JPH02197017A - Connecting method of compound-type superconductive wire - Google Patents

Connecting method of compound-type superconductive wire

Info

Publication number
JPH02197017A
JPH02197017A JP1015876A JP1587689A JPH02197017A JP H02197017 A JPH02197017 A JP H02197017A JP 1015876 A JP1015876 A JP 1015876A JP 1587689 A JP1587689 A JP 1587689A JP H02197017 A JPH02197017 A JP H02197017A
Authority
JP
Japan
Prior art keywords
compound
filaments
tubular
connection
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1015876A
Other languages
Japanese (ja)
Other versions
JP2848618B2 (en
Inventor
Masami Urata
昌身 浦田
Minoru Tanaka
実 田中
Hideaki Maeda
秀明 前田
Akira Murase
村瀬 暁
Sumiichi Shibuya
渋谷 純市
Kazuhiro Takenaka
一博 竹中
Kazuo Nakanishi
一夫 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1015876A priority Critical patent/JP2848618B2/en
Publication of JPH02197017A publication Critical patent/JPH02197017A/en
Application granted granted Critical
Publication of JP2848618B2 publication Critical patent/JP2848618B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To prevent degrading of critical current and generation of resistance and connect superconductive wires easily by laminating a pair of exposed tube- like filaments of a compound-type superconductive each other to form a connection part and heating at the temperature at which superconductive is formed. CONSTITUTION:A Sb3Sn multisuperconductive strand 10 comprises a stabilizing matrix of Cu 1 in which 264 of tube-like Nb filaments 5 composed with Nb tubes 2 containing 1wt.% of Tl and composites of Sn wires 3 with 30% concentration and Cu coatings 4 which are packed in the Nb tubes are distributed. The matrix at the end of the strand 10 is dissolved in nitric acid to exposure Nb filaments 5. The exposed parts of two of the strands 1 are twisted to form a connection part 11. A Cu supporting material 12 is placed the surroundings of the connection part 11 and heated (at 450 deg.C) under pressure to alloy the Sn and Cu in the filaments 5. Then, heating is further carried out in vacuum at the temperature at which Sb3Sn is formed to complete connection.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、Nb3 SnやNb、AIなどの化合物系超
電導体からなる超電導線の接続方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for connecting superconducting wires made of compound-based superconductors such as Nb3Sn, Nb, and AI.

(従来の技術) 現在、実用化されている超電導線としては、Nb3Sn
やNb、AIなどの化合物系超電導体からなるものや、
Nb−TiやNb−Zrなどの合金系超電導体からなる
ものが知られており、送電ケーブルや電力をほとんど消
費することなく強磁界の形成が可能な超電導コイルなど
の用途への利用が各所で研究されている。
(Prior art) Currently, the superconducting wire in practical use is Nb3Sn.
Compound superconductors such as , Nb, and AI;
Superconductors made of alloy-based superconductors such as Nb-Ti and Nb-Zr are known, and are being used in various applications such as power transmission cables and superconducting coils that can generate strong magnetic fields without consuming much electricity. being researched.

ところで、たとえば医療用核磁気共鳴診断装置(以下M
RIと記す)などにおいて使用する超電導コイルのよう
に、高精度で均一な磁界の形成が必要な際には、超電導
線間の接続方法が重要となる。すなわち、超電導線間の
接続部において超電導電流の流れが阻害されると、磁界
に乱れが生じるためである。このために、高精度の磁界
が必要とされる超電導コイルにおいては、接続が容易で
確実な合金系超電導線が主に使用されている。
By the way, for example, medical nuclear magnetic resonance diagnostic equipment (hereinafter M
When it is necessary to form a highly accurate and uniform magnetic field, such as in superconducting coils used in RI, etc., the method of connecting superconducting wires is important. That is, if the flow of superconducting current is obstructed at the connection between superconducting wires, disturbances occur in the magnetic field. For this reason, in superconducting coils that require a highly accurate magnetic field, alloy-based superconducting wires, which are easy to connect and are reliable, are mainly used.

しかし、臨界温度や臨界磁場の点においては、合金系超
電導体に比べてNb3 Snなどの化合物系超電導体の
方が優れているため、化合物系超電導線どうしの良好な
接続方法が強く望まれている。
However, in terms of critical temperature and critical magnetic field, compound-based superconductors such as Nb3Sn are superior to alloy-based superconductors, so a good connection method for compound-based superconducting wires is strongly desired. There is.

そこで、たとえばブロンズ製マトリックス中に棒状のニ
オブフィラメントを埋設した、いわゆるブロンズ法によ
るNb5SntE?TS導線どうしを以下に示す方法に
よって接続することが試みられている。
Therefore, for example, Nb5SntE is available using the so-called bronze method, in which rod-shaped niobium filaments are embedded in a bronze matrix. Attempts have been made to connect TS conductors to each other by the method described below.

