JPH02196168A - Pumping-up head hydroelectric power generating method using water electrolyzer - Google Patents

Pumping-up head hydroelectric power generating method using water electrolyzer

Info

Publication number
JPH02196168A
JPH02196168A JP1015926A JP1592689A JPH02196168A JP H02196168 A JPH02196168 A JP H02196168A JP 1015926 A JP1015926 A JP 1015926A JP 1592689 A JP1592689 A JP 1592689A JP H02196168 A JPH02196168 A JP H02196168A
Authority
JP
Japan
Prior art keywords
water
oxygen
hydrogen
storage tank
electrolyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1015926A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Teranishi
寺西 弘好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1015926A priority Critical patent/JPH02196168A/en
Publication of JPH02196168A publication Critical patent/JPH02196168A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE:To improve the extent of energy efficiency by pumping up or dropping water in an underground reservoir in use of compression pressure of hydrogen gas and oxygen gas generated by an electrochemical decomposition reaction of water in an electrolyzer, and driving a hydraulic turbine generator in the midway. CONSTITUTION:Underground storage tanks 1, 2 at both hydrogen and oxygen sides and underground pump storage reservoirs 3, 4 are all installed, while an electrolyzer 5 is installed as well. Then, this electrolyzer 5 is energized with current properly from a DC power source 6, and hydrogen gas is produced in a negative electrode and oxygen gas in a positive electrode respectively by an electrochemical decomposition reaction of water, then these gases are compressed in the electrolyzer 5 into high pressure. Each of these gases is fed into the storage tanks 1, 2, and then water in these tanks 1, 2 is fed under pressure to each of hydraulic turbine generators 11, 12, thereby generating electric power. The water supplied to power generation is stored in each of the pump storage reservoirs 3, 4, and after making it perform work through other hydraulic turbine generators 15, 16, it is made so as to be put back to respective storage tanks 1, 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、水の電解! (5)を利用して、電気化1
゜ 学分解反応による、ガス圧縮圧力で、水素地下貯水槽(
1)と、水素側地上揚水池(3)間を、50 メートル
乃至600メートルの、間隔として、その水流作業。並
びに、酸素地下貯水槽(2)と、酸素側地上揚水池(4
)間を、50メートル乃至600  メートルの、間隔
として、その水流作業により、揚水落差水力発電の電力
を得る発電方法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] This invention is for electrolysis of water! Using (5), electrification 1
Hydrogen underground water storage tank (
1) and the above-ground pumping pond (3) on the hydrogen side, with an interval of 50 meters to 600 meters. In addition, there is an oxygen underground water storage tank (2) and an oxygen side above-ground pumping pond (4).
) The present invention relates to a power generation method for obtaining electric power for pumped head hydroelectric power generation by water flow operation at intervals of 50 meters to 600 meters.

〔従来の技術〕[Conventional technology]

従来の、揚水発電方法は、動力エネルギーによる、水流
ポンプ動力で、上池へ揚水して、その水を落下させて、
水力発電を行なった。
The conventional pumped storage power generation method uses power energy to pump water to the upper pond and let it fall.
It generated hydroelectric power.

又圧縮空気揚水発電方法は、動力エネルギーによる、圧
縮機の空気ポンプ圧力で、地下貯蔵の水を、上池へ揚水
して、その水の落下により、水力発電を行なった。双方
共に外部より、動力エネルギーを共給して、作業するも
のである。
In the compressed air pumped storage power generation method, water stored underground is pumped to the upper pond using the air pump pressure of the compressor using power energy, and hydroelectric power is generated by the water falling. Both work by supplying motive energy from the outside.

エネルギー効率が悪く、動力的エネルギーが、不経済で
あった。
Energy efficiency was poor and motive energy was uneconomical.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

水電解槽(5)の、電気化学分解反応による、水素ガス
、及び酸素ガスの、圧縮圧力を利用して、揚水々力発電
と共に、水の落下水流による、落差水力発電の電力を得
ることを、目的としてゐる。
Utilizing the compressed pressure of hydrogen gas and oxygen gas caused by the electrochemical decomposition reaction in the water electrolyzer (5), we can obtain power from pumped hydropower generation as well as head hydropower generation from the falling flow of water. , as a purpose.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、水素地下貯水槽(1)並びに、水素側地上
揚水池(3)間に、水導管(9) (21)を設置する
In this invention, water conduits (9) (21) are installed between the hydrogen underground water storage tank (1) and the hydrogen-side above-ground pumping pond (3).

