JPH02197818A - Production of liquid crystal display element - Google Patents

Production of liquid crystal display element

Info

Publication number
JPH02197818A
JPH02197818A JP10764289A JP10764289A JPH02197818A JP H02197818 A JPH02197818 A JP H02197818A JP 10764289 A JP10764289 A JP 10764289A JP 10764289 A JP10764289 A JP 10764289A JP H02197818 A JPH02197818 A JP H02197818A
Authority
JP
Japan
Prior art keywords
liquid crystal
films
display element
film
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10764289A
Other languages
Japanese (ja)
Other versions
JPH0529891B2 (en
Inventor
Kiyoshige Kinugawa
清重 衣川
Tadashi Ishibashi
正 石橋
Masamichi Shibuya
渋谷 昌道
Yasuhiko Shindo
神藤 保彦
Koretoshi Ito
伊藤 維利
Tadashi Ito
廉 伊藤
Satoru Ogiwara
荻原 覚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10764289A priority Critical patent/JPH02197818A/en
Publication of JPH02197818A publication Critical patent/JPH02197818A/en
Publication of JPH0529891B2 publication Critical patent/JPH0529891B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the heat resistance of orientation control films and the adhesiveness to glass substrates by applying an org. solvent or silicon as underlying films on the glass substrates and calcining the coating to form silicon oxide films, then forming org. high-polymer films thereon and rubbing these films, thereby forming the orientation control films. CONSTITUTION:The underlying films 10, 10' consisting of the metal oxide are formed between the glass substrates 1, 1' and transparent electrodes 5, 5' and the orientation control films 7, 7' consisting of the org. high polymer are formed thereon. The heat resistance of the orientation control films 7, 7' and the adhesiveness to the glass substrates 1, 1' are improved by forming the underlying films 10, 10' in such a manner. The above-mentioned underlying films 10, 10' are formed by a vapor deposition method, sputtering method, CVD method, dipping method for calcining the films after dipping in a soln., and a spin coating method for executing calcination after spin coating.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電界効果形液晶表示素子の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a field effect liquid crystal display element.

〔従来の技術〕[Conventional technology]

電界効界形液晶表示素子の一つであるツィステッドネマ
チック形(TN形)液晶表示素子の一例を第2図に示す
、同図に示す液晶表示素子は、それぞれ透明なガラスな
どからなる第1の基板1と第2図の基板1′とが所定の
間隔、例えば5〜15−でほぼ平行に配置され、その周
囲は1例えばフリットガラス、有機接着剤等からなる接
着部材2で封着され、これらによって形成される内部空
間にネマチック相液晶3が封入されている。所定の間隔
は、例えばファイバーガラス、ガラス粉末等のスペーサ
ー4によって得られる。なお、特別にスペーサー4を使
用せず、封着部材2をスペーサーとして兼用しても良い
Figure 2 shows an example of a twisted nematic type (TN type) liquid crystal display element, which is one of the field effect type liquid crystal display elements. The substrate 1 shown in FIG. 1 and the substrate 1' shown in FIG. , a nematic phase liquid crystal 3 is sealed in the internal space formed by these. The predetermined spacing is obtained by spacers 4, such as fiberglass, glass powder, etc. Note that the sealing member 2 may also be used as a spacer without using the spacer 4 in particular.

上記第1及び第2の基板1.1′は、それぞれその対向
する内面上に所定のパターンの電極5゜5′が形成され
、更に液晶に接する面に、その面付近の液晶分子を所望
の一定方向に配向させる液晶配向制御面6,6′が形成
された液晶配向制御[7,7′が被膜されている。この
ような配向制御面6.6′はそれぞれ電極を有する基板
面上に例えば有機高分子物質の配向制御膜7,7′を被
膜しその表面を綿、布などで一定方向にこするいわゆる
ラビング処理を施すことなどにより作られる。
The first and second substrates 1.1' each have a predetermined pattern of electrodes 5.5' formed on their opposing inner surfaces, and further have liquid crystal molecules near the surface in contact with the liquid crystal in a desired manner. Liquid crystal alignment control surfaces [7, 7'] formed with liquid crystal alignment control surfaces 6, 6' for aligning in a certain direction are coated. Such alignment control surfaces 6 and 6' are formed by coating the substrate surfaces with electrodes with alignment control films 7 and 7' made of, for example, an organic polymer material, and rubbing the surface with cotton, cloth, etc. in a fixed direction. It is made by applying processing.

液晶配向方向に関して、第1の基板1の液晶配向制御面
6には第1の一定方向を、第2の基板1′の液晶配向制
御面6′には第2の一定方向をそれぞれ選びそれぞれの
方向を異ならせることにより、前記基板1.1′間に挾
持されたネマチック相液晶3の分子は、第1の方向から
第2の方向に向かってねじれて配向される。第1の方向
と第2の方向とのなす角度すなわち液晶分子のツイスト
角度は任意に選ばれるが、一般にはほぼ90度が選ばれ
る。
Regarding the liquid crystal alignment direction, a first fixed direction is selected for the liquid crystal alignment control surface 6 of the first substrate 1, and a second fixed direction is selected for the liquid crystal alignment control surface 6' of the second substrate 1'. By changing the directions, the molecules of the nematic phase liquid crystal 3 sandwiched between the substrates 1.1' are twisted and oriented from the first direction to the second direction. The angle formed between the first direction and the second direction, that is, the twist angle of the liquid crystal molecules is arbitrarily selected, but generally approximately 90 degrees is selected.