まず、接続端部のブロンズマトリックスを薬品などで溶
かし、Nbフィラメントをそれぞれ露出させる。次いで
、Nbフィラメントどうしを重ね合せて接続し、接続部
の空隙に対して ■ ブロンズ粉末を充填する、 ■ 銅粉末を充填した後、接続部全体にスズメツキを施
す、 ■ 接続部をブロンズ浴やスズ浴を通すことによって、
空隙にブロンズやスズを充填する、などの処理を施した
後、接続部全体に銅などを被覆する。この後、接続部お
よび接続された超電導線全体にNb3 Sn生成温度に
おける熱処理を施し、超電導線全体に超電導体相を形成
するとともに、接続部においても超電導体相を形成する
First, the bronze matrix at the connection end is dissolved with a chemical or the like to expose each Nb filament. Next, the Nb filaments are overlapped and connected, and the gap in the connection part is filled with bronze powder. ■ After filling with copper powder, the entire connection part is tinted. ■ The connection part is bathed in a bronze bath or tin. By passing the bath
After performing a treatment such as filling the void with bronze or tin, the entire connection is coated with copper or the like. Thereafter, the connecting portion and the entire connected superconducting wire are subjected to heat treatment at the Nb3Sn formation temperature to form a superconducting phase in the entire superconducting wire and also in the connecting portion.

(発明が解決しようとする課題) しかしながら、上述したようなブロンズ法によるNb3
 Sn線などの化合物系超電導線の接続方法では、接続
部に超電導体相を形成させるための工程、すなわち上記
した■〜■などの工程が繁雑であり、また上記■や■の
方法を適用した場合、ブロンズ粉末や銅粉末を空隙に均
等に充填することが困難であるために、超電導体相が長
手方向に均一に生成しないなどの問題があった。接続部
における超電導体相の生成が不均一であると、超電導体
相の連続性が接続部において阻害されたり、超電導体相
の断面積が不十分となる。このため、接続部の臨界電流
が低かったり、接続部の抵抗発生が大きくなるなど、種
々の欠点が発生する。
(Problem to be solved by the invention) However, Nb3 by the bronze method as described above
In the method of connecting compound-based superconducting wires such as Sn wires, the steps for forming a superconducting phase at the connection part, that is, the steps ① to ② described above, are complicated, and the methods ① and ② above are not applied. In this case, it is difficult to uniformly fill the voids with bronze powder or copper powder, resulting in problems such as the superconductor phase not being formed uniformly in the longitudinal direction. If the superconductor phase is not produced uniformly at the connection, the continuity of the superconductor phase may be disturbed at the connection, or the cross-sectional area of the superconductor phase may be insufficient. For this reason, various drawbacks occur, such as a low critical current at the connection and an increase in resistance at the connection.

本発明は、このような従来技術の課題に対処するために
なされたもので、Nb3 SnやNb3^Iなどの化a
物系超電導体を用いた超電導線どうしを容易に、かつ接
続部における臨界電流の劣化や抵抗発生を極力防止した
化合物系超電導線の接続方法を提供することを目的とし
ている。
The present invention has been made to address the problems of the prior art, and is based on the use of a
It is an object of the present invention to provide a method for connecting compound-based superconducting wires that easily connects superconducting wires using a material-based superconductor and that prevents as much as possible the deterioration of critical current and the generation of resistance at the connection portion.

[発明の構成] (課題を解決するための手段) すなわち本発明の化合物系超電導線の接続方法は、内部
に第1の化合物系超電導体材料が充填された第2の化合
物系超電導体材料からなるチューブ状フィラメントを銅
を生成分とする安定化材中に 1本または複数本埋設し
た化合物系超電導線の接続端部における前記安定化材を
それぞれ除去し、前記チューブ状フィラメントをそれぞ
れ露出させる工程と、これら露出されたチューブ状フィ
ラメントどうしを重ね合せて接続部を形成する工程と、
前記接続部に圧力と熱を加え隣接する前記チューブ状フ
ィラメント間を固相拡散接合する工程と、少なくとも前
記固相拡散接合された接続部に、前記第1および第2の
化合物系超電導体材料によって形成される化合物系超電
導体の生成温度における熱処理を施す工程とを経ること
を特徴としている。
[Structure of the Invention] (Means for Solving the Problems) That is, the method for connecting a compound-based superconducting wire of the present invention includes connecting a first compound-based superconducting material to a second compound-based superconducting material filled with the first compound-based superconducting material. A step of removing each of the stabilizing materials at the connection end of a compound superconducting wire in which one or more tubular filaments are embedded in a stabilizing material containing copper as a component, and exposing each of the tubular filaments. and a step of overlapping these exposed tubular filaments to form a connection part,
solid phase diffusion bonding between the adjacent tubular filaments by applying pressure and heat to the connection portion, and at least the solid phase diffusion bonded connection portion using the first and second compound-based superconductor materials. The method is characterized by a step of performing heat treatment at the formation temperature of the compound-based superconductor to be formed.

