
減圧度を調整しつつ反応を行う以外、実施例1と
同様の操作で反応を行つたところ、いずれの場合
も2.5時間以内に反応が終了した。その結果、生
成物として得られた2−n−ペンチリデンシクロ
ペンタノンのn−バレルアルデヒド基準の収率お
よび反応中に副生成物として失われたN−(Δ1
シクロペンテニル)−モルホリン量(仕込み量基
準)は第1表に示すとうりであつた。 【表】 比較例 1 N−(Δ1−シクロペンテニル)−モルホリンと
n−バレルアルデヒドの縮合反応において、溶剤
としてベンゼンを用い、常圧下で反応を実施する
事以外、実施例1と同様の操作で反応を行つた。
反応終了までに要した時間は4.0時間であつた。
その結果、生成物として2−n−ペンチリデンシ
クロペンタノンがn−バレルアルデヒド基準の収
率78.5%で得られた。また反応中に副生成物とし
て失われたN−(Δ1−シクロペンテニル)−モル
ホリン量は仕込みの18.6モル%であつた。 比較例 2 実施例1において反応温度を常圧下にトルエン
が還流する温度(約110℃)にすること以外は同
様にして操作を行つたところ、反応は約2.5時間
で終了し、2−n−ペンチリデンシクロペンタノ
ンが75.2モル%の収率(n−バレルアルデヒド基
準)で得られた。副生成物として失われたN−
(Δ1−シクロペンテニル)−モルホリンの量は仕
込みの18.0モル%であつた。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for producing substituent-enriched alicyclic enamines, more specifically, the above general formula []
The present invention relates to a method for producing a substituent-containing alicyclic enamine represented by the general formula [] in high yield by condensing the alicyclic enamine represented by the above formula with an aldehyde represented by the general formula []. Substituent-containing alicyclic enamines are useful substances as raw materials for 2-substituted cycloalkanones useful as synthetic intermediates for medicines, agricultural chemicals, fragrances, and the like. Several methods are already known for producing such substituent-containing alicyclic enamines. For example, Chem.Ber.
95, 1495 (1962) and Chemical and Pharmaceutical Bulletin (Chem.Pharm.
Bull.) 21 , 215 (1973), a condensation reaction of N-(Δ 1 -cyclopentenyl)-morpholine and the corresponding aldehyde in benzene resulted in N-(2-alkylidene-Δ 5 -cyclopentenyl). - A method for producing morpholine is described, and JP-A-57
No. 48935 describes a method in which a similar reaction is carried out in toluene. However, in these known methods, a considerable amount of by-products are generated, so the yield is not necessarily sufficient, and the reaction time is long. The inventors of the present invention conducted intensive studies to eliminate these drawbacks of the prior art, and as a result, they discovered that such drawbacks could be overcome by selecting specific reaction conditions, and completed the present invention. That is, an object of the present invention is to provide a method for producing a substituent-containing alicyclic enamine represented by the general formula [] with a simple operation, suppressing the generation of by-products, and efficiently and in a high yield. The object of the present invention is to condense the alicyclic enamine represented by the general formula [] and the aldehyde represented by the general formula [] in the presence of an inert solvent, by refluxing and condensing the solvent under reduced pressure. Therefore, the temperature inside the system should be 85~
This is achieved by carrying out the reaction while maintaining the temperature at 105°C, and removing the produced water from the system by azeotroping it with an inert solvent. The alicyclic enamine used as a raw material in the present invention is represented by the general formula []. R 1 in the formula is a secondary amino residue, and specific examples thereof include water-soluble secondary amine residues such as morpholino group, piperidino group, pyrrolidino group, diethylamino group, dimethylamino group, etc. Among them, residues of cyclic secondary amines having 4 to 5 carbon atoms are preferred. Further, n represents an integer from 2 to 9, preferably 2 or 3, and particularly 2 gives good results. On the other hand, the aldehyde to be subjected to the reaction is represented by the above general formula [], in which R 2
is usually a hydrocarbon residue having 2 to 6 carbon atoms, and specific examples thereof include alkyl groups such as ethyl, propyl, butyl, pentyl, and hexyl; propenyl, hexenyl, etc. Alkenyl groups such as; examples include alkynyl groups such as propynyl group and hexynyl group. The condensation reaction of alicyclic enamine [ ] and aldehyde [ ] in the present invention is usually carried out as follows. That is, 0.7 to 1.5 mol of alicyclic enamine [] is used per 1 mol of aldehyde [],
And per 100 parts by weight of aldehyde, 0.1 to 10 parts by weight of a dehydration reaction catalyst and 50 to 1000 parts by weight of an inert solvent are appropriately charged into a reactor, and the pressure is reduced at a temperature of 85 to 105°C, preferably 90 to 100°C. To be carried out below. The catalyst for the dehydration reaction may be any commonly used catalyst such as sulfuric acid, para-toluenesulfonic acid, etc., and the inert solvent may form a minimum azeotrope with water under the reaction conditions. Any material may be used as long as it is not substantially mutually soluble. Specific examples of such solvents include toluene, xylene, and ethylbenzene. In addition, the reaction may be started after the aldehyde [ ] and the alicyclic enamine [ ] have been charged in their entire amounts in advance, but the aldehyde [ ] can also be added continuously or intermittently if necessary. In the present invention, the reaction temperature is an important requirement; if the reaction temperature is excessively high, the reaction rate will increase but by-products will increase rapidly, and if the reaction temperature is excessively low, the reactivity will decrease and the conversion rate will decrease. If the reaction time is increased in order to increase the temperature, the amount of high-boiling by-products will increase.
