JPH02197172A - High breakdown strength mosfet - Google Patents

High breakdown strength mosfet

Info

Publication number
JPH02197172A
JPH02197172A JP1679789A JP1679789A JPH02197172A JP H02197172 A JPH02197172 A JP H02197172A JP 1679789 A JP1679789 A JP 1679789A JP 1679789 A JP1679789 A JP 1679789A JP H02197172 A JPH02197172 A JP H02197172A
Authority
JP
Japan
Prior art keywords
region
drain
intersection
lead
out wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1679789A
Other languages
Japanese (ja)
Other versions
JPH0812919B2 (en
Inventor
Naoki Kumagai
直樹 熊谷
Akira Nishiura
西浦 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1016797A priority Critical patent/JPH0812919B2/en
Publication of JPH02197172A publication Critical patent/JPH02197172A/en
Publication of JPH0812919B2 publication Critical patent/JPH0812919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To restrain a leakage current by a method wherein an island like first region and a second region surrounding the first region isolated from it are provided, where a second region cutout section which makes the second region an open loop is provided adjacent to both the side edges of a lead-out wiring of an intersection part of the second region with the lead-out wiring respectively. CONSTITUTION:A MOSFET of high breakdown strength composed of the following is provided: an island-like drain region 4; a conductive circular source region 16 which surrounds the region 4 being isolated from it; a poly-Si gate 8 provided adjacent to and along the region 16 between the region 4 and the region 16; and a drain lead-out wiring 14 which is connected to the region 4 and provided extending from it in a radial direction on a plane. For instance, overhang cutout sections 18b and 18c which make the region 16 an open loop are provided adjacent to, at least, both the side edges 14b and 14e of the lead-out wiring 14 of an intersection part 14a of the region 16 with the lead-out wiring 14. By this setup, an inverted layer is induced just under the intersection part 14a, but as the cutout sections 14b end 14e have been provided, the inverted layer induced is not linked to the open loop region 16 and a local channel is prevented from occurring and consequently a leakage current can be restrained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高耐圧MOS F ETに関し、特に島状の
ドレイン領域から平面放射方向に延長されたドレイン引
出し配線とループ状のソース領域とを有する横型の高耐
圧MOS F ETに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a high voltage MOS FET, and particularly relates to a high voltage MOS FET that includes a drain lead wiring extending from an island-shaped drain region in a planar radial direction and a loop-shaped source region. The present invention relates to a horizontal high-voltage MOSFET having the following characteristics.

〔従来の技術〕[Conventional technology]

従来、例えばインテリジェント・スイッチングデバイス
等における横型の高耐圧MOSFETの構造は、第2図
(△)、 (B)に示すように、P型基板1上にエピタ
キシャル成長された N−型のエピタキシャル層2をP
N接合分離で画成する環状のP型アイソレイ/ヨン領域
3と、エピタキシャル層2内で島状に形成された N+
型のドレイン領域4と、このドレイン領域4を取り囲み
アイソレイション領域3に沿って形成された環状のP型
のボディ (チャネル拡散)領域5と、ボディ領域5内
に形成された環状のN+型のソース領域6と、ドレイン
領域4とボディ領域5との間に画成された環状のドレイ
ンドリフト領域2aと、このドレインドリフト領域2a
とソース領域6とにゲート酸化膜7を介して跨設された
環状のポリシリコンゲ−)lx、ドレイン領域4上のド
レイン電極9と、ポリシリコンゲート8とドレイン電極
9に接続するドレインポリシリコン部10との間で内外
周端が接続する環状のポリシリコン高比抵抗膜11と、
ソース領域6に接続するソース電極12と、層間絶縁膜
13上でドレイン電極9に接続すると共にそれから放射
方向に延設されたドレイン引出し配線14と、環状のア
イソレイション領域3とドレイン引出し配線14との交
差部分で両者の中間に配されたシールド領域15とを備
えるものである。
Conventionally, the structure of a horizontal high-voltage MOSFET used in intelligent switching devices, etc., has an N-type epitaxial layer 2 epitaxially grown on a P-type substrate 1, as shown in FIGS. P
An annular P-type isolation region 3 defined by N junction isolation and an island-shaped N+ region formed within the epitaxial layer 2
type drain region 4, an annular P-type body (channel diffusion) region 5 surrounding this drain region 4 and formed along the isolation region 3, and an annular N+-type body (channel diffusion) region 5 formed within the body region 5. A source region 6, an annular drain drift region 2a defined between the drain region 4 and the body region 5, and the drain drift region 2a.
an annular polysilicon gate (lx) extending over the gate oxide film 7 and the source region 6, a drain electrode 9 on the drain region 4, and a drain polysilicon portion 10 connected to the polysilicon gate 8 and the drain electrode 9; an annular polysilicon high specific resistance film 11 whose inner and outer peripheral edges are connected between;
A source electrode 12 connected to the source region 6, a drain lead wire 14 connected to the drain electrode 9 on the interlayer insulating film 13 and extended in the radial direction from the drain electrode 9, an annular isolation region 3, and a drain lead wire 14. A shield region 15 is provided between the two at the intersection of the two.