本発明における化合物系超電導体としては、Nb3Sn
%Nb3Alなどが例示される。また、本発明に用いら
れる第1および第2の化合物系超電導体材料は、これら
化合物系超電導体の形成材料であるSnとNb、 AI
とNbなとである。これら化合物系超電導体材料を銅を
生成分とするマトリックス材中に埋設した構造体の具体
的な例としては、■ 第2の化合物系超電導体材料であ
るNbチューブ中に第1の化合物系超電導体材料として
Snコア上にCuを被覆したものやブロンズ合金を充填
して形成したチューブ状フィラメントの表面に、安定化
材としてCu層やCu合金層を設けたもの、■ 上記■
におけるチューブ状フィラメントの多数本をCuやCu
合金からなる安定化材マトリックス中に埋設したもの、 ■ 第2の化合物系超電導体材料であるNbチューブ中
に第1の化合物系超電導体材料としてAIやA1合金を
充填したチューブ状フィラメントの表面に、安定化材と
してCu層やCu合金層を設けたもの、■ 上記■にお
けるチューブ状フィラメントの多数本をCuやCu合金
からなる安定化材マトリックス中に埋設したもの、 などが例示される。
As the compound-based superconductor in the present invention, Nb3Sn
%Nb3Al etc. are exemplified. Furthermore, the first and second compound-based superconductor materials used in the present invention are Sn, Nb, and AI, which are the forming materials of these compound-based superconductors.
and Nb. Specific examples of structures in which these compound-based superconductor materials are embedded in a matrix material containing copper include: A body material in which a Sn core is coated with Cu or a tubular filament formed by filling a bronze alloy with a Cu layer or a Cu alloy layer as a stabilizing material,
A large number of tubular filaments in Cu or Cu
Embedded in a stabilizing material matrix made of an alloy, ■ On the surface of a tubular filament in which a Nb tube, which is a second compound superconductor material, is filled with AI or A1 alloy as a first compound superconductor material. , one in which a Cu layer or a Cu alloy layer is provided as a stabilizing material, and one in which a large number of tubular filaments in (2) above are embedded in a stabilizing material matrix made of Cu or a Cu alloy.

上記■〜■のNbチューブとしては、Nb1.:Tlや
Taなどを添加した合金を使用してもよく、また上記■
、■におけるA1合金としては、AI−”Mn合金やA
1にGeを添加した複合体などが例示される。
Nb1. : An alloy to which Tl, Ta, etc. are added may be used, and the above
, ■A1 alloys include AI-''Mn alloy and A1 alloy.
An example is a composite obtained by adding Ge to 1.

本発明において接続部に圧力と熱とを加える工程は、露
出させたチューブ状フィラメントどうしを重ね合せて形
成した接続部に対して、適度な圧力とチューブ状フィラ
メントに使用した第2の化合物系超電導体材料の材質に
応じて選択された温度とを加え、隣接するチューブ状フ
ィラメント間を固相拡散接合し、後述する熱処理によっ
て接続部における隣接するチューブ状フィラメント間に
連続した超電導体相を生成するためのものである。
In the present invention, the step of applying pressure and heat to the connection part involves applying appropriate pressure to the connection part formed by overlapping the exposed tubular filaments, and applying pressure and heat to the connection part formed by overlapping the exposed tubular filaments. A temperature selected according to the material of the body material is applied to perform solid-phase diffusion bonding between adjacent tubular filaments, and a continuous superconductor phase is generated between adjacent tubular filaments at the connection part by heat treatment described below. It is for.

この工程における加圧は、接続部における超電導体相の
連続形成距離を短縮させるために、接続部におけるチュ
ーブ状フィラメントが変形するよう一軸加圧を行うこと
が好ましい。
Pressure in this step is preferably uniaxially applied so that the tubular filament at the connection section is deformed, in order to shorten the continuous formation distance of the superconductor phase at the connection section.

また、上記接続部に対して下記のいずれかを施すことに
より、接続部における超電導体相の連続性をより向上さ
せることが可能となる。
Further, by applying any of the following to the above-mentioned connection part, it becomes possible to further improve the continuity of the superconductor phase in the connection part.

(a)  加圧・加熱工程において、チューブ状フィラ
メント内の第1の化合物系超電導体材料がはみだすよう
に圧力を加える。
(a) In the pressurizing/heating step, pressure is applied so that the first compound-based superconductor material within the tubular filament protrudes.

(b)  露出させたチューブ状フィラメントどうしを
重ね合せる前に、予めチューブ状フィラメントの管壁の
一部を除去し、その後にチューブ状フィラメントどうし
を重ね合せる。この除去するチューブ状フィラメントの
量は、管壁の肉厚が50%〜70%程度残るようにする
ことが好ましい。また、除去状態としては、円周全体に
対して均一に除去してもよいし、部分的に除去してもよ
い。
(b) Before stacking the exposed tubular filaments, a portion of the tube wall of the tubular filaments is removed in advance, and then the tubular filaments are stacked together. The amount of tubular filament to be removed is preferably such that approximately 50% to 70% of the tube wall thickness remains. Furthermore, the state of removal may be uniformly removed over the entire circumference or may be removed partially.

この後、このようにして形成された接続部に対して、超
電導体相形成温度における熱処理を施し、接続部におけ
るチューブ状フィラメント内部がら生成した超電導体相
を成長させ、隣接するチューブ状フィラメント間を成長
した超電導体相によって接続する。
Thereafter, the thus formed connection is subjected to heat treatment at a superconductor phase formation temperature to grow the superconductor phase generated inside the tubular filament at the connection, and to grow the superconductor phase between adjacent tubular filaments. Connected by the grown superconductor phase.

この熱処理は、真空下や不活性ガス雰囲気下などにおイ
テ、Nb3Snの場合には1350℃〜770’C程度
の温度で3時間〜300時間程度、Nb3Al場合にハ
ロ80℃〜950°C程度” 2H度テ0.3時間〜1
00時間程度の条件で行われ、超電導線本体における超
電導体相の形成とともに、あるいは予め超電導体相を形
成した超電導線を接続する際には、別途接続部のみに対
して行われる。
This heat treatment is carried out under vacuum or an inert gas atmosphere, for about 3 hours to 300 hours at a temperature of about 1350°C to 770'C in the case of Nb3Sn, and at about 80°C to 950°C in the case of Nb3Al. ” 2H degrees 0.3 hours to 1
This is carried out under conditions of approximately 00 hours, and is carried out separately only on the connection portions when forming a superconductor phase in the superconducting wire body or when connecting superconducting wires on which a superconducting phase has been formed in advance.

