JPH02196909A - Method for measuring shape of outermost surface of substance having transparent film - Google Patents

Method for measuring shape of outermost surface of substance having transparent film

Info

Publication number
JPH02196909A
JPH02196909A JP1896289A JP1896289A JPH02196909A JP H02196909 A JPH02196909 A JP H02196909A JP 1896289 A JP1896289 A JP 1896289A JP 1896289 A JP1896289 A JP 1896289A JP H02196909 A JPH02196909 A JP H02196909A
Authority
JP
Japan
Prior art keywords
ultraviolet light
substance
measurement
measured
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1896289A
Other languages
Japanese (ja)
Inventor
Noriaki Fujiwara
憲明 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1896289A priority Critical patent/JPH02196909A/en
Publication of JPH02196909A publication Critical patent/JPH02196909A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the shape of the outermost surface of a substance having a transparent film by making the wavelength of measuring light in an ultraviolet area and sticking a resist film to the outermost surface of the substance before measurement. CONSTITUTION:The resist film 54 is stuck to the outermost surface of the substance before measurement. Coherent ultraviolet light radiated from an ultraviolet light source 1 is converted into the collimated beam of light by an optical system 2 and divided into 1st and 2nd ultraviolet light beams by a beam splitter 3. The 1st ultraviolet light beam is reflected on the surface of a plane mirror 4 and returns to the beam splitter 3. The 2nd ultraviolet light beam irradiates the substance to be measured 5, is reflected on the surface thereof and returns to the beam splitter 3. These ultraviolet light beams interfere with each other to cause interference fringe. The interference fringe is enlarged by an optical system 6, image-picked up by a television camera 10 for ultraviolet photographing and inputted in a microcomputer 12. The microcomputer 12 decides the position controlled variable of the plane mirror 4 and gives a driving signal to a piezo-electric element 17 so as to control the position of the plane mirror 4. Thus, the shape of the surface of the substance to be measured 5 is accurately measured with no contact. After measurement, the resist film is solved and removed by using resist removing solution.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、透明膜を有する物体の最表面形状測定方法に
関するものであり、例えば表面にシリコン酸化膜を備え
る半導体の最表面形状の測定仁用いられるものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for measuring the outermost surface shape of an object having a transparent film, for example, a method for measuring the outermost surface shape of a semiconductor having a silicon oxide film on the surface. It is used.

[従来の技術] 最近の加ニレベルの向上に伴い、物体の表面形状の測定
には高い精度が要求されるようになってきている0例え
ば、旋盤や研削盤を用いた高精度加工でも、その表面粗
さはRmax= 0.02μ−のレベルに達している。
[Prior art] With the recent improvement in the level of cutting, high accuracy has become required for measuring the surface shape of objects. For example, even in high precision machining using lathes and grinders, The surface roughness reaches a level of Rmax = 0.02μ-.

このことは物体の表面形状測定において、ナノメートル
オーダーの分解能を要求されるということである。また
、半導体や光学レンズなどの表面形状の測定の場合には
、精度が高いということ以外に、非接触測定であること
が重要な条件となっている。
This means that nanometer-order resolution is required in measuring the surface shape of an object. Furthermore, in the case of measuring the surface shape of semiconductors, optical lenses, etc., in addition to high accuracy, non-contact measurement is an important condition.

従来、表面形状を精度良く測定するためには、電子顕微
鏡が広く用いられている。これは測定面に電子線を照射
して、その照射点から発生する2次電子又は反射電子に
より像を形成する装置であるが、2次電子又は反射電子
の発生効率を高めるために、非導電体であれば表面に金
などを蒸着する必要がある。したがって、測定そのもの
は非接触的であっても、表面に金を蒸着するということ
は破壊検査を行うことになる。また、表面粗さ測定の分
野においては、触針を用いた表面粗さ計が広く用いられ
ている。この測定方法では、・精度的にはナノメートル
オーダーの測定も可能であるが、触針を用いて表面を引
っかきながら測定するため電子1m微鏡の場合と同じく
破壊測定となる。
Conventionally, electron microscopes have been widely used to accurately measure surface shapes. This is a device that irradiates the measurement surface with an electron beam and forms an image using secondary electrons or reflected electrons generated from the irradiation point. If it were a body, it would be necessary to deposit gold or other material on the surface. Therefore, even if the measurement itself is non-contact, depositing gold on the surface means performing a destructive test. Furthermore, in the field of surface roughness measurement, surface roughness meters using stylus are widely used. With this measurement method, it is possible to measure on the order of nanometers in terms of accuracy, but since the measurement is performed while scratching the surface using a stylus, it is a destructive measurement as in the case of the electronic 1m microscope.

