JPH02197806A - Production of polishing type optical directional coupler - Google Patents
Production of polishing type optical directional couplerInfo
- Publication number
- JPH02197806A JPH02197806A JP1645889A JP1645889A JPH02197806A JP H02197806 A JPH02197806 A JP H02197806A JP 1645889 A JP1645889 A JP 1645889A JP 1645889 A JP1645889 A JP 1645889A JP H02197806 A JPH02197806 A JP H02197806A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- optical
- directional coupler
- substrates
- quartz
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 39
- 238000005498 polishing Methods 0.000 title claims description 9
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000013307 optical fiber Substances 0.000 claims abstract description 57
- 239000000758 substrate Substances 0.000 claims abstract description 52
- 230000008878 coupling Effects 0.000 claims abstract description 7
- 238000010168 coupling process Methods 0.000 claims abstract description 7
- 238000005859 coupling reaction Methods 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 4
- 239000010453 quartz Substances 0.000 abstract description 33
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 33
- 239000011347 resin Substances 0.000 abstract description 13
- 229920005989 resin Polymers 0.000 abstract description 13
- 230000001902 propagating effect Effects 0.000 abstract description 3
- 238000012216 screening Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 238000005253 cladding Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Landscapes
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は研磨型光方向性結合器の製造方法に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a polishing type optical directional coupler.
[従来の技術]
第1図(a)(b)に研磨型光方向性結合器の構成を示
す、同図に示すように、研磨型光方向性結合器は、石英
基板1、光ファイバ2、その光ファイバ2を固定する樹
脂3より成っている。その製造方法は以下の通りである
。[Prior Art] FIGS. 1(a) and 1(b) show the configuration of a polishing type optical directional coupler. As shown in the figure, the polishing type optical directional coupler has a quartz substrate 1, an optical fiber 2, , and is made of resin 3 to which the optical fiber 2 is fixed. The manufacturing method is as follows.
先ず、石英基板1に曲率を設けた溝、例えば曲率半径2
0(m、中心の深さ140μmの清を掘り、埋め込み部
分の被覆を除去した光ファイバ2を清に埋め込む0次に
光ファイバ2を固定するために、樹脂3を流し込んで硬
化させる。樹脂硬化後、光ファイバ2をコア4付近まで
石英基板1と共に画壇する。この研磨は、光ファイバ2
の一端から光を入射し、他端でその透過光を監視しなが
ら、透過光が所定の値になるまで行う。First, a groove with a curvature, for example, a radius of curvature 2, is formed in a quartz substrate 1.
0 (m, depth of 140 μm in the center) and embed the optical fiber 2 with the coating removed in the hole. Next, in order to fix the optical fiber 2, resin 3 is poured in and hardened. Resin hardening. After that, the optical fiber 2 is polished together with the quartz substrate 1 up to the vicinity of the core 4.
Light is input from one end of the device, and the transmitted light is monitored at the other end until the transmitted light reaches a predetermined value.
そして、同様にして製造したものを密着させ、一方の光
ファイバを伝搬する光が他方の光ファイバに結合するよ
うに、2つの石英基板1をずらして調整する。Then, the two quartz substrates 1 manufactured in the same manner are brought into close contact with each other, and the two quartz substrates 1 are shifted and adjusted so that the light propagating through one optical fiber is coupled to the other optical fiber.
この様にして得られた方向性結合器の分岐比特性を所定
の温度範囲で測定すると、初期に50%分岐になるよう
調整しても、2本の光ファイバの相対位置が変動するた
め、通常その50%から変化してしまう。When the branching ratio characteristics of the directional coupler obtained in this way are measured in a predetermined temperature range, even if the initial adjustment is made to achieve 50% branching, the relative positions of the two optical fibers will fluctuate. Usually it changes from that 50%.
[発明が解決しようとする課題]
上記光方向性結合器は光ファイバジャイロ等の光計測に
適用されるが、一般に計測システムからは分岐比が50
%に安定していることが要求される。[Problems to be Solved by the Invention] The optical directional coupler described above is applied to optical measurement such as an optical fiber gyro, but generally the branching ratio is 50 from the measurement system.
% stability is required.
しかし、一般に光ファイバは樹脂で清白に固定されてい
るため、温度上昇に伴う樹脂の膨脹によって光ファイバ
同志の相対位置関係に変化が生じ、分岐比の変化が避け
られなかった。However, since optical fibers are generally fixed in a clear manner with resin, the expansion of the resin as the temperature rises causes a change in the relative positional relationship between the optical fibers, which inevitably causes a change in the branching ratio.