また、本発明により得られる超電導線を熱処理可能な製
品に適用する場合、たとえば超電導コイルを形成するよ
うな場合には、コイル用の巻枠に熱処理前の素線を巻装
し、この状態で接続部を含む全体に上記熱処理を行うよ
うにしてもよい。
In addition, when applying the superconducting wire obtained by the present invention to a product that can be heat treated, for example, when forming a superconducting coil, the wire before heat treatment is wound around a winding frame for the coil, and the wire is wrapped in this state. The above heat treatment may be applied to the entire structure including the connection portion.

(作 用) 本発明の化合物系超電導線の接続方法においては、いわ
ゆるチューブ法を用いた超電導線のチューブ状フィラメ
ントどうしを固相拡散により接合し、この接合部に対し
て少なくとも熱処理を施しているので、フィラメント内
部から生成する超電導体相を隣接するフィラメント側に
成長させることによって、異なるフィラメント間を超電
導体相で確実にかつ容易に繋げることが可能となる。
(Function) In the method for connecting compound-based superconducting wires of the present invention, tubular filaments of superconducting wires are joined together by solid phase diffusion using the so-called tube method, and at least heat treatment is applied to this joint. Therefore, by growing the superconductor phase generated from inside the filament onto the adjacent filament side, it becomes possible to reliably and easily connect different filaments with the superconductor phase.

よって、異なるフィラメント間におけるtfi電導電流
の移行時にバリアとなる部分が存在せず、良好な超電導
特性を有する接続部が得られる。
Therefore, there is no portion that acts as a barrier during the transition of the TFI conduction current between different filaments, and a connection portion having good superconducting properties can be obtained.

また、超電導線本体における超電導体相形成のための熱
処理とともに、接合部に対する熱処理を行っても、超電
導線本体でのチューブ状フィラメント内部から拡散する
第1の化合物系超電導体材料がチューブ外まで拡散する
ための距離より、接合部における拡散距離を加圧工程に
よって短くしているため、超電導線本体の安定化材が化
合物系超電導体構成元素によってt9染されることもな
い。
In addition, even if heat treatment is performed on the joint part in addition to heat treatment to form a superconductor phase in the superconducting wire body, the first compound-based superconductor material that diffuses from inside the tubular filament in the superconducting wire body will diffuse to the outside of the tube. Since the diffusion distance at the joint is made shorter than the distance required for the bonding by the pressurizing process, the stabilizing material of the superconducting wire body is not t9-stained by the compound-based superconductor constituent elements.

(実施例) 次に、本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

実施例1 第1図は、この実施例のNb3Sn超電導線の接続工程
を示す図である。同図において、符号10は接続しよう
とするNb3Snマルチ超電導素線である。
Example 1 FIG. 1 is a diagram showing the process of connecting Nb3Sn superconducting wires in this example. In the figure, reference numeral 10 indicates an Nb3Sn multi-superconducting wire to be connected.

なおこのNb3 Snマルチ超電導素線10は、第2図
に示すように、Cuからなる安定化材マトリックス1内
部に、T1を1重量%添加したNbチューブ2内にSn
濃度が30%になるようにSn3線上にCu被覆4を施
した複合体を充填したチューブ状Nbフィラメント5が
264本分布配置されて構成されている。
As shown in FIG. 2, this Nb3Sn multi-superconducting strand 10 is made of a stabilizer matrix 1 made of Cu and an Nb tube 2 in which 1% by weight of T1 is added.
264 tubular Nb filaments 5 filled with a composite of Sn3 wire and Cu coating 4 are arranged in a distributed manner so that the concentration is 30%.

まず、このNb3 Snマルチ超電導素線10の接続し
ようとする端部の安定化材マトリックス1を硝酸によっ
て約70mm溶かし、チューブ状Nbフィラメント5を
露出させた(第1図−八)。
First, about 70 mm of the stabilizing material matrix 1 at the end of the Nb3Sn multi-superconducting wire 10 to be connected was dissolved with nitric acid to expose the tubular Nb filament 5 (FIG. 1-8).

次に、このようにしてチューブ状Nbフィラメントを露
出させた 2本のNb3Snマルチ超電導素線10a、
10bのチューブ状Nbフィラメント5a。
Next, two Nb3Sn multi-superconducting strands 10a with the tubular Nb filaments exposed in this way,
10b tubular Nb filament 5a.

5bどうしがよく混ざりあうように接触させて瑳り合わ
せ、接続部11を形成した(第1図−B)。
5b were brought into contact and glued together so that they were well mixed, thereby forming a connecting portion 11 (FIG. 1-B).

