JPH02197056A - Controller of alkaline fuel cell power generator - Google Patents

Controller of alkaline fuel cell power generator

Info

Publication number
JPH02197056A
JPH02197056A JP1015910A JP1591089A JPH02197056A JP H02197056 A JPH02197056 A JP H02197056A JP 1015910 A JP1015910 A JP 1015910A JP 1591089 A JP1591089 A JP 1591089A JP H02197056 A JPH02197056 A JP H02197056A
Authority
JP
Japan
Prior art keywords
gas
switching valve
fuel cell
control
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1015910A
Other languages
Japanese (ja)
Inventor
Atsutomo Ooyama
大山 敦智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1015910A priority Critical patent/JPH02197056A/en
Publication of JPH02197056A publication Critical patent/JPH02197056A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make stoppage of a power generator smooth if a power source or a sequencer fails by disposing a second electromagnetic changing valve, a third electromagnetic changing valve equipped with a restore spring in series with a control gas system having a first electromagnetic changing valve, and providing a bypass tube for bypassing the second electromagnetic changing valve and connecting the first electromagnetic changing valve with the third electromagnetic changing valve having the restore spring. CONSTITUTION:If energization to an electromagnetic changing valves 21, 27 or an electromagnetic changing valve 28 equipped with a restore spring becomes impossible by failure of a constant voltage power source 24 or a sequencer 25 when a power generator is controlled by action of the sequencer 25, the electromagnetic changing valve 27 is in a closed condition while the other ports are released to open air, and the electromagnetic changing valve 28 equipped with the restore spring is changed to be connected with a port of the electromagnetic changing valve 27 which is released to open air by the restore spring, so an exist supply tube 23 is released to open air. Gas drive valves 10, 14 are thus closed. Hydrogen or oxygen is not supplied to a fuel cell 1, but nitrogen gas is supplied to the fuel cell 1, thereby the fuel cell 1 is purged by nitrogen.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アルカリ型燃料電池発電装置、特にこの電池
からの発電電力を電源とする制御部からの制御指令によ
り制御される制御ガスにより反応ガス供給用ガス駆動弁
の開閉を行い、反応ガスの燃料電池への供給、遮断を行
う制御装置に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to an alkaline fuel cell power generation device, particularly an alkaline fuel cell power generation device, which reacts with a control gas controlled by a control command from a control section whose power source is power generated from the battery. The present invention relates to a control device that opens and closes a gas drive valve for gas supply to supply and cut off reaction gas to a fuel cell.

〔従来の技術〕[Conventional technology]

アルカリ水溶液を電解液とするアルカリ型燃料電池は、
常温で発電が可能であるため、燃料電池を備える発電装
置の起動時に制御電源を用いないでよいシステムを構成
することができる。このようなシステムとして第3図に
示すものが知られている。第3図において1はアルカリ
型燃料電池であり、図では模式的に示され、アルカリ水
溶液を電解液とする電解液室2と、その両側に配される
燃料電極3と酸化剤電極4と、これらの電極の両側に配
される燃料室5と酸化剤室6とから構成されている。7
は燃料室5に燃料ガスとしての水素を供給する燃料供給
系であり、燃料供給源である水素ボンベ8と、水素の燃
料電池への供給圧力を制御する圧力調整弁9と、制御ガ
スとしての窒素により開閉され、水素の通流、遮断を行
うガス駆動弁10とを備えている。一方11は酸化剤室
6に酸化剤ガスとしての酸素を供給する酸化剤供給系で
あり、燃料ガス供給系7と同じような機能を有する酸素
ボンベ12.圧力調整弁13.ガス駆動弁14とを備え
ている。
Alkaline fuel cells that use alkaline aqueous solution as the electrolyte are
Since power generation is possible at room temperature, it is possible to configure a system that does not require the use of a control power source when starting up a power generation device including a fuel cell. As such a system, the one shown in FIG. 3 is known. In FIG. 3, reference numeral 1 denotes an alkaline fuel cell, which is schematically shown in the figure, and includes an electrolyte chamber 2 in which an alkaline aqueous solution is used as an electrolyte, a fuel electrode 3 and an oxidizer electrode 4 arranged on both sides of the electrolyte chamber 2. It consists of a fuel chamber 5 and an oxidizer chamber 6 arranged on both sides of these electrodes. 7
is a fuel supply system that supplies hydrogen as a fuel gas to the fuel chamber 5, which includes a hydrogen cylinder 8 as a fuel supply source, a pressure regulating valve 9 that controls the supply pressure of hydrogen to the fuel cell, and a hydrogen cylinder as a control gas. It is equipped with a gas-driven valve 10 that is opened and closed by nitrogen and that allows hydrogen to flow through and shut off. On the other hand, reference numeral 11 is an oxidant supply system that supplies oxygen as an oxidant gas to the oxidizer chamber 6, and an oxygen cylinder 12. Pressure regulating valve 13. A gas-driven valve 14 is provided.

