JPH0219694Y2 - - Google Patents

Info

Publication number
JPH0219694Y2
JPH0219694Y2 JP19269482U JP19269482U JPH0219694Y2 JP H0219694 Y2 JPH0219694 Y2 JP H0219694Y2 JP 19269482 U JP19269482 U JP 19269482U JP 19269482 U JP19269482 U JP 19269482U JP H0219694 Y2 JPH0219694 Y2 JP H0219694Y2
Authority
JP
Japan
Prior art keywords
excitation
capacitor
switch
rectifying
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19269482U
Other languages
Japanese (ja)
Other versions
JPS5997431U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19269482U priority Critical patent/JPS5997431U/en
Publication of JPS5997431U publication Critical patent/JPS5997431U/en
Application granted granted Critical
Publication of JPH0219694Y2 publication Critical patent/JPH0219694Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【考案の詳細な説明】 本考案は、低周波励磁方式の電磁流量計の励磁
回路の改良に関する。
[Detailed Description of the Invention] The present invention relates to an improvement in the excitation circuit of a low-frequency excitation type electromagnetic flowmeter.

一般に電磁流量計は、流体の流れ方向に対して
直角に磁界を与え、同時に流体流路中の電気的信
号の変化を検出し、これに基づいて流体の流量を
計測するように構成されている。最近の電磁流量
計は、商用電源周波数による交流励磁方式や直流
励磁方式に比して零点の安定性にすぐれている台
形波励磁や方形波励磁などと呼ばれている低周波
励磁方式のものが多く用いられている。従来の低
周波励磁方式による励磁回路の一例を第1図に示
す。第1図において、交流電源1はトランス2を
介して第1の整流平滑回路3aと第2の整流平滑
回路3bとに接続されている。第1の整流平滑回
路3aはダイオードDaと平滑コンデンサCaを有
し、交流電源1からの電圧を整流平滑して正の直
流電圧Va1を出力するもので、その出力端は第1
のスイツチ4aを介して電磁流量計の励磁コイル
5に接続されている。第2の整流平滑回路3bは
ダイオードDbと平滑コンデンサCbを有し、交流
電源1からの電圧を整流平滑して負の直流電圧
Vb1を出力するもので、その出力端は第2のスイ
ツチ4bを介して前記励磁コイル5に接続されて
いる。スイツチ4a,4bは第2図の波形図イ,
ロに示すような低周波の駆動パルスPa,Pbに同
期してオンオフし、スイツチ4aがオンで4bが
オフのとき励磁コイル5に正方向の励磁電流Ioが
流れ、スイツチ4aがオフで、4bがオンのとき
励磁コイル5に逆方向の励磁電流Ioが流れる。こ
の結果励磁コイル5には第2図ハに示すように、
周期的に極性が変わる低周波の励磁電流Ioが流れ
る。なおスイツチ4a,4bにそれぞれ並列に接
続されたダイオード6a,6bはスイツチ4a,
4bがオフになつたとき前記励磁コイル5に貯え
られているエネルギを平滑コンデンサCa,Cbに
吸収させるためのものである。
Generally, an electromagnetic flowmeter is configured to apply a magnetic field perpendicular to the fluid flow direction, simultaneously detect changes in electrical signals in the fluid flow path, and measure the fluid flow rate based on this. . Recent electromagnetic flowmeters use low-frequency excitation methods, such as trapezoidal wave excitation and square wave excitation, which have superior zero point stability compared to AC excitation methods and DC excitation methods using commercial power supply frequencies. It is often used. An example of an excitation circuit using a conventional low frequency excitation method is shown in FIG. In FIG. 1, an AC power source 1 is connected via a transformer 2 to a first rectifying and smoothing circuit 3a and a second rectifying and smoothing circuit 3b. The first rectifying and smoothing circuit 3a has a diode Da and a smoothing capacitor Ca, and rectifies and smoothes the voltage from the AC power supply 1 to output a positive DC voltage Va 1.
It is connected to the excitation coil 5 of the electromagnetic flowmeter via the switch 4a. The second rectifying and smoothing circuit 3b has a diode Db and a smoothing capacitor Cb, and rectifies and smoothes the voltage from the AC power supply 1 to produce a negative DC voltage.
It outputs Vb 1 , and its output end is connected to the excitation coil 5 via the second switch 4b. The switches 4a and 4b are waveform diagram A in FIG.
It turns on and off in synchronization with the low-frequency drive pulses Pa and Pb as shown in FIG. When is on, an excitation current Io in the opposite direction flows through the excitation coil 5. As a result, the excitation coil 5 has the following properties as shown in FIG.
A low-frequency excitation current Io whose polarity changes periodically flows. Note that the diodes 6a and 6b connected in parallel to the switches 4a and 4b are connected to the switches 4a and 4b, respectively.
This is to cause the smoothing capacitors Ca and Cb to absorb the energy stored in the excitation coil 5 when the excitation coil 4b is turned off.