次いで、この接続部11の周囲にCuからなるサポート
材12を配置し、サポート材12を介して圧力と熱を加
え、隣接するチューブ状Nbフィラメント5a、5b間
を固相拡散接合した(第1図−C)。この加圧・加熱工
程は、第3図に示すように、断面コ字形の収容部12a
と圧力印加部12bとからなるサポート材12内に接続
部11を配置しく第3図−A)、圧力印加部12bに対
して一軸方向から 150kg/cjの圧力を加えて、
接続部11のチューブ状Nbフィラメント5を充分に変
形させ(第3図−B)、この状態で加熱炉内に配置して
、to’ 〜1O−5Torrの真空中において450
℃×30分の条件で熱処理を施した。なお、この加圧・
加熱工程の熱処理時間を6時間〜12時間程度に長くと
り、チューブ状Nbフィラメント5内のSnとCuを合
金化してブロンズとする工程を含めることも可能である
Next, a support material 12 made of Cu is placed around this connection part 11, and pressure and heat are applied through the support material 12 to solid phase diffusion bond the adjacent tubular Nb filaments 5a and 5b (first Figure-C). This pressurizing/heating step is performed in the housing section 12a having a U-shaped cross section, as shown in FIG.
The connecting part 11 is arranged in the support material 12 consisting of the pressure applying part 12b and the pressure applying part 12b (Fig. 3-A), and a pressure of 150 kg/cj is applied from one axis to the pressure applying part 12b.
The tubular Nb filament 5 of the connecting part 11 is sufficiently deformed (Fig. 3-B), placed in a heating furnace in this state, and heated at 450° C. in a vacuum of to' to 1 O-5 Torr.
Heat treatment was performed at ℃×30 minutes. Note that this pressurization
It is also possible to include a step in which the heat treatment time of the heating step is increased to about 6 hours to 12 hours, and the Sn and Cu in the tubular Nb filament 5 are alloyed to form bronze.

この後、接続部11を含む超電導素線10全体を加熱炉
内に配置し、10−4〜l0−5Torrの真空中にお
いてNb3 Snの生成温度である 700℃で約40
時間熱処理を施し、超電導素線10本体におけるNbチ
ューブと内部のCu被覆を拡散してきたSnとを反応さ
せてNb3Sn層を形成するとともに、接続部11にお
ける異なるチューブ状Nbフィラメント5間をNb3 
Sn層の成長によって繋げた(第1図−D)。
Thereafter, the entire superconducting wire 10 including the connecting portion 11 is placed in a heating furnace, and heated in a vacuum of 10-4 to 10-5 Torr at 700°C, which is the generation temperature of Nb3Sn, at about 40°C.
A time heat treatment is performed to react the Nb tube in the main body of the superconducting wire 10 with the Sn that has diffused into the internal Cu coating to form an Nb3Sn layer, and also to form a Nb3Sn layer between the different tubular Nb filaments 5 in the connection part 11.
They were connected by growing a Sn layer (Fig. 1-D).

このようにしてNJSn層の形成と線間の接続を同時に
行ったNb3Snマルチ超電導線の接続部の状態を顕微
鏡によって断面観察したところ、第4図に示すように、
接続部11における異なるチューブ状Nbフィラメント
5間が、拡散するSnがNbチューブと反応することに
よって生成するNb3 Sn層6の成長によって接続さ
れていた。また、このNb3Snマルチ超電導線の4.
2に下での臨界電流と永久電流の減衰を、磁界下で測定
した。その結果、7Tの磁界中で臨界電流−500Aが
得られ、接続部を形成することなく同様にして形成した
Nb3 Snマルチ超電導線の約60%と良好な値を示
した。また、1.5Tの磁界下で300への電流を流し
て電流の減衰状態を24時間に渡ってa1定したところ
、7+、流値の減衰は測定感度内(0,01ppm/時
+rSI >では観alllされず良好な超電導特性を
有する接続部であることを確認した。また、この実施例
の方法にしたがって、接続したNb3 Sn超電導線を
22本作製し、それぞれの臨界電流を測定したところ、
臨界電流のバラツキは25%以内に収まり、再現性にも
優れていた。
When the state of the connection part of the Nb3Sn multi-superconducting wire in which the NJSn layer was formed and the connections between the wires were simultaneously performed in this way was observed in cross section using a microscope, as shown in Figure 4.
The different tubular Nb filaments 5 in the connecting portion 11 were connected by the growth of a Nb3Sn layer 6 generated by the reaction of the diffused Sn with the Nb tube. In addition, 4. of this Nb3Sn multi-superconducting wire.
The decay of the critical current and persistent current under 2 hours was measured under a magnetic field. As a result, a critical current of -500 A was obtained in a magnetic field of 7 T, which was about 60% of that of the Nb3Sn multi-superconducting wire formed in the same manner without forming a connection, which was a good value. In addition, when a current was applied to 300 under a magnetic field of 1.5 T and the current attenuation state was constant at a1 for 24 hours, the attenuation of the current value was 7+, and the attenuation of the current value was within the measurement sensitivity (0.01 ppm/hour + rSI > It was confirmed that the connection part had good superconducting characteristics without being observed.Furthermore, 22 connected Nb3Sn superconducting wires were manufactured according to the method of this example, and the critical current of each was measured.
The variation in critical current was within 25%, and the reproducibility was excellent.

実施例2 実施例1において、露出させたチューブ状Nbフィラメ
ントどうしを瑳り合わせて接続部を形成する前に、予め
Nbチューブ管壁の厚さの約40%を沸硝酸で溶す以外
は、実施例1と同一条件で接続部を有するNb3 Sn
マルチ超電導線を作製した。
Example 2 In Example 1, except that before gluing the exposed tubular Nb filaments together to form a connection part, about 40% of the thickness of the Nb tube wall was previously dissolved with boiling nitric acid. Nb3 Sn having a connection part under the same conditions as Example 1
A multi-superconducting wire was fabricated.