また従来は、光方向性結合器を製作した後、測定してみ
て初めて合否の判定を行っていたため、極めて歩留りが
悪かった。Furthermore, in the past, the yield was extremely low because the optical directional coupler had to be measured and then determined whether it was acceptable or not.
本発明の目的は、前記した従来技術の欠点を解消し、温
度変化に対する分岐比の変動を大幅に改善し得る光方向
性結合器の製造方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing an optical directional coupler that eliminates the drawbacks of the prior art described above and can significantly improve fluctuations in branching ratio due to temperature changes.
[課題を解決するための手段]
本発明の研磨型光方向性結合器の製造方法は、単一モー
ド光ファイバを基板の溝に埋め込んで固定し、その基板
面を光ファイバのコア近傍まで研磨した後、研磨した基
板面と光ファイバ面の段差を測定し、所望の光伝送特性
のランクに応じて予め設定した段差の目標値に照らして
基板の合否を選別し、合格した2枚の基板をコア同志が
接近するように張り合わせて結合調整を行い、エバネツ
セット波結合を利用した光方向性結合器を得るものであ
る。[Means for Solving the Problems] The method for manufacturing a polishing type optical directional coupler of the present invention includes embedding and fixing a single mode optical fiber in a groove of a substrate, and polishing the surface of the substrate to the vicinity of the core of the optical fiber. After that, the level difference between the polished substrate surface and the optical fiber surface is measured, and the substrates are judged to pass or fail based on the target value of the level difference set in advance according to the rank of the desired optical transmission characteristics. The optical directional coupler using Evanetset wave coupling is obtained by bonding and adjusting the coupling so that the cores are close to each other.
上記段差の目標値としては、張り合わされる2枚の基板
の上記段差の和が0.15μm以下となるよう設定する
ことが好ましい。The target value of the step difference is preferably set so that the sum of the step differences between the two substrates to be laminated together is 0.15 μm or less.
[作用]
清に光ファイバが埋め込まれて固定されコア近傍まで研
磨された基板は、その基板を張り合わせる前に、基板面
と光ファイバ面の段差が測定される。そして、所望の光
伝送特性のランクに応じて予め設定された段差の目標値
に照らし、不適切な基板は排除され、合格した基板2枚
が張り合わされ結合調整されて光方向性結合器が完成さ
れる。[Operation] For a substrate in which an optical fiber is embedded and fixed in the substrate and polished to the vicinity of the core, the level difference between the substrate surface and the optical fiber surface is measured before the substrates are bonded together. Then, in light of the target value of the step difference set in advance according to the rank of the desired optical transmission characteristics, inappropriate boards are eliminated, and the two boards that pass are pasted together and combined and adjusted to complete the optical directional coupler. be done.
光方向性結合器が完成される前に、その光伝送特性の良
否が基板面と光ファイバ面との段差の測定結果から予測
され、温度上昇に伴う樹脂の膨脹によって光ファイバ同
志の相対位置関係が大きく変動する基板については、次
の張り合わせ工程に入らない、このため、温度変化に対
する分岐比の変動が少ない光方向性結合器が極めて歩留
り良く製造される。Before an optical directional coupler is completed, the quality of its optical transmission characteristics is predicted from the results of measuring the difference in level between the substrate surface and the optical fiber surface, and the relative positional relationship of the optical fibers is determined by the expansion of the resin as the temperature rises. For substrates whose values vary greatly, they are not subjected to the next bonding process, so that an optical directional coupler with little variation in branching ratio due to temperature changes can be manufactured with an extremely high yield.
[実施例]
第1図は製造しようとする研磨型光方向性結合器の断面
構造であり、1は石英基板、2は単一モード光ファイバ
、3は樹脂、4は光ファイバのコア、5は光ファイバの
クラッドである。[Example] Figure 1 shows a cross-sectional structure of a polished optical directional coupler to be manufactured, in which 1 is a quartz substrate, 2 is a single mode optical fiber, 3 is a resin, 4 is the core of the optical fiber, and 5 is the cladding of the optical fiber.