基板1,1′の外側には、それぞれ第1の偏光板8及び
第2の偏光板8′が配置される。この場合2枚の偏光板
8.8′の偏光軸のなす角度は通常液晶分子のツイスト
角度(前記第1の方向と第2の方向とのなす角度)と同
じ角度又は、零度(すなわちそれぞれの偏光軸が平行で
ある)が選ばれる。そして通常液晶配向面配向方向と偏
光板の偏光軸とは互いに平行もしくは直交するよう配置
される。このような表示素子は、第1の基板側からみた
ときに正常の表示を行う場合、第2の偏光板8′の裏面
に反射体9を配置した反射形表示素子、又は更に第2の
偏光板と反射体9との間に所望の厚さのアクリル樹脂板
、ガラス板等の導光体を挿入し、その側面の適宜個所に
図示しない光源を配置した夜間用表示素子として広く利
用されている。
A first polarizing plate 8 and a second polarizing plate 8' are arranged on the outside of the substrates 1 and 1', respectively. In this case, the angle formed by the polarization axes of the two polarizing plates 8.8' is usually the same as the twist angle of the liquid crystal molecules (the angle formed between the first direction and the second direction) or zero degrees (that is, the angle between each (the polarization axes are parallel) are selected. Usually, the alignment direction of the liquid crystal alignment surface and the polarization axis of the polarizing plate are arranged to be parallel or orthogonal to each other. When such a display element performs a normal display when viewed from the first substrate side, it is a reflective display element in which a reflector 9 is arranged on the back surface of the second polarizing plate 8', or a second polarizing display element is used. A light guide such as an acrylic resin plate or a glass plate of a desired thickness is inserted between the plate and the reflector 9, and a light source (not shown) is placed at an appropriate location on the side of the light guide, which is widely used as a nighttime display element. There is.

ここで液晶分子のツイスト角度90度、2枚の偏光板8
.8′の偏光軸交差角度90度の反射形の場合の液晶表
示素子の表示動作原理について説明する。今、液晶層に
電界が存在しないときは、外来光(この液晶表示素子の
第1の偏光板8へ入射する周囲光)はまず第1の偏光板
8を透過したときその偏光軸に沿った直線偏光光となり
液晶層3へ入射されるが、液晶分子は、その層の間で9
0度ツイストしているので液晶層を通過したときは、前
記偏光光の偏光面は90度旋光され、第2の偏光板8′
を透過する。これが反射板9で反射され上記と逆の順序
で第2偏光板8′、液晶層3゜第1偏光板8を透過して
液晶表示素子外へ放射される。従って観察者には、液晶
表示素子に入射され、反射板で反射されて再び液晶表示
素子から出て来た偏光光を観察することが出来る。
Here, the twist angle of the liquid crystal molecules is 90 degrees, and the two polarizing plates 8
.. The principle of display operation of a liquid crystal display element in the case of a reflective type with a polarization axis crossing angle of 90 degrees as shown in FIG. 8' will be explained. Now, when there is no electric field in the liquid crystal layer, external light (ambient light incident on the first polarizing plate 8 of this liquid crystal display element) first passes through the first polarizing plate 8 and is directed along its polarization axis. The light becomes linearly polarized and enters the liquid crystal layer 3, but the liquid crystal molecules are separated by 9 between the layers.
Since the polarized light is twisted by 0 degrees, when it passes through the liquid crystal layer, the plane of polarization of the polarized light is rotated by 90 degrees, and the polarization plane of the polarized light is rotated by 90 degrees.
Transparent. This light is reflected by the reflecting plate 9, passes through the second polarizing plate 8', the liquid crystal layer 3°, and the first polarizing plate 8 in the reverse order to the above, and is emitted to the outside of the liquid crystal display element. Therefore, the observer can observe the polarized light that is incident on the liquid crystal display element, reflected by the reflector, and then comes out of the liquid crystal display element again.

このような表示素子において所定の選択された電極5.
5′に所定の電圧を印加し、液晶層の所定の領域に電界
を与えると、その領域における液晶分子は電界の方向に
沿って配向される。その結果、その領域においては液晶
分子の旋光能が失われるので、その領域では偏光面は旋
光しないため。
In such a display element, certain selected electrodes 5.
When a predetermined voltage is applied to 5' and an electric field is applied to a predetermined region of the liquid crystal layer, the liquid crystal molecules in that region are aligned along the direction of the electric field. As a result, the optical rotation power of the liquid crystal molecules is lost in that region, so the plane of polarization does not rotate in that region.

第1の偏光板8で偏光された光は第2の偏光板8′で遮
断される。このため、観察者にはその領域は暗くみえる
The light polarized by the first polarizing plate 8 is blocked by the second polarizing plate 8'. Therefore, the area appears dark to the observer.

なお、2枚の偏光板8.8′の偏光軸が平行の場合の液
晶表示素子にあっては、液晶層の電界の存在しないとこ
ろは暗く、電界の印加された領域は明るくみえる。
In a liquid crystal display device in which the polarization axes of the two polarizing plates 8, 8' are parallel, areas in the liquid crystal layer where no electric field is present appear dark, and areas to which an electric field is applied appear bright.