この水導管(9)は、水素地下貯水槽(1)内の、底部
へ開口すると共に、上部は、水素側バルブ(23)、水
車発電機(11)を、介して水素側地上揚水池(3)の
、外上部より、内部へ開口する。
This water conduit (9) opens to the bottom of the hydrogen underground water storage tank (1), and the upper part opens to the hydrogen side above-ground pumped storage pond ( 3), it opens to the inside from the outer upper part.

水導管(21)は、水素地下貯水槽(1)内の上部より
、水素側水車発電機(15)、パルプ(13)を介して
、水素側地上揚水池(3)の底部より、内部へ開口する
The water conduit (21) goes from the upper part of the hydrogen underground water storage tank (1), through the hydrogen side water turbine generator (15) and pulp (13), to the inside from the bottom of the hydrogen side above-ground pumped storage tank (3). Open your mouth.

又酸素地下貯水槽(2)並びに、酸素側地上揚水池(4
)間に、水導管(10) (22)を設置する。
There is also an oxygen underground water storage tank (2) and an above-ground pumping pond (4) on the oxygen side.
) A water conduit (10) (22) is installed between the two.

水導管(10)は、酸素地下貯水槽(2)内の、底部へ
開口すると共に、上部は、酸素側バルブ(24) 、水
車発電機(12)を介して、酸素側地上揚水池(4)の
、外上部より、内部へ開口する。
The water conduit (10) opens to the bottom of the oxygen underground water storage tank (2), and the upper part opens to the oxygen side ground pumping pond (4) via the oxygen side valve (24) and the water turbine generator (12). ) opens inward from the outer top.

水導管(22)は、酸素地下貯水槽(2)内の上部より
、酸素側水車発電機(16)、バルブ(14)を介して
、酸素側地上揚水池(4)内の底部へ開口する。
The water conduit (22) opens from the top of the oxygen underground water storage tank (2) to the bottom of the oxygen-side above-ground pumped storage tank (4) via the oxygen-side water turbine generator (16) and valve (14). .

別に水素側ガス管(7)、酸素側ガス管(8)を設置す
る。水素側ガス管(7)は、水素地下貯水槽(1)内の
上部より、水素側分離管(25)により、バルブ(19
)を介して、電解槽(5)へ。パルプ(17)を介して
、ガス放出管とする。
A hydrogen side gas pipe (7) and an oxygen side gas pipe (8) are installed separately. The hydrogen side gas pipe (7) is connected to the valve (19) from the upper part of the hydrogen underground water storage tank (1) by the hydrogen side separation pipe (25).
) to the electrolytic cell (5). A gas discharge tube is formed through the pulp (17).

又酸素側ガス管(8)は、酸素地下貯水槽(2)内の上
部より、酸素側分離管(26)により°、パルプ(2o
)を介して、電解槽(5)へ。バルブ(18)を介して
、ガス放出管とする。
In addition, the oxygen side gas pipe (8) is connected to the oxygen side separation pipe (26) from the upper part of the oxygen underground water storage tank (2).
) to the electrolytic cell (5). A gas discharge tube is provided through the valve (18).

〔作用実施例〕[Working example]

水素地下貯水槽(1)及び、酸素地下貯水f’!? (
2)を、満水にして。
Hydrogen underground water storage tank (1) and oxygen underground water storage f'! ? (
2) Fill with water.

上記性能を有する、電解槽(5)へ、河川の水力発電、
石炭火力発電、合成メタンガス火力発電による、直流電
源(6)を接続すると、水の電気化学分解反応により、
陰極に水素ガス、陽極に酸素ガスが発生して、これらの
ガスは、電解槽(5)内で、圧縮されて高圧となる。
To the electrolytic cell (5) having the above performance, river hydroelectric power generation,
When a DC power source (6) from coal-fired power generation or synthetic methane gas-fired power generation is connected, an electrochemical decomposition reaction of water will occur.
Hydrogen gas is generated at the cathode and oxygen gas is generated at the anode, and these gases are compressed to high pressure within the electrolytic cell (5).