16は燃料電池1の発電停止時燃料電池を不活性ガスで
燃料電池内の水素と酸素と置換してパージするパージガ
ス供給系であり、燃料室5と酸化剤室6とに接続され、
燃料電池1に不活性ガスとしての窒素を供給する供給源
となる窒素ボンベ17と窒素の燃料電池1への供給圧力
を制御する圧力調整弁18とを備えている。なお、窒素
用の圧力調整弁18の設定圧力は水素、酸素用の圧力調
整弁9゜13との設定圧力より低い圧力に設定されてい
る。
16 is a purge gas supply system that purges the fuel cell by replacing hydrogen and oxygen in the fuel cell with an inert gas when power generation of the fuel cell 1 is stopped, and is connected to the fuel chamber 5 and the oxidizer chamber 6;
It includes a nitrogen cylinder 17 that serves as a supply source for supplying nitrogen as an inert gas to the fuel cell 1, and a pressure regulating valve 18 that controls the pressure at which nitrogen is supplied to the fuel cell 1. Note that the set pressure of the pressure regulating valve 18 for nitrogen is set to a lower pressure than the set pressure of the pressure regulating valve 9.13 for hydrogen and oxygen.

また水素、酸素用のガス駆動弁10.14は不活性ガス
の圧力が印加されない通常時閉となる。
Further, the gas-driven valves 10.14 for hydrogen and oxygen are normally closed when no inert gas pressure is applied.

20はパージガス供給系16から分岐し、その途中に電
磁切換弁21を備え、分岐点から電磁切換弁21までの
人口供給管22と電磁切換弁21からガス駆動弁10.
14の開閉作動部IQa、14aに接続する出口供給管
23とからなる制御ガス系である。なふガス駆動弁10
.14は開閉作動部10a、14aに制御ガス(窒素ボ
ンベ18からの窒素ガス)の圧力の印加により開、圧力
の無印加により閉となる。
20 branches from the purge gas supply system 16 and includes an electromagnetic switching valve 21 in the middle thereof, and an artificial supply pipe 22 from the branch point to the electromagnetic switching valve 21 and a gas drive valve 10.20 from the electromagnetic switching valve 21.
14, and an outlet supply pipe 23 connected to 14a. Nafu gas driven valve 10
.. 14 opens when pressure of control gas (nitrogen gas from nitrogen cylinder 18) is applied to the opening/closing parts 10a and 14a, and closes when no pressure is applied.

電磁切換弁21はダブルソレノイドタイプ(駆動用の電
磁石を2個有するタイプ)であり、弁を開く場合にも、
閉じる場合にも各々の電磁石に通電する必要がある。そ
してどちらの電磁石にも通電されてない場合は、制御ガ
スの圧力によりその時の状態を維持する。また、どちら
の電磁石にも通電されてない場合、制御ガスの圧力を利
用して手動の切換ボタンにより電磁切換弁21の切換え
が可能である。
The electromagnetic switching valve 21 is a double solenoid type (a type with two driving electromagnets), and when opening the valve,
Even when closing, it is necessary to energize each electromagnet. When neither electromagnet is energized, the current state is maintained by the pressure of the control gas. Further, when neither electromagnet is energized, the electromagnetic switching valve 21 can be switched using a manual switching button using the pressure of the control gas.

24は燃料電池1の発電電力により作動する定電圧電源
装置、25は定電圧電源装置純により作動し、燃料電池
発電装置を制御する制御プログラムを組込んだシーケン
サである。
Reference numeral 24 denotes a constant voltage power supply device which is operated by the power generated by the fuel cell 1, and 25 is a sequencer which is operated by the constant voltage power supply device and incorporates a control program for controlling the fuel cell power generation device.

電磁切換弁21はシーケンサ23からの制御指令により
弁の切換えが行われる。
The electromagnetic switching valve 21 is switched by a control command from a sequencer 23.

このような系統により燃料電池の停止時、電磁切換弁2
1は制御ガス系20の入口供給管22に対して閉(他方
のポートは大気開放)になっており、出口供給管23は
電磁切換弁21の開ポートにより大気開放状態となって
いるので、燃料供給系7と酸化剤ガス供給系11とのガ
ス駆動弁10.14の開閉作動部10a、14aは無圧
となり、ガス駆動弁10.14は閉になっている。この
ため水素と酸素とは燃料電池1に供給されず、窒素ボン
ベ17からの窒素がパージガス系16を経て燃料室5.
酸化剤室6に供給され燃料電池1は窒素によりパージさ
れている。
With such a system, when the fuel cell is stopped, the electromagnetic switching valve 2
1 is closed to the inlet supply pipe 22 of the control gas system 20 (the other port is open to the atmosphere), and the outlet supply pipe 23 is opened to the atmosphere by the open port of the electromagnetic switching valve 21. The opening/closing parts 10a and 14a of the gas-driven valves 10.14 of the fuel supply system 7 and the oxidizing gas supply system 11 are pressureless, and the gas-driven valves 10.14 are closed. Therefore, hydrogen and oxygen are not supplied to the fuel cell 1, and nitrogen from the nitrogen cylinder 17 passes through the purge gas system 16 to the fuel chamber 5.
The oxidizer chamber 6 is supplied with nitrogen, and the fuel cell 1 is purged with nitrogen.

起動する場合には電磁切換弁21の切換ボタンにより電
磁切換弁21を手動で切換え、制御ガス系20により窒
素を人口供給管22.出口供給管23を経て水素、酸素
用のガス駆動弁10.14の開閉作動部10a、14a
に供給して圧力を印加し、ガス駆動弁1014を開にし
て水素を水素ボンベ8から燃料供給系7を経て、また酸
素を酸素ボンベ12から酸化剤供給系11を経て燃料室
5と酸化剤室6に供給する。
When starting up, the electromagnetic switching valve 21 is manually switched using the switching button of the electromagnetic switching valve 21, and nitrogen is supplied to the artificial supply pipe 22. by the control gas system 20. Opening/closing operation parts 10a, 14a of gas-driven valves 10.14 for hydrogen and oxygen are passed through the outlet supply pipe 23.
The gas-driven valve 1014 is opened to supply hydrogen from the hydrogen cylinder 8 through the fuel supply system 7, and oxygen from the oxygen cylinder 12 through the oxidizer supply system 11 to the fuel chamber 5 and the oxidizer. Supply to chamber 6.