そこで、最近では、光の干渉を用いた高精度の非接触式
の表面形状測定装置が開発されており、高精度の金型、
光学レンズ、半導体ウェハー等の表面形状を測定するな
めに使用されている。
Therefore, recently, highly accurate non-contact surface shape measuring equipment using optical interference has been developed.
It is used to measure the surface shape of optical lenses, semiconductor wafers, etc.

[発明が解決しようとする課題] ところが、光の干渉を用いた表面形状測定法においては
、物体の最表面に薄い透明膜があると、測定用の光が透
明膜を透過してしまい、測定できないという問題がある
。透明膜の厚さが十分に大きい場合には、透明膜の最表
面での反射光と、それ以外の反射光とを比較的容易に区
別できるので、干渉測定に影響を及ぼさないが、透明膜
の厚さが数ミクロン又はそれ以下の場合には、透明膜の
上面での反射光と透明膜の下面での反射光とを区別する
ことが困難となり、さらに悪いことには、透明膜の上面
と下面との間で多重反射が生じるために、反射回数によ
って反射光の光路長が異なり、光を用いた干渉測定法で
は、最表面の形状測定が困難になるという問題がある。
[Problem to be solved by the invention] However, in the surface profile measurement method using optical interference, if there is a thin transparent film on the outermost surface of the object, the measurement light will pass through the transparent film, making the measurement difficult. The problem is that it can't be done. If the thickness of the transparent film is sufficiently large, it is relatively easy to distinguish the light reflected from the outermost surface of the transparent film from the other reflected light, so it does not affect interference measurement. If the thickness of the transparent film is several microns or less, it becomes difficult to distinguish between the light reflected from the top surface of the transparent film and the light reflected from the bottom surface of the transparent film. Since multiple reflections occur between the surface and the lower surface, the optical path length of the reflected light differs depending on the number of reflections, which makes it difficult to measure the shape of the outermost surface using light-based interference measurement.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、表面に透明膜を有する物体の最
表面形状を光干渉法により測定可能とする測定方法を提
供することにある。
The present invention has been made in view of these points, and its purpose is to provide a measuring method that enables the outermost surface shape of an object having a transparent film on its surface to be measured by optical interference method. be.

[課題を解決するための手段] 本発明にあっては、上記の課題を解決するために、第1
図に示すように、表面に透明膜を有する物体の最表面形
状を光干渉法により測定する測定方法において、測定光
の波長を紫外線域とし、測定前に物体の最表面にレジス
l−膜54を付ける工程と、測定後にレジスト膜54を
剥離液により溶解・除去する工程とを含むことを特徴と
するものである。
[Means for Solving the Problems] In the present invention, in order to solve the above problems, the first
As shown in the figure, in a measurement method in which the topmost surface shape of an object having a transparent film on its surface is measured by optical interferometry, the wavelength of the measurement light is in the ultraviolet range, and a resist l-film 5 is applied to the topmost surface of the object before measurement. The method is characterized in that it includes a step of attaching the resist film 54 and a step of dissolving and removing the resist film 54 with a stripping solution after the measurement.

[作用] 本発明にあっては、このように、測定光の波長を紫外線
域とし、測定前に物体の最表面にレジスト膜54を付け
るようにしたので、レジスト[54が紫外線に対して不
透明となることにより、表面に透明膜を有する物体の最
表面形状を測定することが可能となる。しかも、測定後
にレジスト膜54を剥離液により溶解・除去するように
したので、物体の表面形状測定を非破壊的に行うことが
できるものである。
[Function] In this way, in the present invention, the wavelength of the measurement light is in the ultraviolet range, and the resist film 54 is applied to the outermost surface of the object before measurement, so that the resist film 54 is opaque to ultraviolet rays. By doing so, it becomes possible to measure the topmost surface shape of an object having a transparent film on its surface. Moreover, since the resist film 54 is dissolved and removed using a stripping solution after the measurement, the surface shape of the object can be measured non-destructively.