この高圧水素ガスは、水素管(7)を通り、水素地下貯
水槽(1)の上部内へ、ガス圧力を、加えることにより
、この貯水槽(1)内の底部の水は、水導管(9)を通
り、水素側地上揚水池(3)の、外上部より、同揚水池
(3)の、内部へ、パルプ(23)、及び水車発電機(
11)を介して、水を圧送貯水すると共に、水素地下貯
水槽(1)内へ、圧縮水素ガスが、蓄蔵される。
This high-pressure hydrogen gas passes through the hydrogen pipe (7) and by applying gas pressure into the upper part of the hydrogen underground water storage tank (1), the water at the bottom of this water storage tank (1) is transferred to the water conduit ( 9), from the outside upper part of the above-ground pumped storage tank (3) on the hydrogen side, into the inside of the pumped storage tank (3), the pulp (23) and the water turbine generator (
11), water is pumped and stored, and compressed hydrogen gas is stored in the underground hydrogen storage tank (1).

この作業中の、水流を利用して、水素側水車発電機(1
1)による、揚水々力発電が出来る。
During this work, the hydrogen side water turbine generator (1
1) enables pumped hydropower generation.

上記作業の際は、水素側バルブ(13) (17)を、
閉鎖して、水素側バルブ(19) (23)を開放する
When performing the above work, close the hydrogen side valves (13) and (17).
Close and open the hydrogen side valves (19) and (23).

又高圧酸素ガスは、酸素管(8)を通り、酸素地下貯水
槽(2)の上部内へ、ガス圧力を、加えることにより、
この貯水槽(2)内の底部の水は、水導管αQを通り、
酸素側地上揚水池(4)の外上部より、同揚水池(4)
内部へ、バルブ(24)、及び水車発電機(12)を介
して、水を圧送貯水すると共に、酸素地下貯水槽(2)
へ、圧縮酸素ガスが、蓄蔵される。
Also, the high pressure oxygen gas passes through the oxygen pipe (8) and enters the upper part of the oxygen underground water storage tank (2) by applying gas pressure.
The water at the bottom of this water tank (2) passes through the water conduit αQ,
From the outside upper part of the above ground pumped storage pond (4) on the oxygen side, the same pumped storage pond (4)
Water is pumped into the interior via a valve (24) and a water turbine generator (12) and stored, and an oxygen underground water storage tank (2)
To, compressed oxygen gas is stored.

この作業中の、水流を利用して、酸素側水車発電機(1
2)による、揚水々力発電が出来る。
During this work, the oxygen side water turbine generator (1
2) enables pumped hydropower generation.

上記作業の際も、酸素側バルブ(14) (18)を閉
鎖して、酸素側バルブ(20) (24)を、開放する
During the above work, the oxygen side valves (14) and (18) are closed, and the oxygen side valves (20) and (24) are opened.

前記々載の、電解槽(5)へ、直流電流を、送電した、
電源を切断する。次いで、水素側バルブ(19) (2
3)を閉鎖する。
Direct current was transmitted to the electrolytic cell (5) mentioned above.
Turn off the power. Next, the hydrogen side valve (19) (2
3) Close.

水素側バルブ(13) (17)を、開放すれば、水素
側地上揚水池(3)の、水は水素側水導管(21)を通
り、落下して、水素地下貯水槽(1)へ、移動すると共
に、この槽(1)内の、水素ガスは、外方へ放出されて
、満水となる。この際の水流を利用して、水素側水車発
電機(15)による、落差水力発電が出来る。
When the hydrogen side valves (13) and (17) are opened, the water in the hydrogen side above ground storage tank (3) passes through the hydrogen side water conduit (21) and falls into the hydrogen underground water storage tank (1). As the tank moves, the hydrogen gas in the tank (1) is released to the outside and becomes full of water. Using the water flow at this time, head hydroelectric power generation can be performed by the hydrogen side water turbine generator (15).

又酸素側バルブ(20) (24)を、閉鎖して、酸素
側バルブ(14) (1s)を開放すれば、酸素側地上
揚水池(4)の水は、酸素側水導管(22)を通り、落
下して、酸素地下貯水槽(2)へ、移動すると共に、こ
の槽(2)内の、酸素ガスは、外方へ放出されて、満水
となる。この際の水流を利用して、酸素側水車発電機(
16)による、落差水力発電が出来る。
Also, if the oxygen side valves (20) (24) are closed and the oxygen side valve (14) (1s) is opened, the water in the oxygen side ground pumping pond (4) will flow through the oxygen side water conduit (22). As the oxygen gas flows through and falls to the oxygen underground water storage tank (2), the oxygen gas in this tank (2) is released to the outside and becomes full of water. Using the water flow at this time, the oxygen side water turbine generator (
16), head hydroelectric power generation is possible.

叙述のこれらの、作業を、反復して使用する。Use these descriptive tasks repeatedly.