く設定されているので、水素と酸素の供給圧力が設定圧
力になれば制御ガス用の圧力調整弁18は閉となり、窒
素ボンベ18からの制御ガスの窒素の供給は停止し、水
素と酸素は燃料電池1に供給される。そして燃料電池l
に供給された水素と酸素が停止状態の時にあった窒素を
パージして窒素と置換されると、燃料電池1は徐々に発
電を開始し、燃料電極3および酸化剤電極4に接続され
た定電正電源装置24に電力が供給されて、シーケンサ
25が作動可能となり、シーケンサ25に組込まれた制
御プログラムに従い、発電装置全体の制御が行われる。
Therefore, when the supply pressure of hydrogen and oxygen reaches the set pressure, the pressure regulating valve 18 for the control gas closes, the supply of the control gas nitrogen from the nitrogen cylinder 18 is stopped, and the hydrogen and oxygen are It is supplied to the fuel cell 1. and fuel cell
When hydrogen and oxygen supplied to Electric power is supplied to the electric power supply device 24, the sequencer 25 becomes operational, and the entire power generation device is controlled according to a control program built into the sequencer 25.

停止時にはシーケンサ25からの制御指令により電磁切
換弁21の電磁石を作動させて弁の切換えを行い、電磁
切換弁21は制御ガス系20の人口供給管22に対して
閉、出口供給管23に対して大気開放とする。この時水
素、酸素用のガス駆動弁10.14の開閉作動部IQa
、14aは無圧になるのでガス駆動弁10.14は閉に
なり、水素と酸素の燃料電池1への供給は停止されると
ともに燃料室5と酸化剤室6には窒素ボンベ18から窒
素が圧力調整弁18により設定圧力に制御されて燃料室
5と酸化剤室6に供給され、燃料電池1内の水素と酸素
がパージされて窒素に置換される。この置換に伴い、燃
料電池1の発電電圧も低下し、定電圧電源装置24.シ
ーケンサ25は停止する。この際電磁切換弁21の電磁
石への通電も停止するが、制御ガス系20の制御ガスの
圧力によりその時の状態を保持する。
When stopped, the electromagnet of the electromagnetic switching valve 21 is activated by a control command from the sequencer 25 to switch the valve, and the electromagnetic switching valve 21 is closed to the artificial supply pipe 22 of the control gas system 20 and closed to the outlet supply pipe 23. and open it to the atmosphere. At this time, the opening/closing operation part IQa of the gas-driven valve 10.14 for hydrogen and oxygen
, 14a become unpressurized, the gas-driven valve 10.14 is closed, and the supply of hydrogen and oxygen to the fuel cell 1 is stopped, and nitrogen is supplied from the nitrogen cylinder 18 to the fuel chamber 5 and oxidizer chamber 6. The pressure is controlled to a set pressure by the pressure regulating valve 18 and supplied to the fuel chamber 5 and oxidizer chamber 6, and hydrogen and oxygen in the fuel cell 1 are purged and replaced with nitrogen. Along with this replacement, the generated voltage of the fuel cell 1 also decreases, and the constant voltage power supply 24. Sequencer 25 stops. At this time, energization to the electromagnet of the electromagnetic switching valve 21 is also stopped, but the current state is maintained by the pressure of the control gas in the control gas system 20.

なお、水素、酸素用のガス駆動弁10,1.4の弁開閉
用の制御ガスとしてパージ用の窒素ボンベ18からの窒
素を使用しているが、窒素の代りに水素ボンベ8.酸素
ボンベ12からの水素または酸素を使用するシステムも
構成されている。
Note that nitrogen from the nitrogen cylinder 18 for purging is used as the control gas for opening and closing the gas-driven valves 10 and 1.4 for hydrogen and oxygen, but instead of nitrogen, the hydrogen cylinder 8. Systems have also been constructed that use hydrogen or oxygen from oxygen cylinders 12.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上だの燃料電池発電装置の制御系統においては燃料電池
の停止時、燃料ガスと酸化剤ガスの供給を停止する際、
定電圧電源装置24やシーケンサ25の故障等により電
磁切換弁21の電磁石への通電が不能になった場合、シ
ーケンサ25にあらかじめ組込まれた制御プログラムに
従って制御できず、手動操作により電磁切換弁21を切
換えなければならないという欠点がある。
In the control system of Ueda's fuel cell power generation system, when the fuel cell is stopped, when the supply of fuel gas and oxidant gas is stopped,
If the electromagnet of the electromagnetic switching valve 21 cannot be energized due to a failure of the constant voltage power supply 24 or the sequencer 25, etc., the electromagnet of the electromagnetic switching valve 21 cannot be controlled according to the control program pre-installed in the sequencer 25, and the electromagnetic switching valve 21 cannot be operated manually. The disadvantage is that switching is required.

本発明の目的は、燃料電池発電装置の電源装置やシーケ
ンサの故障が生じて電磁切換弁への通電ができなくなっ
ても自動的に燃料電池への燃料ガスと酸化剤ガスの供給
を停止することのできるアルカリ型態#4電池発電装置
の制御装置を提供することである。
An object of the present invention is to automatically stop the supply of fuel gas and oxidant gas to the fuel cell even if a failure occurs in the power supply device or sequencer of the fuel cell power generation device and the electromagnetic switching valve cannot be energized. It is an object of the present invention to provide a control device for an alkaline type #4 battery power generation device that can perform the following steps.