ポリシリコン高比抵抗膜11はドレインドリフト領域2
aの電界を均一にする抵抗性フィールドプレートで、シ
ールド領域15はドレイン引出し配線14の電位による
アイソレイション領域3表面の反転層の形成を阻止し、
PN接合分離を維持するものである。また、ポリシリコ
ン高比抵抗膜11は、ドレイン引出し配線14の電位に
よってドレインドリフト領域2a表面の蓄積層の形成で
空乏層の拡大が抑制され、アバランシェ電圧が低下する
のを防止しており、ドレイン引出し配線14の電位を遮
蔽する機能をも有する。
Polysilicon high resistivity film 11 is drain drift region 2
The shield region 15 is a resistive field plate that makes the electric field of a uniform, and prevents the formation of an inversion layer on the surface of the isolation region 3 due to the potential of the drain lead wiring 14.
It maintains PN junction isolation. In addition, the polysilicon high resistivity film 11 suppresses the expansion of the depletion layer by forming an accumulation layer on the surface of the drain drift region 2a due to the potential of the drain lead wiring 14, and prevents the avalanche voltage from decreasing. It also has a function of shielding the potential of the lead wiring 14.

このように、従来の高耐圧MOSFETにおいては、ポ
リシリコン高比抵抗膜11及びシールド領域15の存在
によって、ドレインドリフト領域2a及びアイソレイシ
ョン領域3の表層部をドレイン引出し配線14の電位か
らシールド保護するものであるから、高い耐圧を維持す
ることができる。
As described above, in the conventional high voltage MOSFET, the presence of the polysilicon high resistivity film 11 and the shield region 15 shields and protects the surface layer portions of the drain drift region 2a and the isolation region 3 from the potential of the drain lead wiring 14. Because of this, it is possible to maintain a high withstand voltage.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来の高耐圧MOSFETにあって
は、ドレイン引出し配線14の電位が高電位になると、
ドレイン引出し配線14と環状のポリノリコンゲート8
の交差部分に反転層が形成され、交差部分のソース領域
6とドレインドリフト領域2aとの間に狭小なチャネル
Cが形成されてしまい、漏れ電流が増加する。即ち、ド
レイン引出し配線j4とポリシリコンゲート8の交差部
分には層間絶縁膜13の介在した寄生容量が不可避的に
生じており、この寄生容量は局部的ゲート各項に対し直
列接続している。したがって、ドレイン引出し配線14
の電位が比較的低いときは問題とならないが、それが高
電位になると、局部的ゲート容量が充電され、交差部分
のポリシリコンゲート8の直下に反転層が形成される。
However, in the conventional high voltage MOSFET described above, when the potential of the drain lead wiring 14 becomes a high potential,
Drain lead wiring 14 and annular polynolyric gate 8
An inversion layer is formed at the intersection, and a narrow channel C is formed between the source region 6 and drain drift region 2a at the intersection, resulting in an increase in leakage current. That is, a parasitic capacitance is inevitably generated at the intersection of the drain lead wiring j4 and the polysilicon gate 8 with the interlayer insulating film 13 interposed, and this parasitic capacitance is connected in series to each local gate term. Therefore, the drain lead wiring 14
This is not a problem when the potential is relatively low, but when it becomes high, the local gate capacitance is charged and an inversion layer is formed directly under the polysilicon gate 8 at the intersection.