この発明を、複数に設備して、交互にピストン作動させ
て、連続的に、電力を発生することが出来る。
This invention can be installed in a plurality of units and operate the pistons alternately to continuously generate electric power.

〔発明の効果〕〔Effect of the invention〕

この発明は、叙述のやうに、動力エネルギーを、必要と
せない。水電解槽の電気化学分解ガス圧縮による作業で
ある。
This invention, as described, does not require power energy. This work involves electrochemical decomposition gas compression in a water electrolyzer.

即ぢ1、 地下貯水槽(1) (2)により、地上揚水
池(3) (4)へ、揚水々力発電が、ガス圧力で可能
であると共に、尚地上揚水池(3)(4)より、地下貯
水槽(1) (2)へ水を、落下させて、落差水力発電
の電力を、得ることが出来る。
Immediately 1. Pumped hydroelectric power generation is possible using gas pressure from underground water storage tanks (1) (2) to above-ground pumped storage tanks (3) (4). By allowing water to fall into the underground water storage tanks (1) and (2), it is possible to obtain electric power from head hydroelectric power generation.

2 水素と酸素を、燃焼させて、ガスタービン発電が出
来る。
2 Gas turbine power generation is possible by burning hydrogen and oxygen.

3、 水素酸素を使用して、燃料電池で、電力を得るこ
とが出来る。
3. Electricity can be obtained with a fuel cell using hydrogen and oxygen.

以上記載のやうに、広域者々の、発電力により、増域な
電力を、得ることが出来る。
As described above, it is possible to obtain increased power from the power generated by people in a wide area.

別にこの発明は、水素ガス、及び酸素ガスを、使用する
ため、水素還元、酸素酸化による、化学反応で、物質を
製造生産することが出来る。
In addition, since this invention uses hydrogen gas and oxygen gas, it is possible to manufacture and produce substances through chemical reactions through hydrogen reduction and oxygen oxidation.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、この発明による、構成設備を、一体とした、実
施例を示す。 (1)水素地下貯水槽 (2)酸素地下貯水槽 (3)
水素側地」−揚水池 (4)酸素側地上揚水池 (5)
電解槽(6)直流電源 ())水素管 (8)酸素管 
(9)水素側水導’1’  (10)酸素側水導管 (
l]−)水素揚水側水車発電機(12)酸素揚水側水車
発電機 (13) (23)水素側水流用バルブ (1
4) (24)酸素側水流用バルブ 05)水素側落差
水車発電機 (16)酸素側落差水車発電機(17) 
(19)水素側ガス用バルブ (18) (20)酸素
側ガス用バルブ (2〕)水素側水導管 (22)酸素
側水導管 (25)水素側分離管 (26)酸素側分離
管。
The drawing shows an embodiment of the invention in which the components are integrated. (1) Hydrogen underground water storage tank (2) Oxygen underground water storage tank (3)
Hydrogen side - Pumped storage pond (4) Oxygen side ground pumped storage pond (5)
Electrolyzer (6) DC power supply ()) Hydrogen pipe (8) Oxygen pipe
(9) Hydrogen side water conduit '1' (10) Oxygen side water conduit (
l]-) Hydrogen pumping side water turbine generator (12) Oxygen pumping side water turbine generator (13) (23) Hydrogen side water flow valve (1
4) (24) Oxygen side water flow valve 05) Hydrogen side head water turbine generator (16) Oxygen side head water turbine generator (17)
(19) Hydrogen side gas valve (18) (20) Oxygen side gas valve (2) Hydrogen side water conduit (22) Oxygen side water conduit (25) Hydrogen side separation pipe (26) Oxygen side separation pipe.

Claims (1)