先ず、従来と同様に、石英基板1に曲率を設けた溝、例
えば曲率半径20a11、中心の深さ140μmの渭を
掘り、埋め込み部分の被覆を除去した光ファイバ2を清
に埋め込む、そして、樹脂3を流し込んで硬化させ、光
ファイバ2を固定する。樹脂硬化後、光ファイバ2をコ
ア4付近まで石英基板1と共に研磨する。この研磨は、
光ファイバ2の一端から光を入射し、他端でその透過光
を監視しながら、透過光が所定の値になるまで行う。First, as in the conventional method, a groove with a curvature, for example, a groove with a radius of curvature 20a11 and a depth of 140 μm at the center, is dug in the quartz substrate 1, and the optical fiber 2 with the coating of the embedded portion removed is thoroughly embedded in the resin. 3 is poured and hardened to fix the optical fiber 2. After the resin hardens, the optical fiber 2 is polished together with the quartz substrate 1 to the vicinity of the core 4. This polishing is
Light is input from one end of the optical fiber 2, and the transmitted light is monitored at the other end until the transmitted light reaches a predetermined value.
第2図に石英基tIj、1の研磨面の状態を示す、この
図より、石英基板1の研磨面と光ファイバ2の研磨面と
には、段差ΔGの生じていることが分かる。従って、光
ファイバ2は温度変化による樹脂3の膨脹によって動き
、その結果として分岐比が変動する。その光ファイバ2
の位置の動きは、最大のものでは光ファイバ同志が接触
する石英基板の研磨面までに達する。FIG. 2 shows the state of the polished surface of the quartz substrate tIj, 1. From this figure, it can be seen that a step difference ΔG occurs between the polished surface of the quartz substrate 1 and the polished surface of the optical fiber 2. Therefore, the optical fiber 2 moves due to the expansion of the resin 3 due to temperature changes, and as a result, the branching ratio changes. The optical fiber 2
The maximum positional movement reaches the polished surface of the quartz substrate where the optical fibers come into contact with each other.
そこで、上記研磨工程までを行った各石英基板1につき
、その石英基板1と光ファイバ2の研磨面の段差ΔGを
測定し、所望の分岐比のランクに応じて予め設定した段
差ΔGの目標値に照らして、それら石英基板の合否を選
別する。Therefore, for each quartz substrate 1 that has undergone the polishing process described above, the step difference ΔG between the polished surfaces of the quartz substrate 1 and the optical fiber 2 is measured, and a target value of the step difference ΔG is set in advance according to the rank of the desired branching ratio. The quartz substrates are judged to be acceptable or not based on the above criteria.
第3図に、石英基板1.光ファイバ2双方の研磨面の段
差ΔGと、分岐比の変動幅(%)の関係を示す、この図
より、分岐比の変動幅を±5%以内とするためには、Δ
Gを0.075μm以下とすることが必要である。そこ
で、ここでは上記段差ΔGの目標値として、張り合わさ
れる2枚の石英基板の上記段差ΔGの和が0.15μm
以下となるよ゛う設定する。In FIG. 3, quartz substrate 1. From this figure, which shows the relationship between the level difference ΔG between the polished surfaces of both optical fibers 2 and the variation width (%) of the branching ratio, in order to keep the variation width of the branching ratio within ±5%, Δ
It is necessary that G is 0.075 μm or less. Therefore, here, as the target value of the step difference ΔG, the sum of the step differences ΔG of the two quartz substrates bonded together is 0.15 μm.
Set it up as follows.
この選別工程を経て合格した2枚の石英基板1を、光フ
ァイバ2のコア4同志が接近するように張り合わせて密
着させ、一方の光ファイバを伝搬する光が他方の光ファ
イバに結合するように2つの石英基板1をずらして結合
調整を行い、以てエバネヅセット波結合を利用した光方
向性結合器を得る。Two quartz substrates 1 that have passed through this screening process are stuck together so that the cores 4 of the optical fibers 2 are close to each other, so that the light propagating through one optical fiber is coupled to the other optical fiber. By shifting the two quartz substrates 1 and adjusting the coupling, an optical directional coupler using Evanez set wave coupling is obtained.
第4図は、光ファイバを埋め込む石英基板1の溝幅Wと
、石英基板と光ファイバの研磨面の段差ΔGとの関係を
示している。これより、例えば段差ΔGを0.075μ
m以下とする手段の一つとして、溝@Wを160μm以
下とすることが有効である。FIG. 4 shows the relationship between the groove width W of the quartz substrate 1 in which the optical fiber is embedded and the step difference ΔG between the polished surfaces of the quartz substrate and the optical fiber. From this, for example, the step difference ΔG is 0.075μ
As one means for making the width less than m, it is effective to make the groove @W less than 160 μm.