このようにして得たNb3 Snマルチ超電導線につい
ても実施例1と同様にして臨界電流と永久電流の減衰を
測定した。その結果、7Tの磁界中で臨界電流580A
が得られ、接続部を形成することなく同様にして形成し
たNb3 Snマルチ超電導線の約70%と良好な値を
示した。また、電流値の減衰は4−1感度度内(001
ppIIl/時間)では観測されず良好な超電導特性を
有する接続部であることを確認した。また、同様にして
作製した16本のNb3 Sn超電導線の臨界電流のバ
ラツキは23%以内に収まった。
Regarding the Nb3Sn multi-superconducting wire thus obtained, the attenuation of critical current and persistent current was measured in the same manner as in Example 1. As a result, the critical current is 580A in a 7T magnetic field.
was obtained, showing a good value of about 70% of that of the Nb3Sn multi-superconducting wire formed in the same manner without forming a connection part. Also, the attenuation of the current value is within 4-1 sensitivity (001
ppIIl/hour), confirming that the connection had good superconducting properties. Further, the variation in critical current of 16 Nb3Sn superconducting wires produced in the same manner was within 23%.

実施例3 実施例1において、露出させたチューブ状Nbフィラメ
ントどうしを瑳り合わせて形成した接続部に対する加圧
・加熱工程の圧力条件を180kg/+jにし、チュー
ブ状Nbフィラメント内のCuを被覆したSnをはみだ
させる以外は、実施例1と同一条件で接続部を有するN
b3 Snマルチ超電導線を作製した。
Example 3 In Example 1, the pressure condition of the pressurizing/heating process for the connection part formed by gluing the exposed tubular Nb filaments together was set to 180 kg/+j, and the Cu inside the tubular Nb filaments was coated. N having a connection part under the same conditions as Example 1 except that Sn protrudes
b3 Sn multi-superconducting wire was produced.

このようにして得たNb3 Sn超電導線についても実
施例1と同様にして臨界電流と永久電流の減衰を測定し
た。その結果、7Tの磁界中で臨界電流550Aが得ら
れ、接続部を形成することなく同様にして形成したNJ
Sn超電導線の約60%と良好な値を示した。また、電
流値の減衰は#1定感度内(0,01l)pffl/時
間)では観測されず良好な超電導特性を有する接続部で
あることを確認した。また、同様にして作製した18本
のNb3Sn?B電導線の臨界電流のバラツキは20%
以内に収まった。
Regarding the Nb3Sn superconducting wire thus obtained, the attenuation of critical current and persistent current was measured in the same manner as in Example 1. As a result, a critical current of 550 A was obtained in a magnetic field of 7 T, and an NJ formed in the same manner without forming a connection part was obtained.
It showed a good value of about 60% of that of Sn superconducting wire. Furthermore, no attenuation of the current value was observed within the #1 constant sensitivity (0,01l) pffl/hour), confirming that the connection had good superconducting properties. In addition, 18 Nb3Sn? The variation in critical current of B conducting wire is 20%.
It was within the range.

実施例4 まず、Cuからなる安定化材マトリックス内部に、TI
を 1重量%添加したNbチューブ内にMnを10原子
%添加したA1合金線を充填したチューブ状Nbフィラ
メントが264本分布配置したNb3Alマルチ超電導
素線を2不作製した。
Example 4 First, TI was placed inside the stabilizer matrix made of Cu.
Two Nb3Al multi-superconducting strands were fabricated, in which 264 tubular Nb filaments filled with A1 alloy wire containing 10 atomic % of Mn were distributed in a Nb tube containing 1% of Mn by weight.

これらNb3 Alマルチ超電導素線端部の安定化材マ
トリックスを硝酸によって約70a+a溶かし、チュー
ブ状Nbフィラメントを露出させ、次いで露出させたN
bチューブの厚さの約40%を沸硝酸で溶した。
The stabilizer matrix at the ends of these Nb3Al multi-superconducting strands was dissolved by about 70a+a with nitric acid to expose the tubular Nb filament, and then the exposed Nb
b Approximately 40% of the thickness of the tube was dissolved with boiling nitric acid.

次に、実施例1と同様にチューブ状Nbフィラメントど
うしがよく混ざりあうように接触させて瑳り合わせて接
続部を形成し、この接続部に真空中で圧力と熱を加え(
450℃×45分)、隣接するチューブ状Nbフィラメ
ント間を固相拡散接合した。
Next, as in Example 1, the tubular Nb filaments are brought into contact with each other so as to mix well and are glued together to form a connection part, and pressure and heat are applied to this connection part in a vacuum (
(450°C x 45 minutes), solid-phase diffusion bonding was performed between adjacent tubular Nb filaments.

この後、接続部を含むNb3^1マルチ超電導素線全体
を加熱炉内に配置し、10−’ Torrの真空中にお
いてNb3 Alの生成温度である 950℃で30分
の後、700℃で約96時間熱処理を施し、超電導素線
本体におけるNbチューブとAIとを反応させてNb3
 A1層を形成するとともに、接続部における異なるチ
ューブ状Nbフィラメント間を生成するNb3 A1層
の成長によって繋げた。
After this, the entire Nb3^1 multi-superconducting wire including the connection part was placed in a heating furnace, and after 30 minutes at 950°C, which is the generation temperature of Nb3Al, in a vacuum of 10-' Torr, it was heated at 700°C for about 30 minutes. After 96 hours of heat treatment, the Nb tube in the superconducting strand body reacts with AI to form Nb3.
The A1 layer was formed and the different tubular Nb filaments at the connection were connected by growing a Nb3 A1 layer.