【特許請求の範囲】 1、水の高圧高温電解槽(5)を、作動させて、水の電
気化学分解反応による、水素ガス、酸素ガスの、圧縮圧
力を利用して、水素地下貯水槽(1)と、水素側地上揚
水池(3)間、並びに、酸素地下貯水槽(2)と、酸素
側地上揚水池(4)間の、水流作業により、揚水落差水
力発電を、一体の構成として、電力を得る、特徴ある発
電方法。 2、地上揚水池(3)(4)を、海又は、湖として、こ
の発明を使用した場合、地上揚水池(3)(4)の水素
側、酸素側は共同のものとなる。水素側水導管(9)(
21)と、酸素側水導管(10)(22)は別々のもの
とした、特許請求の範囲第1項記載の特徴ある発電方法
[Claims] 1. A high-pressure high-temperature water electrolyzer (5) is operated to utilize the compression pressure of hydrogen gas and oxygen gas caused by the electrochemical decomposition reaction of water to create a hydrogen underground water storage tank ( 1) and the above-ground pumped storage tank on the hydrogen side (3), as well as between the oxygen underground water storage tank (2) and the above-ground pumped storage tank on the oxygen side (4), pumped head hydroelectric power generation can be achieved as an integrated configuration by , a unique method of generating electricity. 2. When the above-ground pumped storage ponds (3) and (4) are used as a sea or a lake, and this invention is used, the hydrogen side and oxygen side of the above-ground pumped storage ponds (3) and (4) are shared. Hydrogen side water conduit (9) (
21) and the oxygen side water conduit (10) and (22) are separate.
JP1015926A 1989-01-25 1989-01-25 Pumping-up head hydroelectric power generating method using water electrolyzer Pending JPH02196168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1015926A JPH02196168A (en) 1989-01-25 1989-01-25 Pumping-up head hydroelectric power generating method using water electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1015926A JPH02196168A (en) 1989-01-25 1989-01-25 Pumping-up head hydroelectric power generating method using water electrolyzer

Publications (1)

Publication Number Publication Date
JPH02196168A true JPH02196168A (en) 1990-08-02

Family

ID=11902386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1015926A Pending JPH02196168A (en) 1989-01-25 1989-01-25 Pumping-up head hydroelectric power generating method using water electrolyzer

Country Status (1)

Country Link
JP (1) JPH02196168A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174509A (en) * 2008-01-22 2009-08-06 Akimasa Kusumoto Energy system
US7584610B2 (en) * 2007-06-08 2009-09-08 Ziegenfuss Mark R Water cycling system with compressor motive force and with turbine electric power generator
US20160076509A1 (en) * 2013-08-21 2016-03-17 Korea Institute Of Energy Research Potential energy-based power generation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7584610B2 (en) * 2007-06-08 2009-09-08 Ziegenfuss Mark R Water cycling system with compressor motive force and with turbine electric power generator
JP2009174509A (en) * 2008-01-22 2009-08-06 Akimasa Kusumoto Energy system
US20160076509A1 (en) * 2013-08-21 2016-03-17 Korea Institute Of Energy Research Potential energy-based power generation system
US9951746B2 (en) * 2013-08-21 2018-04-24 Korea Institute Of Energy Research Potential energy-based power generation system

Similar Documents

Publication Publication Date Title
US9315397B2 (en) Blue power generation system
CN109638893A (en) A kind of urea waste water is used for high safety high efficiency wind power hydrogen production peak-frequency regulation system
CN113174606A (en) Moon base energy supply and application system based on photolysis water hydrogen production technology
JP2020121944A (en) Hydrocarbon synthesis system
CN109390615A (en) Large capacity redox flow battery energy storage system, control method and its application based on salt cave
JP3122473U (en) Hydrogen and oxygen generator
JP3294088B2 (en) Fuel cell system
JPH02196168A (en) Pumping-up head hydroelectric power generating method using water electrolyzer
CN113339068A (en) Dual-reuse energy storage power supply system based on abandoned coal mine hole resources
JP6960211B2 (en) Free-standing hydrogen power generation and drinking water supply system
US5110436A (en) Water electrolysis
CN109576731B (en) Hydrogen production device and method by directly electrolyzing water with liquid metal magnetic fluid
KR20110128187A (en) The electronic power plant which uses the buoyancy of the bubble
JP2005324584A (en) Intermediate and high pressure hydrogen supply method and its device
CN209250261U (en) A kind of urea waste water is used for high safety high efficiency wind power hydrogen production peak-frequency regulation system
CN204760482U (en) Liquid metal hydrogen source fuel cell
KR102671896B1 (en) Hydrogen production generator and hydrogen production method
JP2002056852A (en) Electric energy generating system
GB2586628A (en) Exploiting potential energy from rising gasses produced by electrolysis
CN108588744A (en) The system setting that oxygenerator and methane phase device combine
CN2228919Y (en) High-efficiency oxygen producer by electrolysis of water
CN214572260U (en) Novel multifunctional oxygen generator
JPS59163770A (en) Method of producing oxygen
CN209929411U (en) Solid hydrogen technology-based fuel cell power generation system
JPH03271383A (en) Apparatus for producing and storing gaseous hydrogen