ところで、励磁電流Ioは第2図ハに示すよう
に、スイツチ4a,4bのオンオフの切換時に励
磁コイル5の影響で波形の立上りおよび立下りの
部分で遅れを伴つたのち一定値となる。立上りお
よび立下りの応答は直流電圧Va1,Vb1の大きさ
と平滑コンデンサCa,Cbの容量で決まり、Va1
Vb1が小さい場合およびCa,Cbの容量が大きい
場合に立上りおよび立下りの応答が緩やかにな
る。そして立上りと立下りの応答はできるだけ速
くしたいが、第1図の回路では直流電圧Va1
Vb1が励磁電流Ioと励磁コイル5の抵抗Rとの積
となり小さく、また平滑コンデンサCa,Cbの容
量も電源リツプルを小さくするため大きくしなけ
ればならず、立上りと立下りの応答を速くするこ
とはできなかつた。
By the way, as shown in FIG. 2C, the exciting current Io reaches a constant value after being delayed at the rising and falling portions of the waveform due to the influence of the exciting coil 5 when the switches 4a and 4b are turned on and off. The rising and falling responses are determined by the magnitudes of the DC voltages Va 1 and Vb 1 and the capacitances of the smoothing capacitors Ca and Cb .
When Vb 1 is small and when the capacitance of Ca and Cb is large, the rising and falling responses become gentle. We want to make the rise and fall responses as fast as possible, but in the circuit shown in Figure 1, the DC voltages Va 1 ,
Vb 1 is the product of the excitation current Io and the resistance R of the excitation coil 5 and is small, and the capacitance of the smoothing capacitors Ca and Cb must be increased to reduce power supply ripples, which speeds up the rise and fall responses. I couldn't do that.

本考案は、第1、第2の整流平滑回路の出力端
子と第1、第2のスイツチとの間にそれぞれダイ
オードを介して容量の小さい第1、第2のコンデ
ンサを接続することによつて、リツプルが小さ
く、しかも立上り、立下りの応答の速い励磁電流
が得られる電磁流量計の励磁回路を実現したもの
である。
The present invention is achieved by connecting first and second capacitors with small capacitances via diodes between the output terminals of the first and second rectifying and smoothing circuits and the first and second switches, respectively. , we have realized an excitation circuit for an electromagnetic flowmeter that can provide an excitation current with small ripples and quick rise and fall responses.