第5図はΔG= 0.04μm (W=157μm )
の構造を持つ光方向性結合器について、また第6図はΔ
G= 0.15.cz m (W=197μm >の構
造を持つ光方向性結合器について、それぞれ分岐比の温
度特性を示したものである。これより、ΔG< 010
75μm(W<160μm)である第5図の光方向性結
合器については、−20°〜40℃の温度範囲において
分岐比の変動が50±5%以内に入るが、ΔG> 0.
075μm < W> 160 u、 m )である第
5図の光方向性結合器については、そのような変動幅内
に収まらないことが分かる。Figure 5 shows ΔG=0.04μm (W=157μm)
Regarding the optical directional coupler with the structure of Δ
G=0.15. The temperature characteristics of the branching ratio are shown for each optical directional coupler with a structure of cz m (W = 197 μm >. From this, ΔG < 010
Regarding the optical directional coupler of FIG. 5, which has a diameter of 75 μm (W<160 μm), the fluctuation of the branching ratio is within 50±5% in the temperature range of -20° to 40°C, but ΔG>0.
075 μm <W> 160 u, m), it is clear that the optical directional coupler of FIG. 5 does not fall within such a variation range.
いずれにせよ、光方向性結合器の製作工程中に、段差Δ
Gを測定し基板を選別する工程を設けることによって、
光方向性結合器完成後における石英基板と光ファイバの
研磨面の段差ΔGを小さくすることにより、分岐比の温
度変動の小さい光方向性結合器を歩留り良く得ることが
できる。In any case, during the manufacturing process of the optical directional coupler, the step difference Δ
By providing a process to measure G and select the substrate,
By reducing the step difference ΔG between the polished surfaces of the quartz substrate and the optical fiber after completion of the optical directional coupler, it is possible to obtain an optical directional coupler with small temperature fluctuations in the branching ratio with a high yield.
上記実施例では石英基板を例にしたが、基板林料として
は石英の他にAj、ステンレス等の金属であってもよい
、また、上記した光方向性結合器に用いる単一モード光
ファイバとしては、偏波面保持光ファイバも含むもので
ある。In the above embodiment, a quartz substrate was used as an example, but the substrate material may be other than quartz, and may also be a metal such as AJ or stainless steel. also includes polarization-maintaining optical fibers.
[発明の効果]
本発明によれば、研磨型光方向性結合器の分岐比の温度
特性を従来に比べて向上できると共に、予めΔGを測定
することにより、光方向性結合器の分岐比温度特性を予
測することができ、製品歩留りを向上できる。その結果
、光計測。[Effects of the Invention] According to the present invention, the temperature characteristics of the branching ratio of the polishing type optical directional coupler can be improved compared to the conventional method, and by measuring ΔG in advance, the branching ratio temperature of the optical directional coupler can be improved. Characteristics can be predicted and product yield can be improved. As a result, optical measurements.
光通信の経済性及び機能性の向上が計れる。The economic efficiency and functionality of optical communications can be improved.
第1図(a)(b)は本発明の方法で得ようとする研磨
型光方向性結合器の縦断面図及び横断面図、第2図は光
方向性結合器の研磨面の状態図、第3図は石英基板と光
ファイバの研磨面の段差ΔGと光方向性結合器の分岐比
変動幅との関係図、第4図は光ファイバを埋め込む溝の
幅WとΔGとの関係図、第5図及び第6図はそれぞれ別
の光方向性結合器の分岐比の温度特性を示す図である。
図中、1は石英基板、2は光ファイバ、3は樹脂、4は
光ファイバのコア、5は光ファイバのクラッド、ΔGは
石英基板と光ファイバの研磨面の段差、Wは光ファイバ
を埋め込む清の幅を示す。
特許出願人 日立電線株式会社
代理人弁理士 絹 谷 信 雄
(a)
(b)
第
図
G
4!コア
1IG(XIO、um)
第3図
第4図FIGS. 1(a) and 1(b) are longitudinal and cross-sectional views of a polished optical directional coupler to be obtained by the method of the present invention, and FIG. 2 is a state diagram of the polished surface of the optical directional coupler. , Fig. 3 is a diagram showing the relationship between the level difference ΔG between the polished surfaces of the quartz substrate and the optical fiber and the variation width of the branching ratio of the optical directional coupler, and Fig. 4 is a diagram showing the relationship between the width W of the groove in which the optical fiber is embedded and ΔG. , FIG. 5, and FIG. 6 are diagrams showing the temperature characteristics of the branching ratio of different optical directional couplers, respectively. In the figure, 1 is the quartz substrate, 2 is the optical fiber, 3 is the resin, 4 is the core of the optical fiber, 5 is the cladding of the optical fiber, ΔG is the step between the polished surface of the quartz substrate and the optical fiber, and W is the embedding of the optical fiber. Indicates the width of the clearing. Patent Applicant Hitachi Cable Co., Ltd. Representative Patent Attorney Nobuo Kinutani (a) (b) Figure G 4! Core 1IG (XIO, um) Figure 3 Figure 4
Claims (1)
し、その基板面を光ファイバのコア近傍まで研磨した後