〔課題を解決するだめの手段〕[Failure to solve the problem]

上記課題を解決するために、本発明によればアルカリ電
解液を保有する燃料電池に燃料ガスと酸化剤ガスとを供
給、遮断し、制御ガスにより開閉する燃料用および酸化
剤用ガス駆動弁と、前記燃料電池の発電電力により作動
する電源装置と、この電源装置により作動するシーケン
サと、このシーケンサからの制御指令または手動による
弁切換えにより前記制御ガスの通流、遮断を行う第1の
電磁切換弁を有する制御ガス系とを備えるアルカリ型燃
料電池の制御装置において、制御ガス系にシーケンサか
らの制御指令による弁切換えにより制御ガスの通流、遮
断を行う第2の電磁切換弁と第3の復帰ばね付電磁切換
弁とを第1の電磁切換弁と直列に接続して配設し、さら
に第2の電磁切換弁をバイパスして第1の電磁切換弁と
第3の復帰ばね付電磁切換弁とを接続するバイパス管を
設けるものとする。
In order to solve the above problems, the present invention provides a fuel and oxidizer gas-driven valve that supplies and shuts off fuel gas and oxidant gas to a fuel cell containing an alkaline electrolyte, and that opens and closes using a control gas. , a power supply device operated by the power generated by the fuel cell, a sequencer operated by the power supply device, and a first electromagnetic switching device that controls the flow and cutoff of the control gas based on a control command from the sequencer or manual valve switching. In a control device for an alkaline fuel cell comprising a control gas system having a valve, the control gas system includes a second electromagnetic switching valve and a third electromagnetic switching valve that conducts and cuts off control gas by switching the valve according to a control command from a sequencer. An electromagnetic switching valve with a return spring is connected in series with the first electromagnetic switching valve, and the second electromagnetic switching valve is bypassed to connect the first electromagnetic switching valve and a third electromagnetic switching valve with a return spring. A bypass pipe shall be provided to connect the valve.

また、第2のIE電磁切換弁第3の復帰ばね付電磁切換
弁との間にガス駆動切換弁を介挿し、前記バイパス管を
通流する制御ガスにより作動するタイマーを設け、この
タイマーの設定時間後ガス駆動切換弁の弁切換えを可能
とするものとする。
Further, a gas-driven switching valve is inserted between the second IE electromagnetic switching valve and the third electromagnetic switching valve with a return spring, and a timer operated by the control gas flowing through the bypass pipe is provided, and the timer is set. It shall be possible to switch the gas-driven switching valve after a certain period of time.

〔作用〕[Effect]

請求項1において、制御ガス系にシーケンサからの制御
指令による弁切換えにより開閉する第1と第2の電磁切
換弁と第3の復帰ばね付電磁切換弁を設け、さらに第2
の電磁切換弁をバイパスして第1の電磁切換弁と第3の
復帰ばね付電磁切換弁とを接続するバイパス管を設けた
ことにより、燃料電池発電装置の起動時には手動により
第1の電磁切換弁を切換えてこの第1の電磁切換弁から
バイパス管と第3の復帰ばね付電磁切換弁を経て制御ガ
ス系に制御ガスを通流して燃料ガスと酸化剤ガスとのガ
ス駆動弁を開にすることにより燃料電池に燃料ガスと酸
化剤ガスを供給して発電させる。この発電電力により電
源装置とシーケンサは作動可能の状態となるので、シー
ケンサからの制御指令により第2の電磁切換弁を大気開
放状態にする。この状態で燃料電池発電装置の停止時電
源装置やシーケンサが故障して電磁切換弁に通電できな
い場合、第3の復帰ばね付電磁切換弁は、通電がなくな
れば復帰ばねにより弁切換えが行われ、また第2の電磁
切換弁はあらかじめ大気開放になっているので、制御ガ
スは第3の復帰ばね付電磁切換弁を経て第2の電磁切換
弁から大気開放される。このため燃料ガス、酸化剤ガス
のガス駆動弁は閉になり、燃料ガスと酸化剤ガスとの燃
料電池への供給は停止される。
In claim 1, the control gas system is provided with first and second electromagnetic switching valves and a third electromagnetic switching valve with a return spring, which are opened and closed by valve switching according to a control command from a sequencer, and further comprising a second electromagnetic switching valve with a return spring.
By providing a bypass pipe that bypasses the electromagnetic switching valve and connects the first electromagnetic switching valve and the third electromagnetic switching valve with a return spring, it is possible to manually switch the first electromagnetic switching valve when starting up the fuel cell power generation device. The control gas is passed through the control gas system from the first electromagnetic switching valve through the bypass pipe and the third electromagnetic switching valve with return spring to open the gas-driven valves for fuel gas and oxidizing gas. By doing so, fuel gas and oxidant gas are supplied to the fuel cell to generate electricity. This generated power enables the power supply device and the sequencer to operate, so a control command from the sequencer causes the second electromagnetic switching valve to be opened to the atmosphere. In this state, if the stop power supply or sequencer of the fuel cell power generation device fails and the electromagnetic switching valve cannot be energized, the third electromagnetic switching valve with a return spring will switch the valve by the return spring when the electricity is no longer supplied. Further, since the second electromagnetic switching valve is previously opened to the atmosphere, the control gas is released to the atmosphere from the second electromagnetic switching valve via the third electromagnetic switching valve with a return spring. Therefore, the gas drive valves for the fuel gas and the oxidizing gas are closed, and the supply of the fuel gas and the oxidizing gas to the fuel cell is stopped.