第3図は本考案励磁回路の一実施例を示す接続
図である。第3図において第1図の従来例と異る
ところは、第1の整流平滑回路3aの出力端に逆
流防止用のダイオード8aを介して容量の小さい
第1のコンデンサ7aを接続し、かつコンデンサ
7Aaにスイツチ4aと励磁コイル5の直列回路
を並列に接続した点と、第2の整流平滑回路3b
の出力端に逆流防止用のダイオード8bを介して
容量の小さい第2のコンデンサ7bを接続し、か
つコンデンサ7bにスイツチ4bと前記励磁コイ
ル5との直列回路を並列に接続した点である。
FIG. 3 is a connection diagram showing one embodiment of the excitation circuit of the present invention. The difference between FIG. 3 and the conventional example shown in FIG. 1 is that a first capacitor 7a with a small capacitance is connected to the output terminal of the first rectifying and smoothing circuit 3a via a diode 8a for preventing backflow, and The point where the series circuit of switch 4a and excitation coil 5 is connected in parallel to 7Aa, and the second rectifying and smoothing circuit 3b
A second capacitor 7b with a small capacitance is connected to the output terminal of the capacitor 7b via a diode 8b for preventing backflow, and a series circuit of the switch 4b and the excitation coil 5 is connected in parallel to the capacitor 7b.

このように構成した本考案回路の動作を第4図
の波形図を参照して以下に説明する。第4図にお
いて、イは駆動パルスPaの波形、ロは駆動パル
スPbの波形、ハはスイツチ4aの動作波形、ニ
はスイツチ4bの動作波形、ホは励磁電流Ioの波
形、ヘは第1の整流平滑回路3aの出力Va1の波
形、トはコンデンサ7aの両端電圧Va2の波形、
チは第2の整流平滑回路3bの出力Vb1の波形、
リはコンデンサ7bの両端電圧Vb2の波形であ
る。
The operation of the circuit of the present invention constructed in this way will be explained below with reference to the waveform diagram of FIG. In Fig. 4, A is the waveform of the drive pulse Pa, B is the waveform of the drive pulse Pb, C is the operating waveform of the switch 4a, D is the operating waveform of the switch 4b, E is the waveform of the exciting current Io, and F is the first waveform. The waveform of the output Va 1 of the rectifying and smoothing circuit 3a is the waveform of the voltage Va 2 across the capacitor 7a,
H is the waveform of the output Vb 1 of the second rectifying and smoothing circuit 3b,
2 is the waveform of the voltage Vb 2 across the capacitor 7b.