交差部分のポリシリコンゲート8をドレイン引出し配線
14の電位からシールドするため、シールド領域15と
同様なシールド領域を交差部分に新たに介在させること
が考えられるが、しかし局部的ゲート容量に対し2つの
寄生容量が直列接続するだけであるから、ドレイン引出
し配線14が高電位になると、やはりポリシリコンゲー
ト8の直下に反転層が発生し、チャネルCが形成されて
しまう。
In order to shield the polysilicon gate 8 at the intersection from the potential of the drain lead wiring 14, it is conceivable to newly interpose a shield region similar to the shield region 15 at the intersection. Since the parasitic capacitances are simply connected in series, when the potential of the drain lead wiring 14 becomes high, an inversion layer is generated directly under the polysilicon gate 8, and a channel C is formed.

そこで、本発明の課題は、ドレイン引出し配線の電位の
影響によって交差部分のゲート直下に反転層が発生して
も、チャネルは形成されず、これにより漏れ電流の増加
を抑制し得る構造を備えた高耐圧MOSFETを提供す
ることにある。
Therefore, an object of the present invention is to provide a structure that prevents the formation of a channel even if an inversion layer is generated directly under the gate at the intersection due to the influence of the potential of the drain lead-out wiring, thereby suppressing an increase in leakage current. The objective is to provide a high voltage MOSFET.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するたtに、本発明の講じた手段は、島
状の第1領域(例えばドレイン領域4〉と、これを隔離
周回する同導電型の環状の第2領域(例えばソース領域
16)と、第1領域と第2領域との間で第2領域に沿っ
て隣接するゲート(例えばポリシリコンゲート8)と、
第1領域に接続しこれから平面上放射方向に延設された
引出し配線(例えばドレイン引出し配線14)とを含む
高耐圧MO5FETであって、第2領域と引出し配線と
の交差部分のうり、少なくとも引出し配線の両側縁の隣
に第2領域を開ループ状とすべき第2領域欠除部(例え
ば張出し欠除部1.4b、14c)を設けたものである
In order to solve the above-mentioned problems, the means taken by the present invention is to provide an island-shaped first region (for example, the drain region 4) and an annular second region of the same conductivity type (for example, the source region ), a gate (for example, a polysilicon gate 8) adjacent along the second region between the first region and the second region;
A high-voltage MO5FET including a lead wire (for example, a drain lead wire 14) connected to the first region and extending in a radial direction on the plane from the first region, and at least the lead wire at the intersection of the second region and the lead wire. Next to both side edges of the wiring, second region cutout portions (for example, overhang cutout portions 1.4b and 14c) are provided to make the second region into an open loop shape.

〔作用〕[Effect]

かかる手段によれば、引出し配線の電位によりその交差
部直下には反転層が誘起されるが、交差部分のうち少な
くとも引出し配線の両側縁の隣には第2領域を開ループ
拭きすべき第2領域欠除部が設けられているため、交差
部分に誘起された反転層は開ループ状の第2領域までは
連絡せず、局部的なチャネルが発生しない。このため、
漏れ電流を抑制することができる。
According to this means, an inversion layer is induced directly under the intersection by the potential of the extraction wiring, but a second layer to be wiped in an open loop is formed in the second region adjacent to at least both side edges of the extraction wiring in the intersection. Since the region cut-out portion is provided, the inversion layer induced at the intersection does not reach the open-loop second region, and no local channel is generated. For this reason,
Leakage current can be suppressed.