請求項2においては燃料電池発電装置の起動時、第1の
電磁切換弁が制御ガスが流れるように手動により弁を切
換えて運転状態にしてもシーケンサが作動しない場合に
は、バイパス管からの制御ガスの圧力によりタイマーが
作動して一定時間後第4のガス駆動切換弁を切換えて大
気開放にするので、制御ガスは大気開放されて無圧とな
り、前述と同様に燃料ガスと酸化剤ガスのガス駆動弁を
閉にして燃料ガスと酸化剤ガスとの燃料電池への供給が
停止される。
In claim 2, when starting up the fuel cell power generation device, if the sequencer does not operate even if the first electromagnetic switching valve is manually switched to the operating state so that the control gas flows, the control from the bypass pipe is performed. The timer is activated by the gas pressure, and after a certain period of time, the fourth gas-driven switching valve is switched to open to the atmosphere, so the control gas is released to the atmosphere and becomes unpressurized, and the fuel gas and oxidant gas are separated as before. The gas drive valve is closed to stop the supply of fuel gas and oxidant gas to the fuel cell.

〔実施例〕〔Example〕

以下図面に基づいて本発明の実施例について説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の実施例によるアルカリ型燃料電池発電
装置の制御装置の系統図である。
FIG. 1 is a system diagram of a control device for an alkaline fuel cell power generation device according to an embodiment of the present invention.

なお、第1図および後述する第2図に右いて第3図の従
来例と同一部品には同じ符号を付し、その説明を省略す
る。第1図において従来例と異なるのはダブルソレノイ
ドタイプの電磁切換弁27と復帰ばね付電磁切換弁28
とを電磁切換弁21と直列に接続し、電磁切換弁27を
バイパスして復帰ばね付電磁切換弁28から電磁切換弁
21と27とを接続する管路29に接続するバイパス管
31を設け、電磁切換弁27と復帰ばね付電磁切換弁2
8の電磁石はシーケンサ25からの制御指令により作動
するようにしたことである。
1 and FIG. 2, which will be described later, the same parts as those in the conventional example shown in FIG. In Fig. 1, the difference from the conventional example is a double solenoid type electromagnetic switching valve 27 and a return spring equipped electromagnetic switching valve 28.
are connected in series with the electromagnetic switching valve 21, and a bypass pipe 31 is provided which bypasses the electromagnetic switching valve 27 and connects from the electromagnetic switching valve 28 with a return spring to the conduit 29 connecting the electromagnetic switching valves 21 and 27, Solenoid switching valve 27 and solenoid switching valve 2 with return spring
The electromagnet 8 is operated by a control command from the sequencer 25.

このような系統により燃料電池光電装ばの停止状態では
電磁切換弁21は制畜≦20の入口供給管22様に制i
20の出口供給管23に対して開状態である。したがっ
て窒素ボンベ18からの窒素は制蝕乏0の出口供給管2
3への供給が停止され、一方ガス駆動弁10.14の開
閉作動部10a、14aおよび出口供給管23等にある
窒素は電磁切換弁27.28を経て電磁切換弁21の大
気開放ポートから放出されて無圧となるのでガス駆動弁
10.14は閉となり、水素と酸素の燃料電池1への供
給は停止され、窒素ボンベ17からの窒素ガスが燃料電
池に供給されてパージされる。
With such a system, when the fuel cell photoelectric device is in a stopped state, the electromagnetic switching valve 21 is controlled in the manner of the inlet supply pipe 22 where the control is ≦20.
It is open to the outlet supply pipe 23 of 20. Therefore, the nitrogen from the nitrogen cylinder 18 is supplied to the outlet supply pipe 2 with zero corrosion resistance.
3 is stopped, while the nitrogen present in the opening/closing parts 10a, 14a of the gas-driven valve 10.14, the outlet supply pipe 23, etc. is released from the atmosphere release port of the electromagnetic switching valve 21 via the electromagnetic switching valve 27.28. The gas-driven valve 10.14 is closed, the supply of hydrogen and oxygen to the fuel cell 1 is stopped, and nitrogen gas from the nitrogen cylinder 17 is supplied to the fuel cell for purging.

起動する場合には電磁切換弁21の切換ボタンにより電
磁切換弁21を手動により切換えて制御ガス系20の人
口供給管22に対して開状態にし、電磁切換弁27.2
8を介して窒素をガス駆動弁10.14の開閉作動部1
0a、14aに供給してガス駆動弁10.14を開にし
て水素と酸素を燃料電池1に供給する。
When starting, the electromagnetic switching valve 21 is manually switched using the switching button of the electromagnetic switching valve 21 to open to the artificial supply pipe 22 of the control gas system 20, and the electromagnetic switching valve 27.2 is opened.
8 to the opening/closing actuator 1 of the gas-driven valve 10.14.
hydrogen and oxygen are supplied to the fuel cell 1 by opening the gas-driven valve 10.14.