従って、所望の選択された電極に電圧を印加することに
よって所望の表示を行うことができるのである。
Therefore, desired display can be performed by applying voltage to desired selected electrodes.

前記の如く、ツイスト構造の液晶表示素子では、両ガラ
ス基板間に封止される液晶はその液晶分子がガラス基板
面にほぼ平行に配向されるとともに。
As described above, in the twisted structure liquid crystal display element, the liquid crystal molecules sealed between both glass substrates are oriented substantially parallel to the glass substrate surface.

液晶層において液晶分子が所定の角度、一般的にはほぼ
90度のねじれをもつ様に配向される必要がある。この
液晶配向特性は液晶に対向する側のガラス基板面に形成
された配向制御面6,6′を有する配向制御膜7,7′
によって遂行される。
In the liquid crystal layer, liquid crystal molecules need to be oriented at a predetermined angle, generally with a twist of about 90 degrees. This liquid crystal alignment characteristic is determined by the alignment control films 7 and 7' having alignment control surfaces 6 and 6' formed on the glass substrate surface facing the liquid crystal.
carried out by

この配向制御膜7,7′の材質としては一般に有機高分
子が用いられている。さらにこの有機高分子として種々
のものが提案されているが、イミド環およびキナゾリン
環の少なくとも一方を含む有機高分子を用いたものは、
良好な配向制御力を有し、しかも高温処理によってもそ
の能力が低下しない配向制御膜が得られ優れたものであ
る。
Organic polymers are generally used as the material for the alignment control films 7, 7'. Furthermore, various organic polymers have been proposed, but those using an organic polymer containing at least one of an imide ring and a quinazoline ring are:
This is an excellent product because it provides an alignment control film that has good alignment control ability and does not lose its ability even when treated at high temperatures.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

シール材2としては一般にフリットガラスまたは有機系
の接着剤が用いられる。そこでシール材2としてフリッ
トガラスを用いた場合、フリットガラスを溶解させるた
めには低融点フリットガラスを用いても約400℃の高
温熱処理が必要となる。このため配向制御膜7.7′と
してたとえば耐熱性を有する前記イミド環°およびキナ
ゾリン環の少なくとも一方を含む有機高分子よりなる配
向制御膜7.7′を用いた場合、本来その有機高分子膜
が400℃以上の耐熱性を有するものであってもガラス
基板1,1′と接する部分ではそれより低い温度で劣化
し、前記400℃の熱処理で一定方向につけられた摩耗
溝が損傷するかあるいは高分子膜自体が揮散してしまい
、配向制御膜7.7′の液晶を配向させる性質が失なわ
れてしまう欠点があった。
As the sealing material 2, frit glass or organic adhesive is generally used. Therefore, when frit glass is used as the sealing material 2, high-temperature heat treatment at about 400° C. is required to melt the frit glass even if a low melting point frit glass is used. Therefore, when an alignment control film 7.7' made of an organic polymer containing at least one of the imide ring and quinazoline ring having heat resistance is used as the alignment control film 7.7', the organic polymer film Even if it has a heat resistance of 400°C or higher, the portion in contact with the glass substrates 1 and 1' will deteriorate at a lower temperature, and the wear grooves formed in a certain direction by the 400°C heat treatment may be damaged. There is a drawback that the polymer film itself evaporates and the property of the alignment control film 7, 7' for aligning the liquid crystal is lost.

たとえば有機高分子膜としてポリイミドイソインドロキ
ナゾリンジオン膜(以下PIIQ膜とよぶ)を用いた場
合、PI IQ自体は熱天秤分析。
For example, when a polyimide isoindoquinazoline dione film (hereinafter referred to as PIIQ film) is used as an organic polymer film, PIIQ itself is analyzed by thermobalance.

赤外分析などにより約450℃の耐熱性をもつことがわ
かっている。しかし、第2図の如くソーダガラス基板1
,1′に透明電極5.5′を形成し、その上に約100
0人のPIIQ膜を形成し、布などでラビングして摩耗
溝をもうけて配向制御膜7.7′とした場合、約350
℃の熱処理で液晶分子を配向させる能力が失なわれた。
It is known through infrared analysis that it has a heat resistance of about 450°C. However, as shown in Figure 2, the soda glass substrate 1
, 1', and a transparent electrode 5.5' is formed on the transparent electrode 5.5'.
When a PIIQ film of 0 is formed and abrasion grooves are created by rubbing with cloth etc. to form an orientation control film 7.7', it is approximately 350
The ability to orient liquid crystal molecules was lost by heat treatment at ℃.

この熱劣化する部分はガラス基板1.1′と配向側W膜
7.7′が直接接触している部分である。
This thermally degraded portion is the portion where the glass substrate 1.1' and the alignment side W film 7.7' are in direct contact.

