JPH02196053A - Production of dense oxide superconductor - Google Patents

Production of dense oxide superconductor

Info

Publication number
JPH02196053A
JPH02196053A JP1013692A JP1369289A JPH02196053A JP H02196053 A JPH02196053 A JP H02196053A JP 1013692 A JP1013692 A JP 1013692A JP 1369289 A JP1369289 A JP 1369289A JP H02196053 A JPH02196053 A JP H02196053A
Authority
JP
Japan
Prior art keywords
calcined
oxide superconductor
residual carbon
powder
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1013692A
Other languages
Japanese (ja)
Inventor
Hiromi Imura
井村 ひろみ
Saburo Nagano
三郎 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1013692A priority Critical patent/JPH02196053A/en
Publication of JPH02196053A publication Critical patent/JPH02196053A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the superconductor with further improved superconductivity by quantitatively mixing the raw metallic compd. powders contg. metallic salts, calcining the mixture under specified conditions to control the residual carbon content to a specified value, forming the material, and sintering the formed product. CONSTITUTION:The raw metallic compd. powders (e.g. Y2O3, BaCO3, and CuO powders) contg. metallic salts are quantitatively mixed, the mixture is calcined at 800-900 deg.C for 2-5hr in an oxygen atmosphere (e.g. in the atmosphere), and the calcined powder contg. <=1wt.% residual carbon is obtained. The calcined powder is then formed, and sintered to obtain an oxide superconductor. By this method, the residual carbon is dissipated prior to sintering, hence the formation of an oxide superconductor is promoted, the superconductor is densified, and the superconductivity is further improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、YBaCuO系或いはB i S rcaC
uO系等の酸化物超電導体の製造方法に関し、更に詳し
くは斯かる超電導体を緻密化し各種用途分野での実用価
値を高めんとするものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to YBaCuO-based or B i S rcaC
The present invention relates to a method for manufacturing oxide superconductors such as uO-based superconductors, and more specifically, aims to densify such superconductors and increase their practical value in various application fields.

(従来の技術) 最近、Ln系、Bi系、Tl系など銅を含む高臨界温度
の酸化物超電導体が多数発見されるに至った。そして、
これらの酸化物超電導体の製造法としては、固相反応法
、ゾル−ゲル法及び共沈法が主に採用されている。この
うち後二者は、均一性に優れるため低温焼成が可能であ
り、特に注目される製法である。
(Prior Art) Recently, many copper-containing high critical temperature oxide superconductors such as Ln-based, Bi-based, and Tl-based oxide superconductors have been discovered. and,
As methods for producing these oxide superconductors, solid phase reaction methods, sol-gel methods, and coprecipitation methods are mainly employed. Of these, the latter two are manufacturing methods that are attracting particular attention because they have excellent uniformity and can be fired at low temperatures.

而して、固相反応法は、炭酸塩等の金属塩を含む原料金
属化合物粉末を混合して、必要によって仮焼し成型した
後焼成して酸化物焼結体とするものである。この場合、
原料として各構成金属酸化物粉末が用いられるが、Ba
O等は不安定な為にその炭酸塩(BaCO□)が用いら
れる。また、ゾル−ゲル法は、構成金属の硝酸塩等の金
属塩を水に溶解混合し、これに有機物(クエン酸、エチ
レングリコール等)を作用せしめキレート化してゲル状
混合物を得、該ゲル状混合物を加熱乾燥した後仮焼し、
これを所望形状に成型し焼成して上記同様酸化物焼結体
を得んとするものである。更に、共沈法は、構成金属の
硝酸塩等の金属塩を水に溶解混合し、これに有機酸(シ
ュウ酸等)を加えてPH調整し上記原料金属の有機酸塩
を共沈させ、該共沈物を加熱乾燥・粉砕した後仮焼し、
これを所望形状に成型し焼成して上記同様酸化物焼結体
を得んとするものである。
In the solid phase reaction method, raw metal compound powders containing metal salts such as carbonates are mixed, and if necessary, calcined and shaped, and then fired to obtain an oxide sintered body. in this case,
Each constituent metal oxide powder is used as a raw material, but Ba
Since O and the like are unstable, their carbonates (BaCO□) are used. In addition, in the sol-gel method, metal salts such as nitrates of constituent metals are dissolved and mixed in water, and an organic substance (citric acid, ethylene glycol, etc.) is applied to this to form a chelate to obtain a gel-like mixture. After heating and drying, calcining
This is molded into a desired shape and fired to obtain an oxide sintered body in the same manner as described above. Furthermore, in the coprecipitation method, metal salts such as nitrates of the constituent metals are dissolved and mixed in water, and an organic acid (such as oxalic acid) is added to this to adjust the pH, and the organic acid salts of the raw material metals are coprecipitated. After heating and drying the coprecipitate and pulverizing it, it is calcined.
This is molded into a desired shape and fired to obtain an oxide sintered body in the same manner as described above.