〔実施例〕〔Example〕

次に、本発明の実施例を添付図面に基づいて説明する。 Next, embodiments of the present invention will be described based on the accompanying drawings.

第1図(A>は本発明に係る高耐圧MOSFETの一実
施例を示す断面図、第1図CB)は同実施例の平面図で
ある。なお、第1図(A)、 ([3)において第2図
(A)、 (B)中の部分と同一部分には同一参照符号
を付し、その説明を省略する。
FIG. 1 (A> is a sectional view showing an embodiment of a high voltage MOSFET according to the present invention, and FIG. 1 CB) is a plan view of the same embodiment. Note that in FIGS. 1(A) and ([3), the same parts as those in FIGS. 2(A) and (B) are given the same reference numerals, and their explanations are omitted.

図中、基板平面上の中央に形成された島状のN+型トド
レイン領域4上は島状のドレイン電極9が形成されてい
る。 N++ドレイン領域9を周回する環状のアイソレ
イション領域3の内側には環状のP型ボディ領域5が形
成されており、このボディ領域5内には開ループ状のソ
ース領域16が形成されている。また、開ループ状のソ
ース領域16に沿って環状のポリシリコンゲート8が隣
接している。ドレイン電極9にはドレイン引出し配線1
4が接続され、これはソース領域16のソース欠除部1
8上を通して平面上放射方向に延設されている。
In the figure, an island-shaped drain electrode 9 is formed on an island-shaped N+ type drain region 4 formed at the center of the substrate plane. An annular P-type body region 5 is formed inside the annular isolation region 3 surrounding the N++ drain region 9, and an open-loop source region 16 is formed within this body region 5. Further, a ring-shaped polysilicon gate 8 is adjacent to the open-loop source region 16 . Drain lead wiring 1 is connected to drain electrode 9.
4 is connected to the source region 16, which is the source defect 1 of the source region 16.
8 and extends in the radial direction on the plane.

ソース欠除部18はソース領域16とドレイン引出し配
線14との交差部分にソース不純物非導入領域として設
けられており、ドレイン引出し配線I4の交差部14a
直下の交差欠除部18aとドレイン引出し配線14の両
側縁14 b 、 14 cに隣接する狭小の張出し欠
除部18b、18Cとからなる。
The source missing portion 18 is provided as a source impurity-free region at the intersection of the source region 16 and the drain lead wire 14, and is located at the intersection 14a of the drain lead wire I4.
It consists of a crossing cutout 18a directly below and narrow overhang cutouts 18b and 18C adjacent to both side edges 14b and 14c of the drain lead wiring 14.

ドレイン引出し配線14に高電位が印加されると、交差
部分のポリシリコンゲート8の直下又は場合によっては
交差欠除部18aにも反転層(N型層)が発生する。し
かし、張出し欠除部18b、18Gには反転層が発生せ
ず、P型のまま維持される。即ち、張出し欠除部18b
、18cはドレイン引出し配線14の電位による影響を
受けず、非反転層としての意義を有するので、交差部分
ではチャネルが形成されない。層間絶縁膜13の膜厚の
如何によるが、交差欠除部18aが存在し、且つドレイ
ン引出し配線14の交差部14a直下はP型のボディ領
域5であるから、上述の如く、この表層部にも反転層が
発生ずる場合がある。したがって、張出し欠除部18b
、13cの存在は不可欠であるが、交差欠除部18aが
なく交差部14a直下はソース不純物導入領域としても
良い。交差部分のポリシリコンゲート8を一部欠除させ
た開ループ状としても良いが、ドレイン引出し配線14
の高電位で一部欠除されたゲート部分下に反転層が形成
される場合もあり、部欠除の重要度はさほどない。
When a high potential is applied to the drain lead wiring 14, an inversion layer (N-type layer) is generated directly under the polysilicon gate 8 at the intersection or, in some cases, also in the intersection cutout 18a. However, no inversion layer is generated in the overhanging cutout portions 18b and 18G, and the P-type remains. That is, the overhanging missing portion 18b
, 18c are not affected by the potential of the drain lead wire 14 and serve as non-inversion layers, so no channel is formed at the intersection. Although it depends on the thickness of the interlayer insulating film 13, since the intersection cutout 18a exists and the P-type body region 5 is directly under the intersection 14a of the drain lead-out wiring 14, as described above, this surface layer An inversion layer may also occur. Therefore, the overhanging cutout portion 18b
, 13c are essential, but there is no intersection cutout 18a, and the area directly below the intersection 14a may be used as a source impurity doped region. It is also possible to form an open loop with a part of the polysilicon gate 8 removed at the intersection, but the drain lead wiring 14
In some cases, an inversion layer is formed under the partially removed gate portion due to the high potential of , and the importance of the partially removed portion is not so great.