一方シール材2として有機高分子系シール材を用いた場
合は、熱処理温度が比較的低いため耐熱性は大きな問題
とはならない。しかし有機高分子系シール材は水を透過
させるため、液晶表示素子に用いた場合、耐湿寿命が問
題となる。有機高分子を配向制御膜として用いた場合、
第2図において配向制御[7,7’とガラス基板1.1
′の加湿時の接着性が悪いため、配向制御膜7,7′と
ガラス基板1.1′の間にシール材2を通して外部より
浸透した水分が入りガラス基板1.1′の沿面抵抗を下
げる。このため液晶表示素子に電圧を印加して電極部を
点灯させたとき電極周辺の本来点灯すべきでない場所も
点灯するという不良現象(以下にじみ不良とよぶ)が発
生する。
On the other hand, when an organic polymeric sealing material is used as the sealing material 2, heat resistance is not a big problem because the heat treatment temperature is relatively low. However, since organic polymer sealants allow water to pass through them, when used in liquid crystal display elements, moisture resistance life becomes a problem. When an organic polymer is used as an alignment control film,
In Figure 2, orientation control [7, 7' and glass substrate 1.1]
Due to poor adhesion during humidification of ', moisture infiltrates from the outside through the sealing material 2 between the alignment control films 7, 7' and the glass substrate 1.1', lowering the creeping resistance of the glass substrate 1.1'. . For this reason, when a voltage is applied to the liquid crystal display element to turn on the electrode portion, a defective phenomenon (hereinafter referred to as a bleeding defect) occurs in which areas around the electrode that should not be lit are also lit.

たとえば、第2図の如くソーダガラス基板1.1′に透
明電極5.5′を形成し、その上に約1000人のPI
IQ膜を形成し布などでラビングして摩耗溝をもうけて
配向制御11197.7′とし、エポキシ系接着剤でシ
ールし、アゾキシ系の液晶を母体とし正の誘電異方性を
もつエステル系液晶を添加した液晶3を注入して素子を
構成し、この素子を70℃、95%の条件で加湿試験を
したところ、約50時間でにじみ不良が発生した。これ
は通常の環境条件に換算すると6ケ月〜1ケ年の寿命で
あり実用上問題となる。
For example, as shown in Figure 2, a transparent electrode 5.5' is formed on a soda glass substrate 1.1', and about 1000 PIs are placed on it.
Form an IQ film, rub with cloth to create abrasion grooves to control orientation 11197.7', seal with epoxy adhesive, and create an ester liquid crystal with positive dielectric anisotropy based on azoxy liquid crystal. When a device was constructed by injecting liquid crystal 3 containing 100% of the total amount of liquid crystal 3 and subjected to a humidification test at 70° C. and 95% humidity, a bleeding defect occurred in about 50 hours. This is a practical problem since it has a lifespan of 6 months to 1 year when converted to normal environmental conditions.

本発明は上記従来の欠点に鑑みなされたもので、配向制
御膜の耐熱性およびガラス基板との接着性の向上を図り
得る液晶表示素子の製造方法を提供することを目的とす
る。
The present invention has been made in view of the above-mentioned conventional drawbacks, and an object of the present invention is to provide a method for manufacturing a liquid crystal display element that can improve the heat resistance of an alignment control film and the adhesion to a glass substrate.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的゛を達成するために本発明においては、液晶表
示素子の製造方法において、下地膜としてガラス基板に
シリコンの有機溶液を塗布後焼成し酸化ケイ素膜を形成
し、この上に有機高分子膜を形成し、これをラビングす
ることにより配向制御膜を形成するものである。
In order to achieve the above object, in the present invention, in a method for manufacturing a liquid crystal display element, an organic solution of silicon is applied to a glass substrate as a base film and then baked to form a silicon oxide film, and an organic polymer film is formed on this. The alignment control film is formed by forming and rubbing this.

(作用〕 上記のようにすれば、各膜厚調整が容易で、均一な勝を
得ることが出来るので、配向制御膜の耐熱性およびガラ
ス基板との接着性の向上を、基板の大きさに拘らず量産
性良く安価に達成出来る。
(Function) By doing the above, each film thickness can be easily adjusted and a uniform thickness can be obtained, so that the heat resistance of the alignment control film and the adhesion to the glass substrate can be improved depending on the size of the substrate. However, it can be mass-produced at low cost.

〔実施例〕〔Example〕

以下本発明を図示の実施例に基づき説明する。 The present invention will be explained below based on illustrated embodiments.

第1図は本発明の一実施例を示す断面Vである。FIG. 1 is a cross section V showing an embodiment of the present invention.

なお第2図と同じまたは相当部材には同じ符号を付しそ
の説明を省略する。又、偏光板及び反射体は省略する。
Note that the same or equivalent members as in FIG. 2 are given the same reference numerals and their explanations will be omitted. Also, the polarizing plate and reflector are omitted.

第1図に示すようにガラス基板1.1′と透明電極5,
5′の間に金属酸化物の下地fiI!!10.10′を
形成し、その上に有機高分子よりなる配向制御膜7,7
′を形成してなる。このように下地[10,10′を形
成することにより配向制御膜7.7′の耐熱性およびガ
ラス基板1.1′との接着性が向上する。前記下地膜1
o、10′の形成法としては、周知の方法、たとえば蒸
着法、スパッタ法、CVD法、溶液に浸漬した後に焼成
する浸漬法および回転塗布した後に焼成する回転塗布法
などによって形成する。
As shown in FIG. 1, a glass substrate 1.1' and a transparent electrode 5,
Metal oxide base fiI between 5'! ! 10.10' is formed, and alignment control films 7, 7 made of organic polymer are formed thereon.
′ is formed. By forming the underlayer [10, 10' in this manner, the heat resistance of the alignment control film 7.7' and the adhesion to the glass substrate 1.1' are improved. The base film 1
O and 10' can be formed by well-known methods such as vapor deposition, sputtering, CVD, a dipping method in which the solution is immersed and then baked, and a spin coating method in which the solution is immersed and then baked.