(発明が解決しようとする課題) ところで、上記製造方法に於いて、固相反応法の場合、
出発原料としてBaCo3のような金属塩を用いること
が不可避であり、また共沈法或いはゾル−ゲル法の場合
、途中に有機物を使用する為、焼成前の中間物中に炭素
が残留し、この残留炭素がBaCO3等の炭酸塩を安定
化させ、酸化物焼結体の生成を阻害すると共に、焼結体
がポーラスで緻密化せず、その為低温焼成がなし得ない
と云う問題点があった。特に、共沈法及びゾル−ゲル法
の場合、焼成前の中間物中に炭素が残留し易く、上述の
如く注目すべき方法でありながら、この点がネックとな
っている為に幅広い採用に至っていないのが実状であっ
た。
(Problems to be Solved by the Invention) By the way, in the above production method, in the case of the solid phase reaction method,
It is inevitable to use a metal salt such as BaCo3 as a starting material, and in the case of the coprecipitation method or the sol-gel method, organic substances are used in the process, so carbon remains in the intermediate before firing. There is a problem that residual carbon stabilizes carbonates such as BaCO3 and inhibits the formation of oxide sintered bodies, and the sintered bodies are porous and do not become dense, making it impossible to perform low-temperature firing. Ta. In particular, in the case of the coprecipitation method and the sol-gel method, carbon tends to remain in the intermediate before firing, and although these methods are noteworthy as mentioned above, this point is a bottleneck that prevents them from being widely adopted. The reality is that this has not yet been achieved.

(発明の目的) 本発明は、上記実状に鑑みなされたもので、焼成処理す
る前に残留炭素を蒸散させ、これにより酸化物超電導体
の生成を促すと共に、その緻密化を図り、もって酸化物
超電導体の実用価値を高めるに寄与せんとするものであ
る。
(Purpose of the Invention) The present invention was made in view of the above-mentioned circumstances, and aims to evaporate residual carbon before firing, thereby promoting the formation of an oxide superconductor, and densifying the oxide superconductor. The aim is to contribute to increasing the practical value of superconductors.