このようにして得たNb3 Alマルチ超電導線につい
ても実施例1と同様にして臨界電流と永久電流の減衰を
alll定した。その結果、7Tの磁界中で臨界電流3
00Aが得られ、接続部を形成することなく同様にして
形成)7たNb3 Alマルチ超電導線の約50%と良
好な値を示した。また、電流値の減衰は測定感度内(0
,01ppm/時間)では観測されず良好な超電導特性
を有する接続部であることを確認した。また、同様にし
て作製した10本のNb5A+超電導線の臨界電流のバ
ラツキは3026以内に収まった。
For the Nb3Al multi-superconducting wire thus obtained, the attenuation of the critical current and persistent current was determined in the same manner as in Example 1. As a result, the critical current is 3 in a 7T magnetic field.
00A was obtained, showing a good value of about 50% of that of the Nb3Al multi-superconducting wire (formed in the same manner without forming a connection part). In addition, the attenuation of the current value is within the measurement sensitivity (0
, 01 ppm/hour), confirming that the connection had good superconducting properties. Moreover, the variation in critical current of 10 Nb5A+ superconducting wires produced in the same manner was within 3026.

[発明の効果] 以上説明したように本発明によれば、Nb3SnやNb
3^lなどの化合物系超電導体を用いた超電導線を比較
的簡便に、再現性よく接続することが可能となり、かつ
接続部における超電導特性の低下も充分に抑制すること
が可能となる。
[Effects of the Invention] As explained above, according to the present invention, Nb3Sn and Nb
It becomes possible to connect superconducting wires using compound-based superconductors such as 3^l relatively easily and with good reproducibility, and it also becomes possible to sufficiently suppress deterioration of superconducting properties at the connection portion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のNb3Snマルチ超電導線
の接続工程を示す図、第2図は本発明の一実施例に使用
したNb3Snマルチ超電導線の構造を示す断面図、第
3図は第1図の接続工程における接続部の加圧・加熱工
程を説明するための図、第4図は本発明の一実施例によ
って接続した接続部の状態を模式的に示す図である。 1・・・・・・安定化材マトリックス、2・・・・・・
Nbチューブ、 3 ・・・ ・・Sn線、 5 ・・ ・・・チューブ状フィラメ ント、 ・・・・・Nb3 Sn層、 0・・・・・・Nb3 Snnマルチ超電水 素、 1・・・・・・接続部。
FIG. 1 is a diagram showing the connection process of an Nb3Sn multi-superconducting wire according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the structure of the Nb3Sn multi-superconducting wire used in an embodiment of the present invention, and FIG. FIG. 1 is a diagram for explaining the pressurizing and heating process of the connection part in the connection process, and FIG. 4 is a diagram schematically showing the state of the connection part connected according to an embodiment of the present invention. 1... Stabilizing material matrix, 2...
Nb tube, 3...Sn wire, 5...tubular filament,...Nb3 Sn layer, 0...Nb3 Snn multi-superelectric hydrogen, 1...・Connection part.

Claims (4)

【特許請求の範囲】[Claims] (1)内部に第1の化合物系超電導体材料が充填された
第2の化合物系超電導体材料からなるチューブ状フィラ
メントを銅を生成分とする安定化材中に1本または複数
本埋設した化合物系超電導線の接続端部における前記安
定化材をそれぞれ除去し、前記チューブ状フィラメント
をそれぞれ露出させる工程と、 これら露出されたチューブ状フィラメントどうしを重ね
合せて接続部を形成する工程と、 前記接続部に圧力と熱を加え隣接する前記チューブ状フ
ィラメント間を固相拡散接合する工程と、少なくとも前
記固相拡散接合された接続部に、前記第1および第2の
化合物系超電導体材料によって形成される化合物系超電
導体の生成温度における熱処理を施す工程と を経ることを特徴とする化合物系超電導線の接続方法。
(1) A compound in which one or more tubular filaments made of a second compound superconductor material filled with the first compound superconductor material are embedded in a stabilizing material containing copper as a component. removing the stabilizing materials at the connection ends of the system superconducting wire to expose the tubular filaments, stacking the exposed tubular filaments together to form a connection, and the connection. solid phase diffusion bonding between the adjacent tubular filaments by applying pressure and heat to the portions, and forming at least the solid phase diffusion bonded connection portions with the first and second compound superconductor materials. 1. A method for connecting compound-based superconducting wires, comprising the step of performing heat treatment at a temperature at which a compound-based superconductor is formed.
(2)前記露出させたチューブ状フィラメントの管壁の
一部を除去した後、前記接続部を形成することを特徴と
する請求項1記載の化合物系超電導線の接続方法。
(2) The method for connecting compound superconducting wires according to claim 1, wherein the connecting portion is formed after removing a portion of the exposed tube wall of the tubular filament.
(3)前記接続部に圧力を加える際に、前記第1の化合
物超電導体材料を前記チューブ状フィラメント外にはみ
ださせることを特徴とする請求項1記載の化合物系超電
導線の接続方法。
(3) The method for connecting compound superconducting wires according to claim 1, wherein the first compound superconductor material is caused to protrude outside the tubular filament when applying pressure to the connecting portion.
(4)前記熱処理工程において、前記接続部における化
合物系超電導体層の形成と、化合物系超電導線本体にお
ける化合物系超電導体層の形成とを同時に行うことを特
徴とする請求項1記載の化合物系超電導線の接続方法。
(4) The compound system according to claim 1, wherein in the heat treatment step, the formation of the compound system superconductor layer in the connection portion and the formation of the compound system superconductor layer in the compound system superconducting wire body are performed simultaneously. How to connect superconducting wires.
JP1015876A 1989-01-25 1989-01-25 How to connect compound superconducting wires Expired - Lifetime JP2848618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1015876A JP2848618B2 (en) 1989-01-25 1989-01-25 How to connect compound superconducting wires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1015876A JP2848618B2 (en) 1989-01-25 1989-01-25 How to connect compound superconducting wires