最初にフリットシールした液晶表示素子について前記下
地膜10.10’の材料として2〜3の金属酸化物につ
いて実験した結果を説明する。
First, the results of experiments using two to three metal oxides as materials for the base film 10 and 10' for a frit-sealed liquid crystal display element will be described.

実施例1 ソーダガラス基板にアルコールを主体とする溶剤に水酸
化シリコンを希釈した溶液中に浸漬し、引き上げた後5
00℃で焼成して約1500人の酸化ケイ素膜を形成し
た後透明電極を形成し、その上に約1000人のPII
Q配向制御膜を形成した。
Example 1 A soda glass substrate was immersed in a solution of diluted silicon hydroxide in an alcohol-based solvent, and after being pulled up,
After baking at 00℃ to form a silicon oxide film of approximately 1,500 layers, a transparent electrode was formed, and on top of that a silicon oxide film of approximately 1,000 layers was formed.
A Q orientation control film was formed.

実施例2 ソーダガラス基板を約300℃に加熱し、1x1、0−
’torr以下の圧力で二酸化ケイ素を蒸着源とし電子
ビーム蒸着を行ない約1500人の酸化ケイ素膜を形成
した後、その上に透明電極を形成し、さらにその上に約
1000人のPIIQ配向制御膜を形成した。
Example 2 A soda glass substrate was heated to about 300°C, 1x1, 0-
After forming a silicon oxide film of about 1,500 layers by electron beam evaporation using silicon dioxide as a deposition source at a pressure of less than 'torr, a transparent electrode is formed on it, and then a PIIQ alignment control film of about 1,000 layers is formed on top of it. was formed.

実施例3 ソーダガラス基板をアルコールを主体とする溶剤に水酸
化シリコンと水酸化アルミニウムを希釈しその固形分濃
度比が5=1であるようにした溶液中に浸漬し、引き上
げた後500℃で焼成して約1000人の酸化ケイ素と
酸化アルミニウムの混合物よりなる膜を形成した後透明
電極を形成し、その上に約1000人のPIIQ配自制
御膜を形成した。
Example 3 A soda glass substrate was immersed in a solution in which silicon hydroxide and aluminum hydroxide were diluted in an alcohol-based solvent so that the solid content concentration ratio was 5=1, and after being pulled out, the substrate was heated at 500°C. After firing to form a film made of a mixture of about 1000 silicon oxide and aluminum oxide, a transparent electrode was formed, and about 1000 PIIQ self-regulating control film was formed thereon.

実施例4 ソーダガラス基板をアルコールを主体とする溶剤に塩化
チタンを希釈した溶液中に浸漬し、引き上げた後に50
0℃で焼成して約800人の酸化チタン膜を形成した後
透明電極を形成し、その上に約1ooo人のPIIQ配
向制御膜を形成した。
Example 4 A soda glass substrate was immersed in a solution of diluted titanium chloride in an alcohol-based solvent, and after being pulled up,
After baking at 0° C. to form a titanium oxide film of approximately 800 μm, a transparent electrode was formed, and a PIIQ alignment control film of approximately 100 μm was formed thereon.

実施例5 ソーダガラス基板をアルコールを主体とする溶剤に水酸
化シリコンを希釈した溶液中に浸漬し、引き上げた後に
500℃で焼成し約1000人の酸化ケイ素膜を形成し
た後透明電極を形成し、その上に約1500人のI) 
I I Q配向制御膜を形成した。
Example 5 A soda glass substrate was immersed in a solution of diluted silicon hydroxide in an alcohol-based solvent, pulled up and fired at 500°C to form a silicon oxide film of about 1000 layers, and then a transparent electrode was formed. , and about 1500 people I)
An I I Q orientation control film was formed.

このように前記実施例1〜5によって形成されたPII
Qの耐熱性は約450℃付近まで液晶分子を配向させる
能力を失なわなかった。
PII thus formed according to Examples 1 to 5
Regarding the heat resistance of Q, it did not lose its ability to align liquid crystal molecules up to about 450°C.

そこで、シール材6として低融点フリットガラスを用い
、フリットガラスの組成として、たとえばに3;r、O
s : 28moQ%、PbO:61moQ%、Zno
:5mon%、CuO:5moR%、BizOa:1 
rao Q%を基本組成とし、前記基本組成100重量
部に対して5iOz:1,5重量部、AΩ208:2.
0重量部混合したものを使用した場合は、400℃で3
0分間焼成してガラス基板1.2をシールする必要があ
る。前記の如〈従来例では約350℃の加熱で液晶分子
の配向が乱れたのに対し、本実施例による配向制御膜を
用いた場合は450℃の加熱でも配向性は損われない。
Therefore, a low melting point frit glass is used as the sealing material 6, and the composition of the frit glass is, for example, 3;
s: 28moQ%, PbO: 61moQ%, Zno
:5mon%, CuO:5moR%, BizOa:1
rao Q% as the basic composition, 5iOz: 1.5 parts by weight, AΩ208: 2.
When using a mixture of 0 parts by weight, the
It is necessary to bake for 0 minutes to seal the glass substrate 1.2. As mentioned above, in the conventional example, the alignment of liquid crystal molecules was disturbed by heating to about 350°C, whereas in the case of using the alignment control film of this embodiment, the alignment was not impaired even by heating to 450°C.