いまスイツチ4aがオン、スイツチ4bがオフ
の状態では励磁コイル5に一定値の励磁電流Ioが
正方向(図の矢印方向)に流れている。この状態
でスイツチ4aがオフになると励磁コイル5に流
れている電流はダイオード6bを通つて流れ、励
磁コイル5に貯えられているエネルギをコンデン
サ7bに移動させる。このときの応答は励磁コイ
ル5のインダクタンスとコンデンサ7bの容量と
の共振周波数で決まり、コンデンサ7bの容量が
小さいので正方向の励磁電流Ioの立下りが速くな
る。次にスイツチ4bをオンにすると、励磁コイ
ル5にはコンデンサ7bに貯えたエネルギが戻さ
れ、逆方向の励磁電流Ioが立上る。この立上りも
励磁コイル5のインダクタンスとコンデンサ7b
の容量で決まり速くなる。そして定常状態になる
とダイオード8bがオンとなり、励磁コイル5に
は第2の整流平滑回路3bの出力電圧Vb1によつ
て一定値の励磁電流が逆方向に供給される。この
状態でスイツチ4bをオフにすると励磁コイル5
に流れている電流がダイオード6aを通つて流
れ、励磁コイル5に貯えられたエネルギを容量の
小さいコンデンサ7aに移動させる。このときの
応答は励磁コイル5のインダクタンスとコンデン
サ7aの容量とで決まり、逆方向の励磁電流Ioと
立下りが速くなる。次にスイツチ4aをオンにす
ると、励磁コイル5にはコンデンサ7aに貯えら
れたエネルギが戻され、正方向の励磁電流Ioが立
上る。この立上りも励磁コイル5のインダクタン
スとコンデンサ7aの容量で決まり速くなる。定
常状態になるとダイオード8aがオンとなり、励
磁コイル5には第1の整流平滑回路3aの出力電
圧Va1によつて一定値の励磁電流Ioが正方向に供
給される。このようにして励磁コイル5には周期
的に極性の変わる低周波の励磁電流Ioが流れる。
When the switch 4a is on and the switch 4b is off, a constant excitation current Io is flowing through the excitation coil 5 in the positive direction (in the direction of the arrow in the figure). When the switch 4a is turned off in this state, the current flowing in the exciting coil 5 flows through the diode 6b, and the energy stored in the exciting coil 5 is transferred to the capacitor 7b. The response at this time is determined by the resonance frequency of the inductance of the excitation coil 5 and the capacitance of the capacitor 7b, and since the capacitance of the capacitor 7b is small, the positive excitation current Io falls quickly. Next, when the switch 4b is turned on, the energy stored in the capacitor 7b is returned to the excitation coil 5, and an excitation current Io in the opposite direction rises. This rise also depends on the inductance of the excitation coil 5 and the capacitor 7b.
The speed is determined by the capacity. When the steady state is reached, the diode 8b is turned on, and a constant value of excitation current is supplied to the excitation coil 5 in the opposite direction by the output voltage Vb1 of the second rectifying and smoothing circuit 3b. When the switch 4b is turned off in this state, the excitation coil 5
The current flowing through the diode 6a flows through the diode 6a, transferring the energy stored in the excitation coil 5 to the capacitor 7a, which has a small capacity. The response at this time is determined by the inductance of the excitation coil 5 and the capacitance of the capacitor 7a, and the excitation current Io in the opposite direction and falls quickly. Next, when the switch 4a is turned on, the energy stored in the capacitor 7a is returned to the excitation coil 5, and an excitation current Io in the positive direction rises. This rise is also determined by the inductance of the excitation coil 5 and the capacitance of the capacitor 7a and becomes faster. When the steady state is reached, the diode 8a is turned on, and a constant value of exciting current Io is supplied to the exciting coil 5 in the positive direction by the output voltage Va 1 of the first rectifying and smoothing circuit 3a. In this way, a low-frequency excitation current Io whose polarity changes periodically flows through the excitation coil 5.

なお定常状態における第1、第2の整流平滑回
路3a,3bの出力電圧Va1,Va2の値は、励磁
電流Ioと励磁コイル5の抵抗Rとの積(IoxR)
と、ダイオード8a,8bの順方向電圧Vdとの
和となる。また定常状態における励磁電流Ioの値
は交流電源1の電源電圧を制御する等により、安
定化されている。この場合交流電源1としては交
直両用形のスイツチングレギユレータ等を有する
ものが用いられる。また第1、第2のスイツチ4
a,4bとしてトランジスタを用いる場合には、
第1、第2のコンデンサ7a,7bに充電される
電圧が高くなるので、第3図の回路では高耐圧、
高電流用のPNP形トランジスタを用いる必要が
ある。また第5図に示すようにトランス2の2次
巻線を独立させて励磁コイル5のコモン側に第
1、第2のスイツチ4a,4bを設けるようにす
れば、スイツチ4a,4bとして高耐圧、高電流
用のNPN形トランジスタQ1,Q2を用いることが
できる。しかも高耐圧、高電流用のPNP形トラ
ンジスタは高価で入手が難しいのに対し、高耐
圧、高電流用のNPN形トランジスタは安価で入
手が容易となる利点がある。なお第5図におい
て、Q3,Q4はQ1,Q2とそれぞれダーリントン接
続されたトランジスタである。さらに第6図に示
すように第1、第2の整流平滑回路3a,3bの
ダイオードDa,Dbおよびダイオード8a,8b
も励磁コイル5のコモン側に設ければ、トランス
2のシールドSを通して流れるアーム電流を減少
させることができる。
Note that the values of the output voltages Va 1 and Va 2 of the first and second rectifying and smoothing circuits 3a and 3b in a steady state are the product (IoxR) of the excitation current Io and the resistance R of the excitation coil 5.
and the forward voltage Vd of the diodes 8a and 8b. Further, the value of the excitation current Io in the steady state is stabilized by controlling the power supply voltage of the AC power supply 1, etc. In this case, as the AC power supply 1, one having a switching regulator or the like for both AC and DC use is used. In addition, the first and second switches 4
When using transistors as a and 4b,
Since the voltage charged to the first and second capacitors 7a and 7b becomes higher, the circuit of FIG.
It is necessary to use a high current PNP type transistor. Furthermore, as shown in FIG. 5, if the secondary winding of the transformer 2 is made independent and the first and second switches 4a and 4b are provided on the common side of the excitation coil 5, the switches 4a and 4b can be used as high withstand voltage switches. , high current NPN transistors Q 1 and Q 2 can be used. Moreover, PNP transistors for high voltage and high current use are expensive and difficult to obtain, whereas NPN transistors for high voltage and high current use have the advantage of being inexpensive and easy to obtain. In FIG. 5, Q 3 and Q 4 are transistors that are Darlington connected to Q 1 and Q 2 , respectively. Furthermore, as shown in FIG.
If it is also provided on the common side of the excitation coil 5, the arm current flowing through the shield S of the transformer 2 can be reduced.