このように、交差部分にソース欠除部18が積極的に設
けられているから、局部的な反転層が発生しても、それ
がソース領域16と連絡することがないので、交差部分
にはチャネルが形成されず、漏れ電流を抑制することが
できる。
In this way, since the source deletion portion 18 is actively provided at the intersection, even if a local inversion layer occurs, it will not communicate with the source region 16, so the intersection will not be affected. No channel is formed, and leakage current can be suppressed.

〔発明の効果〕 以上説明したように、本発明に係る高耐圧MO5FET
は、島状の第1領域を隔離周回する同導電型の環状の第
2領域と第1領域に接続しこれから平面上放射方向に延
設された引出し配線との交差部分のうち、少なくとも弓
出し配線の両側縁の隣に第2領域を開ループ状とすべき
第2領域欠除部を有するものであるから、交差部分の引
出し配線直下に反転層が形成されても、チャネル形成ま
でには至らないので、漏れ電流増加等の引出し配線の電
位による悪影響を解消することができる。
[Effects of the Invention] As explained above, the high voltage MO5FET according to the present invention
is at least an arched portion of the intersection between the annular second region of the same conductivity type that circles around the island-like first region and the lead-out wiring connected to the first region and extending in a radial direction on a plane. Since the second region has a second region cutout portion next to both edges of the wiring, which should be an open loop, even if an inversion layer is formed directly under the lead wire at the intersection, it will not be possible to form the channel before the channel is formed. Therefore, it is possible to eliminate the adverse effects caused by the potential of the lead wiring, such as an increase in leakage current.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は本発明に係る高耐圧MOSFETの一実
施例を示す断面図、第1図(B)は同実施例の平面図で
ある。 第2図(Δ)は従来の高耐圧MOSFETの一例を示す
断面図、第2図(B)は同従来例の平面図である。 I P型半導体基板、 2N−型エピタキシャル層、3
 P型アイソレインヨン領域、4 N。 型島状ドレイン領域、5 P型ボディ領域、7ゲート酸
化膜、8 ポリシリコンゲート、9 ドレイン電極、I
Oドレインポリシリコン部、11ポリシリコン高比抵抗
膜、12  ソース電極、13層間絶縁膜、14  ド
レイン引出し配線、1.4a  交差部、+4b、14
c  側縁、16  開ループ状N“型ソース領域、1
8  ソース欠除部、18a  交差欠除部、18b、
18C張出し欠除部。 第 ] 図 第 図
FIG. 1(A) is a sectional view showing an embodiment of a high voltage MOSFET according to the present invention, and FIG. 1(B) is a plan view of the same embodiment. FIG. 2(Δ) is a sectional view showing an example of a conventional high voltage MOSFET, and FIG. 2(B) is a plan view of the conventional example. IP type semiconductor substrate, 2N-type epitaxial layer, 3
P-type iso-rayon region, 4N. type island-shaped drain region, 5 P type body region, 7 gate oxide film, 8 polysilicon gate, 9 drain electrode, I
O drain polysilicon part, 11 polysilicon high resistivity film, 12 source electrode, 13 interlayer insulating film, 14 drain lead wiring, 1.4a intersection, +4b, 14
c Side edge, 16 Open-loop N" type source region, 1
8 Source deletion part, 18a Cross deletion part, 18b,
18C overhang missing part. ] Figure Figure