このようにフリットガラスを用いた場合、従来例では良
好な表示品質を有する液晶表示素子が得られなかったの
に対し1本実施例では良好な表示品質を達成することが
できた。
When frit glass was used in this way, a liquid crystal display element with good display quality could not be obtained in the conventional example, but in this example, good display quality could be achieved.

次に有機高分子系接着剤でシールした液晶表示素子の場
合について説明する。
Next, a case of a liquid crystal display element sealed with an organic polymer adhesive will be described.

実施例6 ソーダガラス基板をアルコールを主体とする溶剤に水酸
化シリコンを希釈した溶液中に浸漬し、引き上げた後に
500℃で焼成して約1500人の酸化ケイ素膜を形成
した後透明電極を形成し、その上にPIIQ配向制御膜
を形成する。その後エポキシ系接着剤でシールし、アゾ
キシ系液晶を母体として正の誘電異方性をもつエステル
系液晶を添加した液晶材料を注入して液晶表示素子を形
成した。
Example 6 A soda glass substrate was immersed in a solution of diluted silicon hydroxide in an alcohol-based solvent, pulled up, and fired at 500°C to form a silicon oxide film of about 1,500 layers, after which a transparent electrode was formed. Then, a PIIQ orientation control film is formed thereon. Thereafter, it was sealed with an epoxy adhesive, and a liquid crystal material containing an azoxy liquid crystal as a matrix and an ester liquid crystal having positive dielectric anisotropy added thereto was injected to form a liquid crystal display element.

実施例7 ソーダガラス基板を約300℃に加熱しIXI、0″″
’tor+・以下の圧力で二酸化ケイ素を蒸着源として
電子ビーム蒸着を行ない約」500人の酸素ケイ素膜を
形成した後透明電極を形成し、その上にPI IQ配向
制御膜を形成する。その後エポキシ系接着剤でシールし
、アゾキシ系液晶を母体として正の誘電異方性をもつエ
ステル系液晶を添加した液晶材料を注入して液晶表示素
子を形成した。
Example 7 A soda glass substrate is heated to about 300°C and IXI, 0″″
Electron beam evaporation is performed using silicon dioxide as a deposition source at a pressure of 100% or less to form an oxygen-silicon film of about 500%, then a transparent electrode is formed, and a PI IQ alignment control film is formed thereon. Thereafter, it was sealed with an epoxy adhesive, and a liquid crystal material containing an azoxy liquid crystal as a matrix and an ester liquid crystal having positive dielectric anisotropy added thereto was injected to form a liquid crystal display element.

このように前記実施例6.7によって得られた液晶表示
索子を70℃95%の条件で加湿試験したところ300
時間以上でもにじみ不良が発生しなかった、これは通常
の環境条件に換算すると5年以上の寿命に相当する。前
記したように従来例では1年以下の寿命であるのに対し
、本実施例で寿命が大巾に改良され、液晶表示素子を電
子式卓上計算機、電子時計などに応用する場合、実用上
問題とならない寿命時間となる。
When the liquid crystal display cord obtained in Example 6.7 was subjected to a humidification test at 70°C and 95%, the result was 300%.
No bleeding defects occurred even after hours, which corresponds to a lifespan of more than 5 years under normal environmental conditions. As mentioned above, the lifespan of the conventional example is less than one year, but the lifespan of this embodiment has been greatly improved, and there are no practical problems when applying the liquid crystal display element to electronic desk calculators, electronic watches, etc. The life time will not be .

上記実施例は配向制御膜にPXXQを用いた場合につい
て述べたが、次に配向制御膜としてポリイミドを用いた
実施例について説明する。
In the above embodiment, a case was described in which PXXQ was used as the alignment control film, but next, an embodiment in which polyimide was used as the alignment control film will be described.

実施例8 ソーダガラス基板をアルコールを主体とする溶剤に水酸
化シリコンを希釈した溶液中に浸漬し、引き上げた後5
00℃で焼成して約1500人の酸化ケイ素膜を形成し
た後透明電極を形成し、その上に約1000人のポリイ
ミド配向制御膜を形成した。
Example 8 A soda glass substrate was immersed in a solution of silicon hydroxide diluted in an alcohol-based solvent, and after being pulled up, 5
After baking at 00° C. to form a silicon oxide film of about 1,500 layers, a transparent electrode was formed, and a polyimide alignment control film of about 1,000 layers was formed thereon.