Note that at the end of the reaction, water in the system ceases to exist, so the reaction temperature may temporarily exceed the above range, but as long as most of the reaction is carried out within the above range, it is included in the present invention. . The reaction pressure may be appropriately selected so that the reaction temperature falls within the above range, but is usually 600 mmHg or less, preferably 500 mmHg or less. By reducing the pressure, the reaction temperature can be lowered while maintaining the reflux amount to promote dehydration from within the reaction system, reducing side reactions and efficiently obtaining the target compound in high yield. can. The water that has evaporated together with the inert solvent is then removed from the system by a conventional method. The method for removing water may be carried out according to a conventional method, such as a decantation method using an oil-water separation tank, a method using a dehydrating agent such as molecular sheep, etc., as appropriate. The solvent after dehydration is circulated to the reaction system, thereby controlling the temperature of the reaction system. Thus, according to the present invention, the substituent-containing alicyclic enamine represented by the general formula [] can be obtained more efficiently and in a higher yield than conventional methods, and the generation of by-products can be suppressed to a low level. can. The present invention will be described in more detail below with reference to Examples. Note that parts in the examples are based on weight.
The numbers in parentheses for the raw materials to be charged are the number of moles per mole of n-valeraldehyde. Example 1 N-(Δ 1 -cyclopentenyl) was added to a reactor equipped with a stirrer and equipped with a reflux condenser and an oil-water separation tank.
- 161.8 parts (1.05 moles) of morpholine, 0.88 parts (0.005 moles) of para-toluenesulfonic acid and toluene
132.5 parts (1.44 mol) was charged and heated to boiling under a pressure of 400 mmHg. After 86.1 parts (1 mol) of n-valeraldehyde was gradually added to this mixture over 2 hours, the reaction was continued for an additional 30 minutes.
The condensed liquid of volatile components was separated into two layers in an oil-water separation tank, and the organic layer was refluxed into the reaction system while the aqueous layer was extracted from the system. The temperature inside the reaction system was 100°C at the beginning of the aldehyde addition, but gradually decreased to a minimum value of 90°C at the end of the aldehyde addition, and then gradually rose to 102°C at the end of the reaction. Distillation of produced water stopped in about 2.5 hours. The inside of the system is kept at normal pressure,
After adding 108 parts of 35% hydrochloric acid and stirring at 80°C for 30 minutes, 88.3 parts of a 5% aqueous sodium hydrogen carbonate solution was added and stirred. After leaving to stand and separating the two layers, the aqueous layer was removed from the system, and the resulting organic layer was sampled and analyzed by gas chromatography to quantify the product. As a result, N-(Δ 1 -cyclopentenyl)
- N-(2-n-pentylidene-Δ 5 -cyclopentenyl) which is a condensate of morpholine and n-valeraldehyde - 2- which is a hydrolyzate of morpholine
The main product was n-pentylidenecyclopentanone, and the yield was 91 mol% based on n-valeraldehyde. Measurement of the amount of cyclopentanone remaining in the system revealed that the amount of N-Δ 1 -cyclopentenyl)-morpholine lost as by-products (mainly high-boiling substances) during the reaction was 4.6 mol % of the charge. Example 2 A reaction was carried out in the same manner as in Example 1, except that the reaction was carried out while adjusting the degree of vacuum to keep the reaction temperature almost constant. In each case, the reaction was completed within 2.5 hours. finished. As a result, the yield of 2-n-pentylidenecyclopentanone obtained as a product based on n-valeraldehyde and the N-(Δ 1 -
The amount of cyclopentenyl)-morpholine (based on the amount charged) was as shown in Table 1. [Table] Comparative Example 1 The same procedure as in Example 1 except that in the condensation reaction of N-(Δ 1 -cyclopentenyl)-morpholine and n-valeraldehyde, benzene was used as a solvent and the reaction was carried out under normal pressure. I did the reaction.
The time required to complete the reaction was 4.0 hours.
As a result, 2-n-pentylidenecyclopentanone was obtained as a product with a yield of 78.5% based on n-valeraldehyde. The amount of N-(Δ 1 -cyclopentenyl)-morpholine lost as a by-product during the reaction was 18.6 mol% of the charge. Comparative Example 2 The same procedure as in Example 1 was carried out except that the reaction temperature was set to the temperature at which toluene refluxes under normal pressure (approximately 110°C). The reaction was completed in approximately 2.5 hours, and 2-n- Pentylidenecyclopentanone was obtained in a yield of 75.2 mol% (based on n-valeraldehyde). N- lost as a by-product
The amount of (Δ 1 -cyclopentenyl)-morpholine was 18.0 mol% of the charge.