(課題を解決する為の手段) 上記目的を達成する為の本発明の緻密質酸化物超電導体
の製造方法は3態様あり、 その第1は、上記固相反応法に相当するものであって、
炭酸塩等の金属塩を含む原料金属化合物粉末を所定量秤
量混合し、これを800〜900℃、2〜5時間酸素雰
囲気中で仮焼して残留炭素が1重量%以下の仮焼粉末を
得、該仮焼粉末を成形焼成して酸化物超電導体を得るよ
うにしたこと、第2は、同ゾル−ゲル法に相当するもの
であって、原料金属の硝酸塩等の金属塩を所定量秤量し
て水に溶解混合し、これに有機物を作用せしめキレート
化してゲル状混合物を得、該ゲル状混合物を加熱乾燥し
た後750〜900℃、5〜10時間酸素雰囲気中で仮
焼して残留炭素が1重量%以下の仮焼粉末を得、該仮焼
粉末を成形焼成して酸化物超電導体を得るようにしたこ
と、 第3は、同共沈法に相当するものであって、原料金属の
硝酸塩等の金属塩を所定量秤量して水に溶解混合し、こ
れに有機酸を加えてPH調整し上記原料金属の有機酸塩
を共沈させ、該共沈物を加熱乾燥した後750〜900
℃、5〜10時間酸素雰囲気中で仮焼して残留炭素が1
重量%以下の仮焼粉末を得、該仮焼粉末を成形焼成して
酸化物超電導体を得るようにしたこと、 を夫々要旨とするものである。
(Means for Solving the Problems) There are three aspects of the method for producing a dense oxide superconductor of the present invention to achieve the above object, the first of which corresponds to the solid phase reaction method described above. ,
A predetermined amount of raw metal compound powder containing metal salts such as carbonates is weighed and mixed, and this is calcined in an oxygen atmosphere at 800 to 900°C for 2 to 5 hours to produce calcined powder with residual carbon of 1% by weight or less. The second method corresponds to the sol-gel method, in which a predetermined amount of a metal salt such as a nitrate of a raw material metal is added. The mixture is weighed and dissolved in water, and an organic substance is applied thereto to form a chelate to obtain a gel-like mixture.The gel-like mixture is heated and dried, and then calcined at 750 to 900°C for 5 to 10 hours in an oxygen atmosphere. A calcined powder with residual carbon of 1% by weight or less is obtained, and the calcined powder is shaped and fired to obtain an oxide superconductor; and the third is equivalent to the co-precipitation method, A predetermined amount of a metal salt such as a nitrate of a raw material metal was weighed, dissolved and mixed in water, an organic acid was added thereto to adjust the pH, the organic acid salt of the raw material metal was coprecipitated, and the coprecipitate was heated and dried. After 750~900
℃ in an oxygen atmosphere for 5 to 10 hours until the residual carbon is 1
The gist of each of these is to obtain a calcined powder of % by weight or less, and to obtain an oxide superconductor by shaping and firing the calcined powder.

第1乃至第3の態様に於いて仮焼温度及び時間を上記の
如く特定したのは、上記より仮焼温度が低くまた仮焼時
間が短い場合には、残留炭素の蒸散が充分でなく仮焼粉
末中に炭素が1重量%を超え残存するからであり、一方
上記より仮焼温度を高くまた仮焼時間を長くしても特定
範囲内で殆どの残留炭素が蒸散してしまう為時間とエネ
ルギーの無駄となるからであり、また粒成長が生じる為
に活性度が失われ、焼結時に緻密化しない為である。
The reason why the calcination temperature and time are specified as above in the first to third embodiments is that if the calcination temperature is lower than the above and the calcination time is shorter than the above, the evaporation of residual carbon is not sufficient and the calcination is This is because more than 1% by weight of carbon remains in the calcined powder, and on the other hand, even if the calcining temperature is higher or the calcining time is longer than the above, most of the residual carbon will evaporate within a certain range, so This is because energy is wasted, and because grain growth occurs, activity is lost and densification does not occur during sintering.

亦、焼成前の残留炭素を1重量%以下としたのは、1重
量%を超えると残留炭素の影響により緻密性が減退する
傾向となるからである。
The reason why the residual carbon before firing is set to 1% by weight or less is that if it exceeds 1% by weight, the density tends to decrease due to the influence of the residual carbon.

(作用) 第1態様の方法に於いて、原料金属化合物の混合物を上
記温度及び時間で仮焼すると、原料金属による複合酸化
物結晶が生成し、同時に含有する炭酸塩が一部分解し、
炭素が蒸散する。この時、残留炭素が1重量%以下とな
るよう制御する。そめ後これを焼成すると、残留炭酸塩
の分解が促進され、各構成元素が強固に結合し緻密な酸
化物焼結体が得られる。
(Function) In the method of the first aspect, when the mixture of raw metal compounds is calcined at the above temperature and time, composite oxide crystals from the raw metals are generated, and at the same time, the carbonate contained is partially decomposed,
Carbon transpires. At this time, the residual carbon is controlled to be 1% by weight or less. When this is fired after boiling, the decomposition of the residual carbonate is promoted, each constituent element is strongly bonded, and a dense oxide sintered body is obtained.