この際パージ用ガスの窒素は前述のように燃料電池1へ
の供給が停止される。そして水素と酸素との供給により
燃料電池1は発電し、この発電電力により定電圧電源装
置24.シーケンサ25は作動し、シーケンサ25はあ
らかじめ組込まれた制御プログラムにより発電装置全体
を制御する。この制御により復帰ばね付電磁切換弁28
は電磁切換弁27との連通状態からバイパス管31に連
通ずるように切換えられるとともに電磁切換弁27を制
御ガス系20の入口供給管22に対して閉に狽拳寺吻牛
4他方のポートを大気開放にする。このようにしてガス
駆動弁10.14を開にする制御ガスの窒素は電磁切換
弁21、バイパス管31.復帰ばね付電磁切換弁28を
経てガス駆動弁10.14の開閉作動部108.14a
に圧力を印加してこれらの弁を開状態にしている。
At this time, the supply of nitrogen as the purge gas to the fuel cell 1 is stopped as described above. The fuel cell 1 generates electricity by supplying hydrogen and oxygen, and the constant voltage power supply 24. The sequencer 25 is activated, and the sequencer 25 controls the entire power generation device according to a control program installed in advance. By this control, the solenoid switching valve 28 with return spring
is switched from communicating with the electromagnetic switching valve 27 to communicating with the bypass pipe 31, and at the same time, the electromagnetic switching valve 27 is closed to the inlet supply pipe 22 of the control gas system 20, and the other port of the Gekkenji proboscis 4 is switched to communicate with the bypass pipe 31. Open to the atmosphere. In this way, the control gas nitrogen that opens the gas driven valve 10.14 is supplied to the electromagnetic switching valve 21, the bypass pipe 31. Opening/closing part 108.14a of gas-driven valve 10.14 via electromagnetic switching valve 28 with return spring
These valves are kept open by applying pressure to them.

停止時には、シーケンサ25からの制御指令により電磁
切換弁21を制御ガス系20の入口供給管22に対して
閉状態(他方のポートは大気開放)、電磁切換弁27を
制御ガス系20に対し開状零にし、復帰ばね付電磁切換
弁28をバイパス管31から電磁切換弁27に連通ずる
ように切換えることにより、出口供給管23にある窒素
を電磁切換弁21から大気開放してガス駆動弁10.1
4の開閉作動部103.14Hにかかる圧力を無圧にし
てガス駆動弁10.14を閉にする。このため水素と酸
素は燃料電池lへの供給が停止されるとともに前述のよ
うに窒素ガスが燃料電池電装置24.シーケンサ25は
停止する。
When stopped, a control command from the sequencer 25 closes the electromagnetic switching valve 21 to the inlet supply pipe 22 of the control gas system 20 (the other port is open to the atmosphere), and opens the electromagnetic switching valve 27 to the control gas system 20. By switching the electromagnetic switching valve 28 with a return spring so that it communicates from the bypass pipe 31 to the electromagnetic switching valve 27, the nitrogen in the outlet supply pipe 23 is released from the electromagnetic switching valve 21 to the atmosphere and the gas-driven valve 10 .1
The pressure applied to the opening/closing part 103.14H of No. 4 is made pressureless, and the gas-driven valve 10.14 is closed. Therefore, the supply of hydrogen and oxygen to the fuel cell 1 is stopped, and as mentioned above, nitrogen gas is supplied to the fuel cell electrical equipment 24. Sequencer 25 stops.

このような制御方法によればンーケンサ25が作動して
発電装置を制御している時に、定電圧電源装置24やシ
ーケンサ25の故障等により電磁切換弁21、27.復
帰ばね付電磁切換弁28への通電が不能になった場合で
も、電磁切換弁27は閉状態(他方のボートは大気開放
)であり、かつ復帰ばね付電磁切換弁28は復帰ばねの
ばね力により電磁切換弁27の大気開放のボートに接続
するように切換わるので、出口供給管23は大気開放と
なり、したがってガス駆動弁1(1,1,4は閉となり
、水素と酸素とは燃イ4電池1に供給されず、前述のよ
うに窒素ガスが燃料電池1に供給されて燃料電池1は窒
素によりパージされる。
According to such a control method, when the sequencer 25 is operating to control the power generator, the electromagnetic switching valves 21, 27, . Even if the electromagnetic switching valve 28 with a return spring cannot be energized, the electromagnetic switching valve 27 remains closed (the other boat is open to the atmosphere), and the electromagnetic switching valve 28 with a return spring responds to the spring force of the return spring. Since the solenoid switching valve 27 is switched to be connected to the boat that is open to the atmosphere, the outlet supply pipe 23 is opened to the atmosphere, and the gas-driven valves 1 (1, 1, and 4 are closed, and the hydrogen and oxygen are ignited). 4, but nitrogen gas is supplied to the fuel cell 1 as described above, and the fuel cell 1 is purged with nitrogen.

第2図は本発明の異なる実施例による燃料電池発電装置
の系統図である。第2図においては第1図における電磁
切換弁27と復帰ばね付電磁切換弁28との間に復帰ば
ね付ガス駆動切換弁32を介装し、さらにこの切換弁の
ガス駆動部をバイパス管31に接続し、バイパス管31
に流れる制御ガスにより駆動されるタイマー33を設け
、このタイマー33で設定された一定時間後復帰ばね付
ガス駆動切換弁32を制御ガスにより切換えるようにし
ている。
FIG. 2 is a system diagram of a fuel cell power generation device according to a different embodiment of the present invention. In FIG. 2, a gas-driven switching valve 32 with a return spring is interposed between the electromagnetic switching valve 27 and the electromagnetic switching valve 28 with a return spring in FIG. Bypass pipe 31
A timer 33 is provided which is driven by the control gas flowing through the control gas, and the gas-driven switching valve 32 with a return spring is switched by the control gas after a certain period of time set by the timer 33.