、研磨した基板面と光ファイバ面の段差を測定し、所望
の光伝送特性のランクに応じて予め設定した段差の目標
値に照らして基板の合否を選別し、合格した2枚の基板
をコア同志が接近するように張り合わせて結合調整を行
い、エバネッセット波結合を利用した光方向性結合器を
得ることを特徴とする研磨型光方向性結合器の製造方法
。 2、上記段差の目標値を張り合わされる2枚の基板の上
記段差の和が0.15μm以下となるよう設定したこと
を特徴とする請求項1記載の研磨型光方向性結合器の製
造方法。[Claims] 1. A single mode optical fiber is embedded and fixed in a groove of a substrate, the surface of the substrate is polished to the vicinity of the core of the optical fiber, and then the level difference between the polished substrate surface and the optical fiber surface is measured. , the board is judged to pass or fail based on the target value of the level difference set in advance according to the rank of the desired optical transmission characteristics, and the two boards that pass are pasted together so that the cores are close to each other and the bonding is adjusted. A method for manufacturing a polished optical directional coupler, characterized by obtaining an optical directional coupler using wave coupling. 2. The method for manufacturing a polishing type optical directional coupler according to claim 1, characterized in that the target value of the step difference is set so that the sum of the step differences of the two substrates to be bonded together is 0.15 μm or less. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1645889A JPH02197806A (en) | 1989-01-27 | 1989-01-27 | Production of polishing type optical directional coupler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1645889A JPH02197806A (en) | 1989-01-27 | 1989-01-27 | Production of polishing type optical directional coupler |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02197806A true JPH02197806A (en) | 1990-08-06 |
Family
ID=11916806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1645889A Pending JPH02197806A (en) | 1989-01-27 | 1989-01-27 | Production of polishing type optical directional coupler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02197806A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6490391B1 (en) * | 2000-07-12 | 2002-12-03 | Oluma, Inc. | Devices based on fibers engaged to substrates with grooves |
-
1989
- 1989-01-27 JP JP1645889A patent/JPH02197806A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6490391B1 (en) * | 2000-07-12 | 2002-12-03 | Oluma, Inc. | Devices based on fibers engaged to substrates with grooves |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4493528A (en) | Fiber optic directional coupler | |
US4601541A (en) | Fiber optic directional coupler | |
CA1309240C (en) | Method of connecting optical fibers | |
US5699461A (en) | Optical fiber sensors and method for making the same | |
US4564262A (en) | Fiber optic directional coupler | |
CA1253376A (en) | Fiber optic directional coupler | |
US11747564B2 (en) | Manufacturing method and manufacturing apparatus of optical splitters | |
US7289687B2 (en) | Polarization-maintaining optical fiber | |
US20230100044A1 (en) | Optical multiplexing/demultiplexing method, optical multiplexing/demultiplexing circuit, and manufacturing method thereof | |
JPH03265802A (en) | Embedded type quartz optical waveguide and production thereof | |
JPH02197806A (en) | Production of polishing type optical directional coupler | |
JP2961057B2 (en) | Optical branching device | |
JPS59164505A (en) | Single-polarization single-mode optical fiber | |
JP3140114B2 (en) | Optical fixed attenuator | |
JP3095511B2 (en) | Polarization-maintaining optical fiber coupler | |
JPS61260208A (en) | Light guide with fiber guide | |
JPH08152538A (en) | Coupling structure of optical waveguide | |
JP3228614B2 (en) | Connection structure between optical fiber and optical waveguide | |
JP2956059B2 (en) | Optical branch coupler | |
JPH0293612A (en) | Mode conversion adapter | |
JPH0750216B2 (en) | Polarization-maintaining optical fiber fixing method | |
JPH04107511A (en) | Production of polarization maintaining optical fiber coupler | |
JPH0356907A (en) | Production of polarization maintaining type optical fiber coupler | |
JPS5929218A (en) | Production of optical coupler | |
JPH01134405A (en) | Manufacture of optical fiber coupler |