[実施例] 第1図は本発明の測定対象となる半導体ウェハーの要部
拡大断面図である。この構造では、シリコン基板50の
上に、厚さが1000〜8000人のシリコン酸化JI
G!51、厚さが4000人のポリシリコン膜52、及
び厚さが5000〜8000人のシリコン酸化膜53が
形成されている。半導体ウェハーの最表面に設けられて
いるシリコン酸化膜53の光学特性は、可視光領域がら
紫外線領域にわたって、はぼ透明体となる。このため、
光を用いた干渉法では、測定光がシリコン酸化膜53の
中に入射し、シリコン酸化膜53の上面と下面の間で多
重反射を生じる。そして、その反射回数によって反射光
の光路長が異なることになり、光を用いた干渉法では、
測定が困難となる。そこで、本実施例では、シリコン酸
化膜53の上面に、レジスト膜54を付ける。レジスト
Jg!54としては、半導体の製造工程において用いら
れるフォl〜レジストを用いれば良い。
[Example] FIG. 1 is an enlarged sectional view of a main part of a semiconductor wafer that is a measurement target of the present invention. In this structure, silicon oxide JI with a thickness of 1,000 to 8,000 is placed on the silicon substrate 50.
G! 51, a polysilicon film 52 having a thickness of 4,000 wafers, and a silicon oxide film 53 having a thickness of 5,000 to 8,000 wafers. The optical properties of the silicon oxide film 53 provided on the outermost surface of the semiconductor wafer are almost transparent from the visible light region to the ultraviolet light region. For this reason,
In the interferometry method using light, measurement light enters the silicon oxide film 53 and multiple reflections occur between the upper and lower surfaces of the silicon oxide film 53. The optical path length of the reflected light varies depending on the number of reflections, and in interferometry using light,
Measurement becomes difficult. Therefore, in this embodiment, a resist film 54 is provided on the upper surface of the silicon oxide film 53. Resist Jg! As the material 54, a photoresist used in a semiconductor manufacturing process may be used.

これで測定準備が完了し、次に第2図に示す測定装置に
より表面形状の測定を行う、第2図に示す装置は、非接
触型の表面形状測定装置であり、光の干渉縞を用いて表
面形状を非接触的に測定するものである0図中、5は上
述の第1図に示す方法で準備された被測定物であり、そ
の表面にはレジストR54が表面形状に沿って設けられ
ている。
The preparation for measurement is now complete, and the next step is to measure the surface shape using the measuring device shown in Figure 2.The device shown in Figure 2 is a non-contact type surface shape measuring device that uses interference fringes of light. In Figure 0, 5 is the object to be measured prepared by the method shown in Figure 1 above, and a resist R54 is provided on the surface along the surface shape. It is being

レジスト膜54は僅かに色が着いており、可視光領域で
は透過率が高いが、波長が300ni〜400nI11
の紫外線域では透過率は低くなる。このため、レジスト
膜54の表面における紫外線の反射光が他の反射光に比
べて強くなり、光干渉法による表面形状測定が可能とな
る。
The resist film 54 is slightly colored and has high transmittance in the visible light region, but the wavelength is 300ni to 400nI11
The transmittance is low in the ultraviolet range. Therefore, the reflected light of the ultraviolet rays on the surface of the resist film 54 becomes stronger than other reflected light, making it possible to measure the surface shape by optical interferometry.

以下、この測定装置の原理について説明する。The principle of this measuring device will be explained below.

紫外線光源1から放射された可干渉な紫外線光はコリメ
ータレンズよりなる光学系2により平行光線に変換され
、ビームスプリッタ3により第1及び第2の紫外線光に
分割される。第1の紫外線光は平面鏡4の表面にて反射
されてビームスプリッタ3に戻る。第2の紫外線光は被
測定物5に照射され、被測定物5の表面にて反射されて
ビームスプリッタ3に戻る。平面鏡4からビームスプリ
ッタ3に戻った紫外線光と、被測定物5からビームスプ
リッタ3に戻った紫外線光は干渉し、干渉縞を生じる。
Coherent ultraviolet light emitted from an ultraviolet light source 1 is converted into parallel light by an optical system 2 comprising a collimator lens, and is split into first and second ultraviolet light by a beam splitter 3. The first ultraviolet light is reflected by the surface of the plane mirror 4 and returns to the beam splitter 3. The second ultraviolet light is irradiated onto the object to be measured 5, reflected from the surface of the object to be measured 5, and returned to the beam splitter 3. The ultraviolet light that has returned to the beam splitter 3 from the plane mirror 4 and the ultraviolet light that has returned to the beam splitter 3 from the object to be measured 5 interfere with each other, producing interference fringes.