このような構成により起動待電磁切換弁21を制御ガス
系20に連通ずるように手動で開状態にした後、シーケ
ンサ25が作動しない場合にはタイマー33が作動する
一定時間後復帰ばね付電磁切換弁32が閉状態(他方の
ボートが大気開放)になり、制御ガス系20の出口供給
管23は無圧となって水素と酸素用のガス駆動弁10.
14は閉状態となり、水素と酸素を燃料電池1に供給せ
ず、前述のように窒素により燃料電池1がパージされる
With this configuration, after the startup standby electromagnetic switching valve 21 is manually opened so as to communicate with the control gas system 20, if the sequencer 25 does not operate, the timer 33 operates after a certain period of time. The valve 32 is closed (the other boat is open to the atmosphere), and the outlet supply pipe 23 of the control gas system 20 is unpressurized, so that the gas-driven valve 10. for hydrogen and oxygen is closed.
14 is in a closed state, and hydrogen and oxygen are not supplied to the fuel cell 1, and the fuel cell 1 is purged with nitrogen as described above.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば第1の電
磁切換弁を備える制御ガス系に第2の電磁切換弁と第3
の復帰ばね付電磁切換弁とを直列に配設し、第2の電磁
切換弁をバイパスして第1の電磁切換弁と第3の復帰ば
ね付電磁切換弁を接続するバイパス管を設け、燃料電池
発電装置の運転時には第2の電磁切換弁を閉状態(他方
のボートは大気開放)にしてバイパス管を介して制御ガ
ス系に制御ガスを流して燃料ガスと酸化剤ガスとのガス
駆動弁を開にして燃料ガスと酸化剤ガスを4Q!−1電
池に供給するようにしたことにより、これらの電磁切換
弁を作動させる電源装置やシーケンサが故障しても第2
の電磁切換弁はあらかじめ大気開放状態になっているの
で、ガス駆動弁を開にする制御ガスはなくなるため閉に
なり、燃料ガスと酸化剤ガスの燃料電池への供給が停止
され、燃料電池発電装置の停止を円滑に行うことができ
る。
As is clear from the above description, according to the present invention, a control gas system including a first electromagnetic switching valve, a second electromagnetic switching valve and a third electromagnetic switching valve are provided.
A solenoid switching valve with a return spring is arranged in series, and a bypass pipe is provided that bypasses the second solenoid switching valve and connects the first electromagnetic switching valve and a third electromagnetic switching valve with a return spring. When the battery power generator is in operation, the second electromagnetic switching valve is closed (the other boat is open to the atmosphere), and the control gas is flowed into the control gas system via the bypass pipe to create a gas-driven valve for fuel gas and oxidizing gas. Open the fuel gas and oxidizer gas 4Q! -By supplying power to one battery, even if the power supply or sequencer that operates these electromagnetic switching valves fails, the second
Since the electromagnetic switching valve is already open to the atmosphere, there is no control gas to open the gas-driven valve, so it closes, stopping the supply of fuel gas and oxidizing gas to the fuel cell, and stopping the fuel cell power generation. The device can be stopped smoothly.

また第4の復帰ばね付ガス駆動切換弁とタイマーとを設
けたことにより、起動時第1の電磁切換弁を制御ガス系
に連通ずる開状態にした後、シーケンサ等が故障した場
合、タイマーで設定された一定時間後、第4の復帰ばね
付ガス駆動切換弁を閉状態(他方のボートは大気開放)
にするので、ガス駆動弁の開閉を行う制i卸ガスは無圧
となるので、燃料ガスと酸化剤ガスのガス駆動弁は閉と
なり、前述と同じ作用が得られ燃料電池への燃料ガスと
酸化剤ガスの燃料電池への供給が停止され、燃料電池発
電装置の停止を円滑に行うことができる。
In addition, by providing a fourth gas-driven switching valve with a return spring and a timer, if the sequencer, etc. breaks down after the first electromagnetic switching valve is opened to communicate with the control gas system at startup, the timer will be activated. After a set period of time, the fourth gas-driven switching valve with return spring is closed (the other boat is opened to the atmosphere).
Therefore, the control gas that opens and closes the gas-driven valve becomes unpressurized, so the gas-driven valves for fuel gas and oxidizing gas are closed, and the same effect as described above is obtained, and the flow of fuel gas to the fuel cell and The supply of oxidant gas to the fuel cell is stopped, and the fuel cell power generation device can be stopped smoothly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による燃料電池発電装置の制御
装置の系統図、第2図は本発明の異なる実施例による燃
料電池発電装置の制御装置の系統図、第3図は従来の燃
料電池発電装置の制御装置の系統図である。 1 燃料電池、8 水素ボンベ、12  酸素ボンベ、
10  燃料ガス用ガス駆動弁、14  酸化剤ガス用
ガス駆動弁、20  制御ガス系、21.27  電磁
切タイマー 第 図 第 図
FIG. 1 is a system diagram of a control device for a fuel cell power generation device according to an embodiment of the present invention, FIG. 2 is a system diagram of a control device for a fuel cell power generation device according to a different embodiment of the present invention, and FIG. 3 is a system diagram of a control device for a fuel cell power generation device according to a different embodiment of the present invention. FIG. 2 is a system diagram of a control device for a battery power generator. 1 fuel cell, 8 hydrogen cylinder, 12 oxygen cylinder,
10 Gas-driven valve for fuel gas, 14 Gas-driven valve for oxidizing gas, 20 Control gas system, 21.27 Electromagnetic cut-off timer diagram.