Publications (2)

Publication Number Publication Date
JPH02197017A true JPH02197017A (en) 1990-08-03
JP2848618B2 JP2848618B2 (en) 1999-01-20

Family

ID=11900993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1015876A Expired - Lifetime JP2848618B2 (en) 1989-01-25 1989-01-25 How to connect compound superconducting wires

Country Status (1)

Country Link
JP (1) JP2848618B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6543123B1 (en) 1999-04-20 2003-04-08 Composite Materials Technology, Inc. Process for making constrained filament niobium-based superconductor composite
US6836955B2 (en) 2000-03-21 2005-01-04 Composite Materials Technology, Inc. Constrained filament niobium-based superconductor composite and process of fabrication
US7146709B2 (en) 2000-03-21 2006-12-12 Composite Materials Technology, Inc. Process for producing superconductor
JP2007081244A (en) * 2005-09-15 2007-03-29 Institute Of Physical & Chemical Research METHOD FOR CONNECTING Nb3Al SUPER-CONDUCTION COIL
WO2010090023A1 (en) 2009-02-05 2010-08-12 株式会社 東芝 Superconductive conductor connecting method and superconductive coil
US8858738B2 (en) 2006-09-26 2014-10-14 Composite Materials Technology, Inc. Methods for fabrication of improved electrolytic capacitor anode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102154674B1 (en) * 2018-09-07 2020-09-10 (주)금룡테크 Method of bonding superconducting wire

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6543123B1 (en) 1999-04-20 2003-04-08 Composite Materials Technology, Inc. Process for making constrained filament niobium-based superconductor composite
US6836955B2 (en) 2000-03-21 2005-01-04 Composite Materials Technology, Inc. Constrained filament niobium-based superconductor composite and process of fabrication
US7146709B2 (en) 2000-03-21 2006-12-12 Composite Materials Technology, Inc. Process for producing superconductor
US7480978B1 (en) 2000-03-21 2009-01-27 Composite Materials Technology, Inc. Production of electrolytic capacitors and superconductors
JP2007081244A (en) * 2005-09-15 2007-03-29 Institute Of Physical & Chemical Research METHOD FOR CONNECTING Nb3Al SUPER-CONDUCTION COIL
US8858738B2 (en) 2006-09-26 2014-10-14 Composite Materials Technology, Inc. Methods for fabrication of improved electrolytic capacitor anode
WO2010090023A1 (en) 2009-02-05 2010-08-12 株式会社 東芝 Superconductive conductor connecting method and superconductive coil

Also Published As

Publication number Publication date
JP2848618B2 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
US7684839B2 (en) Connecting structure for magnesium diboride superconducting wire and a method of connecting the same
US4195199A (en) Superconducting composite conductor and method of manufacturing same
Takeuchi Nb/sub 3/Al conductors-rapid-heating, quenching and transformation process
JPH02197017A (en) Connecting method of compound-type superconductive wire
Murase et al. Multifilament niobium-tin conductors
US3489604A (en) Superconducting wire
JP4013335B2 (en) Nb3Sn compound superconductor precursor wire and method for manufacturing the same, Nb3Sn compound superconductor conductor manufacturing method, and Nb3Sn compound superconductor coil manufacturing method
JP2916214B2 (en) Superconducting wire connection method
JPS63216212A (en) Nb3sn-based superconductive wire and production of it
Randall et al. Fabrication and properties of multifilament Nb 3 Sn conductors
Fietz et al. Multifilamentary Nb 3 Sn conductor for fusion research magnets
JP3059570B2 (en) Superconducting wire and its manufacturing method
JP2861545B2 (en) Method for producing Nb-based compound superconducting coil
JPH0462767A (en) Connection of nb3sn superconductive wire
JP4534276B2 (en) Oxide superconducting wire connection method
JPS63164115A (en) Nb3sn compound superconductive wire
EP0169078A2 (en) Superconductor prepared from Nb3Sn compound
Steeves et al. Lap joint resistance of Nb 3 Sn cable terminations for the ICCS-HFTF 12 tesla coil program
JP3043831B2 (en) Method of manufacturing permanent current superconducting magnet
JPH01274318A (en) Manufacture of compound for ac superconductive wire
JPH04132109A (en) Compound superconducting wire
Kasuu et al. Development of a composite superconductor (Design-M) for research and development programs of the Large Helical Device
JPH0462766A (en) Connection of nb3sn superconductive wire
JPS63285810A (en) Manufacture of nb3sn type composite superconductor
JPS63216279A (en) Connecting method for superconductive wire