Claims (1)

【特許請求の範囲】[Claims] 1)島状の第1領域と、これを隔離周回する同導電型の
環状の第2領域と、第1領域と第2領域との間で第2領
域に沿って隣接するゲートと、第1領域に接続しこれか
ら平面上放射方向に延設された引出し配線とを含む高耐
圧MOSFETであって、第2領域と該引出し配線との
交差部分のうち、少なくとも該引出し配線の両側縁の隣
に第2領域を開ループ状とすべき第2領域欠除部を備え
ることを特徴とする高耐圧MOSFET。
1) An island-shaped first region, an annular second region of the same conductivity type that surrounds the first region in isolation, and a gate adjacent along the second region between the first region and the second region; A high-voltage MOSFET including an extraction wiring connected to a region and extended in a radial direction on a plane from the second region, and of the intersection between the second region and the extraction wiring, at least adjacent to both side edges of the extraction wiring. A high voltage MOSFET characterized by comprising a second region cutout portion in which the second region is to be in an open loop shape.
JP1016797A 1989-01-26 1989-01-26 High voltage MOSFET Expired - Fee Related JPH0812919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1016797A JPH0812919B2 (en) 1989-01-26 1989-01-26 High voltage MOSFET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1016797A JPH0812919B2 (en) 1989-01-26 1989-01-26 High voltage MOSFET

Publications (2)

Publication Number Publication Date
JPH02197172A true JPH02197172A (en) 1990-08-03
JPH0812919B2 JPH0812919B2 (en) 1996-02-07

Family

ID=11926149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1016797A Expired - Fee Related JPH0812919B2 (en) 1989-01-26 1989-01-26 High voltage MOSFET

Country Status (1)

Country Link
JP (1) JPH0812919B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521791A (en) * 1991-07-17 1993-01-29 Nec Kansai Ltd High-voltage field-effect transistor and ic
JP2004006674A (en) * 1995-04-12 2004-01-08 Fuji Electric Holdings Co Ltd High voltage integrated circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521791A (en) * 1991-07-17 1993-01-29 Nec Kansai Ltd High-voltage field-effect transistor and ic
JP2004006674A (en) * 1995-04-12 2004-01-08 Fuji Electric Holdings Co Ltd High voltage integrated circuit

Also Published As

Publication number Publication date
JPH0812919B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
KR100359712B1 (en) Lateral semiconductor-on-insulator (soi)semiconductor device having a lateral drift region
US5894156A (en) Semiconductor device having a high breakdown voltage isolation region
JP3346825B2 (en) Power semiconductor device and method of manufacturing the same
US20030057478A1 (en) Mos-gated power semiconductor device
JPH03270273A (en) Semiconductor device and its manufacture
US10453916B2 (en) Semiconductor device
US5629558A (en) Semiconductor diode integrated with bipolar/CMOS/DMOS technology
JP2001044431A (en) Semiconductor device
US11430781B2 (en) Semiconductor die
US5641982A (en) High voltage mosfet with an improved channel stopper structure
KR19980032340A (en) Annular MOOSFET with Low Capacitance and Low Limit Voltage Designed for Phase-Locked Loop Applications
US6583487B1 (en) Power component bearing interconnections
JPH06283727A (en) Power semiconductor element
JPH02197172A (en) High breakdown strength mosfet
US6831338B1 (en) Power component bearing interconnections
CN114520264A (en) High voltage semiconductor device
JPH10242454A (en) Semiconductor device
JPH0328836B2 (en)
JP3495498B2 (en) Semiconductor device
JP3130645B2 (en) High voltage MOS transistor
JP2883779B2 (en) Semiconductor device
JPH02248078A (en) Semiconductor device provided with element of high breakdown strength
JPH0697439A (en) High breakdown strength semiconductor element
JPH07115126A (en) Semiconductor integrated circuit device
JPH02283071A (en) Semiconductor device using offset gate type mosfet