Claims (1)

【特許請求の範囲】 1)アルカリ電解液を保有する燃料電池に燃料ガスと酸
化剤ガスとをそれぞれ供給、遮断し、制御ガスにより開
閉する燃料用および酸化剤用ガス駆動弁と、前記燃料電
池の発電電力により作動する電源装置と、この電源装置
により作動するシーケンサと、このシーケンサからの制
御指令または手動による弁切換えにより前記制御ガスの
通流、遮断を行う第1の電磁切換弁を有する制御ガス系
とを備えるアルカリ型燃料電池発電装置の制御装置にお
いて、制御ガス系にシーケンサからの制御指令による弁
切換えにより制御ガスの通流、遮断を行う第2の電磁切
換弁と第3の復帰ばね付電磁切換弁とを第1の電磁切換
弁と直列に接続して配設し、さらに第2の電磁切換弁を
バイパスして第1の電磁切換弁と第3の復帰ばね付電磁
切換弁とを接続するバイパス管を設けることを特徴とす
るアルカリ型燃料電池発電装置の制御装置。 2)請求項1記載のアルカリ型燃料電池発電装置の制御
装置において、第2の電磁切換弁と第3の復帰ばね付電
磁切換弁との間にガス駆動切換弁を介挿し、前記バイパ
ス管を流れる制御ガスにより作動するタイマーを設け、
このタイマーの設定時間後制御ガスによりガス駆動切換
弁の弁切換えを可能としたことを特徴とするアルカリ型
燃料電池発電装置の制御装置。
[Scope of Claims] 1) A fuel and oxidizer gas-driven valve that supplies and shuts off fuel gas and oxidant gas to a fuel cell containing an alkaline electrolyte, respectively, and opens and closes using a control gas, and the fuel cell A control system comprising: a power supply device operated by the power generated by the power supply; a sequencer operated by the power supply device; and a first electromagnetic switching valve that controls the flow and cutoff of the control gas based on a control command from the sequencer or manual valve switching. In a control device for an alkaline fuel cell power generation device comprising a gas system, the control gas system includes a second electromagnetic switching valve that allows the control gas to flow through or shut off by switching the valve according to a control command from a sequencer, and a third return spring. A solenoid switching valve with a return spring is connected in series with the first solenoid switching valve, and the second solenoid switching valve is bypassed, and the first solenoid switching valve and the third solenoid switching valve with a return spring are connected in series. A control device for an alkaline fuel cell power generation device, characterized in that a bypass pipe is provided for connecting the. 2) In the control device for an alkaline fuel cell power generation apparatus according to claim 1, a gas-driven switching valve is inserted between the second electromagnetic switching valve and the third electromagnetic switching valve with a return spring, and the bypass pipe is A timer activated by the flowing control gas is provided,
A control device for an alkaline fuel cell power generation device, characterized in that a gas-driven switching valve can be switched by a control gas after a set time of the timer.
JP1015910A 1989-01-25 1989-01-25 Controller of alkaline fuel cell power generator Pending JPH02197056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1015910A JPH02197056A (en) 1989-01-25 1989-01-25 Controller of alkaline fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1015910A JPH02197056A (en) 1989-01-25 1989-01-25 Controller of alkaline fuel cell power generator

Publications (1)

Publication Number Publication Date
JPH02197056A true JPH02197056A (en) 1990-08-03

Family

ID=11901930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1015910A Pending JPH02197056A (en) 1989-01-25 1989-01-25 Controller of alkaline fuel cell power generator

Country Status (1)

Country Link
JP (1) JPH02197056A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040006664A (en) * 2002-07-13 2004-01-24 엘지전자 주식회사 Power control apparatus of fuel cell
JP2011505673A (en) * 2007-12-06 2011-02-24 ダイムラー・アクチェンゲゼルシャフト Fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040006664A (en) * 2002-07-13 2004-01-24 엘지전자 주식회사 Power control apparatus of fuel cell
JP2011505673A (en) * 2007-12-06 2011-02-24 ダイムラー・アクチェンゲゼルシャフト Fuel cell system

Similar Documents

Publication Publication Date Title
JP2660097B2 (en) Fuel cell generator
JP4923969B2 (en) Fuel cell system
KR101103398B1 (en) Fuel cell system
JPH0622156B2 (en) Fuel cell device
WO2007021871A2 (en) Control assembly for controlling a fuel cell system during shutdown and restart
US4685287A (en) Compressor system and start-up method therefor
US20040053096A1 (en) Freeze prevention of a fuel cell power plant
JPH02197056A (en) Controller of alkaline fuel cell power generator
US4226919A (en) Hydrogen/oxygen fuel cell
JP3761865B2 (en) Fuel cell hydrogen tank system pressure regulation
CN110534770A (en) Fuel cell system
JP2003068334A (en) Fuel circulating fuel cell system
JP2000003717A (en) Fuel cell system
JPH02244559A (en) Method of stopping operation of fuel cell
JP2007184109A (en) Oxidization gas path system and fuel cell system
JP2007188666A (en) Fuel cell operation system
JP4575683B2 (en) Fuel cell system and fuel cell system restart method
JP3986377B2 (en) Fuel cell / gas turbine combined power plant
JP3138110B2 (en) Fuel cell generator
JPS6222230B2 (en)
JPS6222228B2 (en)
JP2020173936A (en) Injector drive
JP2000508409A (en) Safety circuit
JPS59165376A (en) Fuel cell power generating system
JP2005340021A (en) Flammable gas exhaust valve device