実施例9 ソーダガラス基板を約300℃に加熱し、1×10−f
itorr以下の圧力で二酸化ケイ素を蒸着源と(電子
ビーム蒸着を行ない約1000人の酸化ケイ素膜を形成
した後、その上に透明電極を形成し、さらにその上に約
1000人のポリイミド膜を形成した。このように前記
実施例8,9によって形成されたポリイミドの耐熱性は
約450℃付近まで液晶分子を配向させる能力を失わな
かった。なお実施例で示した酸化ケイ素下地膜がない場
合の耐熱性は約350℃であった。
Example 9 A soda glass substrate was heated to about 300°C and heated to 1×10-f.
Silicon dioxide is used as an evaporation source at a pressure below itorr (electron beam evaporation is performed to form a silicon oxide film of about 1,000 layers, a transparent electrode is formed on it, and a polyimide film of about 1,000 layers is further formed on it. As described above, the heat resistance of the polyimide formed in Examples 8 and 9 did not lose its ability to orient liquid crystal molecules up to around 450°C. Heat resistance was about 350°C.

実施例10 ソーダガラス基板をアルコールを主体とする溶剤に水酸
化シリコンを希釈した溶液中に浸漬し、引き上げた後5
00℃で焼成して約800人の酸化ケイ素膜を形成した
後透明電極を形成し、その上に約800人のポリイミド
配向制御膜を形成する。その後エポキシ系接着剤でシー
ルし、アゾキシ系液晶を母体として正の誘電異方性をも
つエステル系液晶を添加した液晶材料を注入して液晶表
示素子を形成した。
Example 10 A soda glass substrate was immersed in a solution of silicon hydroxide diluted in an alcohol-based solvent, and after being pulled up, 5
After baking at 00° C. to form a silicon oxide film of about 800 layers, a transparent electrode is formed, and a polyimide alignment control film of about 800 layers is formed thereon. Thereafter, it was sealed with an epoxy adhesive, and a liquid crystal material containing an azoxy liquid crystal as a matrix and an ester liquid crystal having positive dielectric anisotropy added thereto was injected to form a liquid crystal display element.

実施例11 ソーダガラス基板を約300℃に加熱しlXl0−’t
orr以下の圧力で二酸化ケイ素を蒸着源とし電子ビー
ム蒸着を行ない約1300人の酸化ケイ素膜を形成した
後透明電極を形成し、その上に約400人のポリイミド
配向制御膜を形成する。その後エポキシ系接着剤でシー
ルし、アゾキシ系液晶を母体とし℃正の誘電異方性をも
つエステル系液晶を添加した液晶材料を注入して液晶表
示素子を形成した。
Example 11 A soda glass substrate is heated to about 300°C and lXl0-'t
Electron beam evaporation is performed using silicon dioxide as a deposition source at a pressure of less than orr, to form a silicon oxide film of approximately 1,300 layers, a transparent electrode is formed, and a polyimide alignment control film of approximately 400 layers is formed thereon. Thereafter, it was sealed with an epoxy adhesive, and a liquid crystal material containing an azoxy liquid crystal as a matrix and an ester liquid crystal having positive dielectric anisotropy in °C was injected to form a liquid crystal display element.

このように前記実施例10.11によって得られた液晶
表示素子を70″c、95%の条件で加湿試験したとこ
ろ300時間以上でもにじみ不良が発生しなかった。
When the liquid crystal display device obtained in Example 10.11 was subjected to a humidification test under conditions of 70''c and 95%, no bleeding defects occurred even after 300 hours or more.

なお実施例で示した酸化ケイ素下地膜がない場合約50
時間でにじみ不良が発生した。
In addition, when there is no silicon oxide base film shown in the example, about 50
Bleeding defects occurred over time.

なお、上記実施例は一例を示したもので、下地膜7とし
ての金属酸化物は酸化ケイ素、酸化アルミニウム、酸化
チタンを単独またはそれらの混合したものによって効果
が得られる。また配向制御[5として、上記実施例はP
IIQ及びポリイミドについて説明したが、有機高置・
子、その内でも特にイミド環およびキナゾリン環の少く
とも一方を含むものであればよい。また実験の結果5配
向制御膜5の膜厚は100人〜5000人、下地膜7の
膜厚は10人〜100μ膳の範囲内であれば素子として
十分であった。
Note that the above-described embodiments are merely examples, and the effect can be obtained by using silicon oxide, aluminum oxide, or titanium oxide alone or in a mixture thereof as the metal oxide for the base film 7. In addition, as orientation control [5], the above embodiment is P
Although we have explained IIQ and polyimide,
It is sufficient that the ring contains at least one of an imide ring and a quinazoline ring. Further, as a result of experiments, it was found that the thickness of the alignment control film 5 in the range of 100 to 5,000 microns and the thickness of the base film 7 in the range of 10 to 100 microns were sufficient for the device.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかな如く、本発明になる液晶表示素
子の製造方法はガラス基板の上に酸化ケイ素よりなる下
地膜を形成し、その上に透明電極および有機高分子より
なる配向制御膜を形成しでなるので、配向制御膜の耐熱
性およびガラス基板との接着性が向上する。また前記の
如くド地膜はガラス基板と透明電極の間に形成されてい
るので、電圧降下がなく、電圧−輝度特性の立上りおよ
び応答性を害さない、また電極に電托を印加した時、電
極エッチ部の一部で電界方向が垂直でないために液晶分
子の初期傾斜角と反対方向に立ち上がる現象が電極エツ
ジ部で発生し、これにより電極のエッチ部に視野角の異
なる部分が生じ、4表示品質が劣化する、いわゆるエツ
ジドメインが特に大きくなることもない。
As is clear from the above description, the method for manufacturing a liquid crystal display element according to the present invention involves forming a base film made of silicon oxide on a glass substrate, and forming a transparent electrode and an alignment control film made of an organic polymer thereon. Therefore, the heat resistance of the alignment control film and the adhesion to the glass substrate are improved. In addition, as mentioned above, since the base film is formed between the glass substrate and the transparent electrode, there is no voltage drop and the rise and response of the voltage-luminance characteristics are not affected. Because the direction of the electric field is not perpendicular in a part of the etched area, a phenomenon in which the liquid crystal molecules stand up in the opposite direction to the initial tilt angle occurs at the electrode edge.This causes parts with different viewing angles in the etched area of the electrode, resulting in 4 displays. The so-called edge domain, which causes quality deterioration, does not become particularly large.