以上説明したように本考案励磁回路において
は、第1,第2の整流平滑回路と励磁電流切換用
の第1、第2のスイツチとの間に容量の小さい第
1、第2のコンデンサをそれぞれ設け、励磁電流
の立下り時励磁コイルに貯えられたエネルギを前
記コンデンサに移動させ、立上り時には前記コン
デンサに貯えたエネルギを励磁コイルに戻すよう
にしているので、励磁電流の立上り、立下りの応
答を速くすることができ、しかも整流平滑回路の
平滑コンデンサの容量は大きいままでよいので電
源リツプルも充分に小さくできる。
As explained above, in the excitation circuit of the present invention, first and second capacitors of small capacitance are connected between the first and second rectifying and smoothing circuits and the first and second switches for switching the excitation current, respectively. When the excitation current falls, the energy stored in the excitation coil is transferred to the capacitor, and when the excitation current rises, the energy stored in the capacitor is returned to the excitation coil, so that the response to the rise and fall of the excitation current is In addition, since the capacity of the smoothing capacitor in the rectifying and smoothing circuit remains large, the power supply ripple can be sufficiently reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の励磁回路の一例を示す接続図、
第2図はその動作説明のための波形図、第3図は
本考案励磁回路の一実施例を示す接続図、第4図
はその動作説明のための波形図、第5図および第
6図は本考案励磁回路の他の実施例を示す接続図
である。 1……交流電源、2……トランス、3a,3b
……整流平滑回路、4a,4b……スイツチ、5
……励磁コイル、6a,6b……ダイオード、7
a,7b……容量の小さいコンデンサ、8a,8
b……逆流防止用ダイオード、Q1,Q2……高耐
圧、高電流用のNPN形トランジスタ。
Figure 1 is a connection diagram showing an example of a conventional excitation circuit.
Fig. 2 is a waveform diagram for explaining its operation, Fig. 3 is a connection diagram showing one embodiment of the excitation circuit of the present invention, Fig. 4 is a waveform diagram for explaining its operation, and Figs. 5 and 6. FIG. 2 is a connection diagram showing another embodiment of the excitation circuit of the present invention. 1...AC power supply, 2...Transformer, 3a, 3b
... Rectifier smoothing circuit, 4a, 4b ... Switch, 5
... Excitation coil, 6a, 6b ... Diode, 7
a, 7b...capacitor with small capacity, 8a, 8
b...Reverse current prevention diode, Q 1 , Q 2 ... NPN type transistor for high voltage and high current.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 交流電源を整流平滑して正の直流電圧を得る第
1の整流平滑回路と、前記交流電源を整流平滑し
て負の直流電圧を得る第2の整流平滑回路と、前
記第1の整流平滑回路の出力端にダイオードを介
して接続された容量の小さい第1のコンデンサ
と、前記第2の整流平滑回路の出力端にダイオー
ドを介して接続された容量の小さい第2のコンデ
ンサと、前記第1のコンデンサに第1のスイツチ
と電磁流量計の励磁コイルの直列回路を並列に接
続する手段と、前記第2のコンデンサに第2のス
イツチと前記励磁コイルとの直列回路を並列に接
続する手段と、前記第1のスイツチに並列で、か
つ第1のスイツチを流れる電流とは逆方向の電流
が流れる向きに接続されたダイオードと、前記第
2のスイツチに並列で、かつ第2のスイツチを流
れる電流とは逆方向の電流が流れる向きに接続さ
れたダイオードとを有する電磁流量計の励磁回
路。
a first rectifying and smoothing circuit that rectifies and smoothes an AC power source to obtain a positive DC voltage; a second rectifying and smoothing circuit that rectifies and smoothes the AC power source to obtain a negative DC voltage; and the first rectifying and smoothing circuit. a first capacitor with a small capacitance connected via a diode to the output terminal of the second rectifying and smoothing circuit; a second capacitor with a small capacitance connected via a diode to the output terminal of the second rectifying and smoothing circuit; means for connecting a series circuit of a first switch and an excitation coil of the electromagnetic flowmeter in parallel to the capacitor; and means for connecting a series circuit of a second switch and the excitation coil to the second capacitor in parallel. , a diode connected in parallel to the first switch in a direction in which a current flows in a direction opposite to that of the current flowing through the first switch; and a diode connected in parallel to the second switch and flowing through the second switch An excitation circuit for an electromagnetic flowmeter that includes a diode connected in the direction in which current flows in the opposite direction to the current.
JP19269482U 1982-12-20 1982-12-20 Excitation circuit of electromagnetic flowmeter Granted JPS5997431U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19269482U JPS5997431U (en) 1982-12-20 1982-12-20 Excitation circuit of electromagnetic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19269482U JPS5997431U (en) 1982-12-20 1982-12-20 Excitation circuit of electromagnetic flowmeter