被測定物5から反射される紫外線光の光路長は、被測定
物5の表゛面形状に応じて異なるので、干渉縞は被測定
物5の表面形状を示す等高線として現れる。紫外線光の
波長をλとすると、隣接する等高線はλ/2の高さ変化
を表°す、この干渉縞を光学系6により拡大して紫外線
撮影用のテレビカメラ10により撮像し、画像入力ボー
ド11を介してマイクロコンピュータ12に入力する。
Since the optical path length of the ultraviolet light reflected from the object to be measured 5 differs depending on the surface shape of the object to be measured 5, the interference fringes appear as contour lines indicating the surface shape of the object to be measured 5. When the wavelength of ultraviolet light is λ, adjacent contour lines represent a height change of λ/2.This interference fringe is magnified by the optical system 6 and imaged by the television camera 10 for ultraviolet photography, and the image input board 11 to the microcomputer 12.

干渉縞の様子はモニターテレビ13又はマイクロコンピ
ュータ12のCRT14により観察され、干渉縞が適度
に発生ずるように平面鏡4の位置制御を行う、マイクロ
コンピュータ12は、CRT14の一走査線に含まれる
等高線が適度な密度となるように、平面鏡4の位置制御
量を決定し、D/A変換ボード15、アンプ16を介し
てピエゾ素子17に駆動信号を与えて、平面鏡4の位置
制御を行う、これによって、被測定物5の表面形状を非
接触的に精密測定することができる。
The state of the interference fringes is observed by the monitor television 13 or the CRT 14 of the microcomputer 12, and the microcomputer 12 controls the position of the plane mirror 4 so that the interference fringes are appropriately generated. The position control amount of the plane mirror 4 is determined so that the density is appropriate, and a drive signal is given to the piezo element 17 via the D/A conversion board 15 and the amplifier 16 to control the position of the plane mirror 4. , the surface shape of the object to be measured 5 can be precisely measured in a non-contact manner.

測定が終了すれば、酸又は有機溶剤よりなるレジスト剥
離液により、レジストl1154を溶解・除去する0本
発明では、このレジスト膜54の除去に際して、被測定
物5にダメージを与える恐れはない。従来例のように、
被測定物5の表面に金蒸着膜を付けると、金魚@膜を溶
解・除去できるのは王水(硝酸1:塩13)のみであり
、王水はウェハー自体にダメージを与えるため、使用で
きない。
When the measurement is completed, the resist 1154 is dissolved and removed using a resist stripping solution made of an acid or an organic solvent.In the present invention, there is no risk of damaging the object to be measured 5 when removing the resist film 54. As in the conventional example,
When a gold vapor-deposited film is attached to the surface of the object to be measured 5, only aqua regia (1 part nitric acid and 13 parts salt) can dissolve and remove the Goldfish@ film, and aqua regia cannot be used because it damages the wafer itself. .

これに対して、レジスト剥離液は、半導体の製造工程に
おいて使用されているので、ウェハーを全く傷付けない
という利点がある。
On the other hand, resist stripping solutions are used in semiconductor manufacturing processes, and therefore have the advantage of not damaging wafers at all.

なお、本実施例では紫外線域の光を用いた干渉計として
、第2図に示すようなトワイマングリーン干渉計を例示
したが、他の干渉計を用いても本発明を実施できること
は言うまでもない。
In this example, a Twyman Green interferometer as shown in FIG. 2 was used as an example of an interferometer that uses light in the ultraviolet region, but it goes without saying that the present invention can be carried out using other interferometers. .

[発明の効果] 本発明にあっては、上述のように、表面に透明膜を有す
る物体の最表面にレジスト膜を付けて、紫外線域の光に
よる干渉法により表面形状を非接触的に測定するように
したから、透明膜を有する物体の最表面形状を高い精度
で測定することができるという効果があり、また、測定
が終了すれば。
[Effects of the Invention] As described above, in the present invention, a resist film is attached to the outermost surface of an object having a transparent film on the surface, and the surface shape is measured non-contact by interference method using light in the ultraviolet range. This has the effect that the outermost surface shape of an object having a transparent film can be measured with high accuracy, and also when the measurement is completed.

レジスト剥離液によりレジスト膜を溶解・除去するよう
にしたから、透明膜を有する物体の最表面形状を非破壊
的に測定することができるという効果がある。
Since the resist film is dissolved and removed by the resist stripping solution, there is an effect that the outermost surface shape of an object having a transparent film can be measured non-destructively.