【図面の簡単な説明】[Brief explanation of the drawing]

図は液晶表示素子を示し、第1図は従来例の断面図、第
2図は本発明製造方法の一実施例による液晶表示素子を
示す断面図である。 1.1′・・・ガラス基板、5.5′・・・透明電極、
7.7′・・・配向制御膜、2・・・シール材、10.
10′・・・下地膜。 M1図
The drawings show a liquid crystal display element; FIG. 1 is a sectional view of a conventional example, and FIG. 2 is a sectional view of a liquid crystal display element according to an embodiment of the manufacturing method of the present invention. 1.1'...Glass substrate, 5.5'...Transparent electrode,
7.7'...Orientation control film, 2...Sealing material, 10.
10'... Base film. M1 figure

Claims (1)

【特許請求の範囲】[Claims] 1、液晶表示素子の製造方法において、下地膜として、
ガラス基板にシリコンの有機溶液を塗布後焼成し酸化ケ
イ素膜を形成し、この上に有機高分子膜を形成し、これ
をラビングすることにより配向制御膜を形成することを
特徴とする液晶表示素子の製造方法。
1. In the method for manufacturing a liquid crystal display element, as a base film,
A liquid crystal display element characterized in that an organic solution of silicon is applied to a glass substrate and then baked to form a silicon oxide film, an organic polymer film is formed on this, and an alignment control film is formed by rubbing this. manufacturing method.
JP10764289A 1989-04-28 1989-04-28 Production of liquid crystal display element Granted JPH02197818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10764289A JPH02197818A (en) 1989-04-28 1989-04-28 Production of liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10764289A JPH02197818A (en) 1989-04-28 1989-04-28 Production of liquid crystal display element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP118078A Division JPS5495264A (en) 1978-01-11 1978-01-11 Liquid crystal display element

Publications (2)

Publication Number Publication Date
JPH02197818A true JPH02197818A (en) 1990-08-06
JPH0529891B2 JPH0529891B2 (en) 1993-05-06

Family

ID=14464370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10764289A Granted JPH02197818A (en) 1989-04-28 1989-04-28 Production of liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH02197818A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006011436A (en) * 2004-06-25 2006-01-12 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Glass substrate for liquid crystal sealing, its manufacturing method and the liquid crystal display

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333123A (en) * 1986-07-25 1988-02-12 Ig Tech Res Inc Roll device for forming thin metal plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333123A (en) * 1986-07-25 1988-02-12 Ig Tech Res Inc Roll device for forming thin metal plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006011436A (en) * 2004-06-25 2006-01-12 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Glass substrate for liquid crystal sealing, its manufacturing method and the liquid crystal display

Also Published As

Publication number Publication date
JPH0529891B2 (en) 1993-05-06

Similar Documents

Publication Publication Date Title
JPS6333123B2 (en)
EP0040975A1 (en) Method of preparation of a substrate for a liquid crystal display device, a positive display type liquid crystal display device, and a method of constructing such a device
US3967882A (en) Liquid crystal display device having extended service life
US4023259A (en) Method of making liquid crystal display device having extended service life
JPH08136932A (en) Method for introducing slightly inclined perpendicular arrangement to liquid crystal, liquid crystal electrooptical element and liquid crystal light valve
US5866034A (en) Heat resistant polymer composition, alignment layer formed using the same and liquid cyrstal display having the alignment layer
JPH02197818A (en) Production of liquid crystal display element
KR100268031B1 (en) Fabrication method for photosensitive alignment layer of lcd
JP3173750B2 (en) Manufacturing method of electro-optical device
JPS5937527A (en) Liquid crystal display element
KR830000641B1 (en) Liquid Crystal Display Device
JPS62231937A (en) Liquid crystal element
JP2002202509A (en) Liquid crystal display device and method of manufacturing for the same
JP3197392B2 (en) Liquid crystal electro-optical device
JPS6361670B2 (en)
JP2548592B2 (en) Ferroelectric liquid crystal element
JP2983724B2 (en) Alignment treatment method for ferroelectric liquid crystal devices
KR830000607B1 (en) LCD display device
JP3212976B2 (en) Liquid crystal electro-optical device
JP3021261B2 (en) Manufacturing method of plastic substrate liquid crystal display element
JPH0731325B2 (en) Liquid crystal display
JPS62257128A (en) Ferroelectric liquid crystal display device
KR100255071B1 (en) Method of forming an optical alignment film of a liquid crystal display device
JPH09203902A (en) Liquid crystal element and its production
JPH04318812A (en) Display element