Claims (1)

【特許請求の範囲】 1 下記一般式〔〕で表わされる脂環式エナミ
ンと下記一般式〔〕で表わされるアルデヒドを
不活性溶剤の存在下に縮合させて下記一般式
〔〕で表わされる置換基含有脂環式エナミンを
製造するに際し、減圧下での溶剤の還流凝縮によ
つて系内温度を85〜105℃に維持しつつ反応を実
施し、かつ生成水を不活性溶剤と共沸させること
によつて系外に除去することを特徴とする置換基
含有脂環式エナミンの製造方法。 (式中、R1は水溶性2級アミンの残基、R2
炭化水素残基、nは2〜9の整数を表わす。)
[Claims] 1. A substituent represented by the following general formula [] obtained by condensing an alicyclic enamine represented by the following general formula [] and an aldehyde represented by the following general formula [] in the presence of an inert solvent. When producing the alicyclic enamine-containing alicyclic enamine, the reaction is carried out while maintaining the system temperature at 85 to 105 °C by reflux condensation of the solvent under reduced pressure, and the produced water is azeotroped with an inert solvent. 1. A method for producing a substituent-containing alicyclic enamine, which method comprises removing the substituent-containing alicyclic enamine from the system. (In the formula, R 1 represents a water-soluble secondary amine residue, R 2 represents a hydrocarbon residue, and n represents an integer from 2 to 9.)
JP59083893A 1984-04-27 1984-04-27 Preparation of substituent group-containing alicyclic enamine Granted JPS60228444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59083893A JPS60228444A (en) 1984-04-27 1984-04-27 Preparation of substituent group-containing alicyclic enamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59083893A JPS60228444A (en) 1984-04-27 1984-04-27 Preparation of substituent group-containing alicyclic enamine

Publications (2)

Publication Number Publication Date
JPS60228444A JPS60228444A (en) 1985-11-13
JPH0219817B2 true JPH0219817B2 (en) 1990-05-07

Family

ID=13815315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59083893A Granted JPS60228444A (en) 1984-04-27 1984-04-27 Preparation of substituent group-containing alicyclic enamine

Country Status (1)

Country Link
JP (1) JPS60228444A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748935A (en) * 1980-09-10 1982-03-20 Nippon Zeon Co Ltd Preparation of 2-substituted cycloalkanone

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748935A (en) * 1980-09-10 1982-03-20 Nippon Zeon Co Ltd Preparation of 2-substituted cycloalkanone

Also Published As

Publication number Publication date
JPS60228444A (en) 1985-11-13

Similar Documents

Publication Publication Date Title
Burke et al. 3, 4-Dihydro-1, 3, 2H-Benzoxazines. Reaction of Polyhydroxybenzenes with N-Methylolamines1
JPS5927855A (en) Manufacture of bis(aminoctclohexyl)dialkyl methane
US8614353B2 (en) Process for preparing Cinacalcet
HU185975B (en) Process forproducing new, benzoaxazolinone derivatives substituted with an aminoalkohol- or aminoketone chain at the 6 position and pharmaceutically acceptable salts thereof
EP0092479B1 (en) N,n'-substituted polymethylene diamines, processes for their preparation and pharmaceutical compositions containing them
US3426072A (en) Preparation of amine ethers
JPH0219817B2 (en)
US7683216B2 (en) Continuous process for the preparation of alkyleneimines
JP3474252B2 (en) Method for producing cyclic formal
US6835839B2 (en) Method for the production of biperiden II
US3951996A (en) Process for making nicotinic acid hydrazides
JPH0249296B2 (en)
US20150329508A1 (en) Processes for the Preparation of Enamines
JPS60228445A (en) Preparation of substituent group-containing alicyclic enamine
CN105175358A (en) Processes for the preparation of enamines
CN111269194B (en) Preparation method of indoxacarb key intermediate
US3210349A (en) Methylation of primary and secondary amines using a small stoichiometric excess of formaldehyde and adding a small stoichiometric excess of formic acid last
US20150329509A1 (en) Processes for the preparation of enamines
JP4521090B2 (en) Process for producing 1,1,1-trifluoro-2-aminoalkane
JPS6338013B2 (en)
EP0998461B1 (en) Process for the preparation of imidazolones
Krawczyk A New Access to 2-(Chloromethyl) Acrylonitryle
JP4023922B2 (en) Method for producing high purity 1,3-dialkyl-2-imidazolidinone
JPS6338012B2 (en)
JPH06239846A (en) Production of propiophenone derivative