なお、本発明にあっては、レジスト膜での透過率を低く
するために、測定光の波長を紫外線域としているもので
あるが、これにより測定光の波長が短くなるので、結果
的に表面形状の分解能は、可視光域の測定光を用いる場
合よりも高くなるという副次的な効果も得られるもので
ある。
In addition, in the present invention, the wavelength of the measurement light is in the ultraviolet range in order to lower the transmittance through the resist film, but this shortens the wavelength of the measurement light, resulting in The secondary effect is that the shape resolution is higher than when using measurement light in the visible light range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明により測定される半導体ウェハーの要部
拡大断面図、第2図は本発明に用いる測定装置の概略構
成を示す斜視図である。 1は紫外線光源、2は光学系、3はビームスプリッタ、
4は平面鏡、5は被測定物、6は光学系。 53はシリコン酸化膜、54はレジスl−膜である。
FIG. 1 is an enlarged sectional view of a main part of a semiconductor wafer to be measured according to the present invention, and FIG. 2 is a perspective view showing a schematic configuration of a measuring device used in the present invention. 1 is an ultraviolet light source, 2 is an optical system, 3 is a beam splitter,
4 is a plane mirror, 5 is an object to be measured, and 6 is an optical system. 53 is a silicon oxide film, and 54 is a resist l- film.

Claims (1)

【特許請求の範囲】[Claims] (1)表面に透明膜を有する物体の最表面形状を光干渉
法により測定する測定方法において、測定光の波長を紫
外線域とし、測定前に物体の最表面にレジスト膜を付け
る工程と、測定後にレジスト膜を剥離液により溶解・除
去する工程とを含むことを特徴とする透明膜を有する物
体の最表面形状測定方法。
(1) In a measurement method in which the topmost surface shape of an object having a transparent film on its surface is measured by optical interference method, the wavelength of the measurement light is in the ultraviolet range, and a step of applying a resist film to the topmost surface of the object before measurement; 1. A method for measuring the outermost surface shape of an object having a transparent film, the method comprising the step of subsequently dissolving and removing the resist film with a stripping solution.
JP1896289A 1989-01-26 1989-01-26 Method for measuring shape of outermost surface of substance having transparent film Pending JPH02196909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1896289A JPH02196909A (en) 1989-01-26 1989-01-26 Method for measuring shape of outermost surface of substance having transparent film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1896289A JPH02196909A (en) 1989-01-26 1989-01-26 Method for measuring shape of outermost surface of substance having transparent film

Publications (1)

Publication Number Publication Date
JPH02196909A true JPH02196909A (en) 1990-08-03

Family

ID=11986274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1896289A Pending JPH02196909A (en) 1989-01-26 1989-01-26 Method for measuring shape of outermost surface of substance having transparent film

Country Status (1)

Country Link
JP (1) JPH02196909A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100447526C (en) * 2003-11-05 2008-12-31 Ckd株式会社 Three directional measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100447526C (en) * 2003-11-05 2008-12-31 Ckd株式会社 Three directional measuring device

Similar Documents

Publication Publication Date Title
US7362436B2 (en) Method and apparatus for measuring optical overlay deviation
US8047828B2 (en) Imprint apparatus, imprint method, and mold for imprint
JP6353891B2 (en) System and method for characterizing process guided wafer shapes for process control using CGS interferometry
JPH0760789B2 (en) How to control photoengraving tools
US9897927B2 (en) Device and method for positioning a photolithography mask by a contactless optical method
JPS602772B2 (en) exposure equipment
CN100360895C (en) Interferometer for measuring virtual contact surfaces
JP4392914B2 (en) Surface position detection apparatus, exposure apparatus, and device manufacturing method
TW201312299A (en) Level sensor arrangement for lithographic apparatus, lithographic apparatus and device manufacturing method
WO2018123398A1 (en) Measuring device, application device, and film thickness measuring method
JPH02196909A (en) Method for measuring shape of outermost surface of substance having transparent film
JPH0587544A (en) Inspecting apparatus for defect
JPH02196908A (en) Method for measuring shape of outermost surface of substance having transparent film
JP4646342B2 (en) Thin film magnetic head size / array measuring method and thin film magnetic head size / array measuring apparatus
JP3189451B2 (en) Substrate alignment method
CN114509006B (en) Multi-mode measurement coordinate unification method for micro-nano cross-scale surface structure
US11049720B2 (en) Removable opaque coating for accurate optical topography measurements on top surfaces of transparent films
US20240162074A1 (en) Methods And Systems For Measurement Of Semiconductor Structures With Active Tilt Correction
JPH0142131B2 (en)
CN107665831B (en) System for measurement of semiconductor device manufacturing tool and method thereof
JP3247736B2 (en) Inspection method of phase shift photomask
JPH02198307A (en) Non-contact type surface-shape measuring apparatus
TW202437417A (en) Methods and systems for measurement of semiconductor structures with active tilt correction
JPS6111461B2 (en)
JPS62267810A (en) Control system for two-dimensional mobile stage