Publications (2)

Publication Number Publication Date
JPS5997431U JPS5997431U (en) 1984-07-02
JPH0219694Y2 true JPH0219694Y2 (en) 1990-05-30

Family

ID=30414627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19269482U Granted JPS5997431U (en) 1982-12-20 1982-12-20 Excitation circuit of electromagnetic flowmeter

Country Status (1)

Country Link
JP (1) JPS5997431U (en)

Also Published As

Publication number Publication date
JPS5997431U (en) 1984-07-02

Similar Documents

Publication Publication Date Title
US5315498A (en) Apparatus providing leading leg current sensing for control of full bridge power supply
US20040218405A1 (en) Dc-to-dc converter
JPH04217860A (en) Dc voltage blocking type converter
US6301129B1 (en) Switching power supply circuit
US9397575B2 (en) Switching power supply device
JPH0520991B2 (en)
JPH0219694Y2 (en)
JP3395281B2 (en) Variable frequency oscillation circuit for switching power supply
KR100846943B1 (en) Unregulated dc-dc converter having synchronous rectification with efficient gate drives
JPS6130961A (en) Switching control type power source circuit
JPH0229174B2 (en) DENJIRYURYOKEINOREIJIKAIRO
JP3174591B2 (en) Pulse width modulation type alternating current circuit
JPH0716177Y2 (en) DC stabilized power supply with steep output rising characteristics
JPS6029240Y2 (en) Transistor drive circuit
JPH0231913Y2 (en)
JPS5910945Y2 (en) voltage isolator
JPS63302761A (en) Dc-dc converter
JPH0423515B2 (en)
JPS6217735Y2 (en)
JPH0389850A (en) Power source
JP2850365B2 (en) Switching power supply
JP3235245B2 (en) Inverter device
JPS5853790Y2 (en) Kouatsuhatsu Seisouchi
JPH0330894Y2 (en)
JPS6145524Y2 (en)