亦、第2態様の方法に於いて、原料金属の硝酸塩等の金
属塩をキレート化した時、このキレート化物は多量の炭
素原子を含有する。しかしその後の上記条件下での仮焼
によってキレート化物が分解し、一部炭酸塩が生成する
が大半の炭素は蒸散する。この時、残留炭素を1重量%
以下に制御する。その後これを焼成すると、上記と同様
に残留炭酸塩の分解が促進され、各構成元素が強固に結
合し緻密な酸化物焼結体が得られる。
Furthermore, in the method of the second embodiment, when a metal salt such as a nitrate of a raw metal is chelated, this chelate contains a large amount of carbon atoms. However, the chelate is decomposed by subsequent calcination under the above conditions, and although some carbonate is produced, most of the carbon is evaporated. At this time, the residual carbon was 1% by weight.
Control as below. When this is then fired, the decomposition of the residual carbonate is promoted in the same manner as described above, and each constituent element is firmly bonded to obtain a dense oxide sintered body.

更に、第3態様の方法に於いて、有機酸によって共沈さ
せた時、共沈物は原料金属の有機酸塩であるから多量の
炭素原子を含有する。しかしその後の上記条件下での仮
焼により該有機酸塩が分解し、一部炭酸塩が生成するが
大半の炭素は蒸散する。この時、残留炭素を1重量%以
下に制御する。
Furthermore, in the method of the third embodiment, when coprecipitated with an organic acid, the coprecipitate contains a large amount of carbon atoms since it is an organic acid salt of the raw metal. However, by subsequent calcination under the above conditions, the organic acid salt is decomposed and some carbonate is produced, but most of the carbon is evaporated. At this time, residual carbon is controlled to 1% by weight or less.

その後これを焼成すると、上記と同様に残留炭酸塩の分
解が促進され、各構成元素が強固に結合し緻密な酸化物
焼結体が得られる。
When this is then fired, the decomposition of the residual carbonate is promoted in the same manner as described above, and each constituent element is firmly bonded to obtain a dense oxide sintered body.

(実施例) 次に実施例について述べる。(Example) Next, an example will be described.

(実施例−1) (i)Ya03粉末30.26g、BaC0a粉末10
5.78g及びCuO粉末17.34gを秤量し、混合
した後900℃5時間大気中又は酸素気流中で熱処理(
仮焼)した。この時、熱処理前後の炭素量をLECO法
で測定した。
(Example-1) (i) Ya03 powder 30.26g, BaC0a powder 10
After weighing and mixing 5.78 g and 17.34 g of CuO powder, heat treatment (
calcined). At this time, the amount of carbon before and after the heat treatment was measured by the LECO method.

(ii)その後、メノウ乳鉢で粉砕し平均粒径1.6μ
mの仮焼粉末を得た。得られた粉末をX線回折にて同定
したところY  Ba  Cu  O結晶で1 2 3
7−δ あることが確認された。
(ii) Then, it was crushed in an agate mortar with an average particle size of 1.6μ.
A calcined powder of m was obtained. The obtained powder was identified by X-ray diffraction as Y Ba Cu O crystal 1 2 3
7-δ It was confirmed that there is.

(■)上記粉末を12φのペレットに成型し、該ペレッ
トを酸素雰囲気中室温から950℃まで200℃/hr
で昇温し、最高温度(950℃)で5時間保持した後、
200℃/ h rで室温まで冷却して焼結試料を得た
(■) The above powder was molded into 12φ pellets, and the pellets were heated at 200°C/hr from room temperature to 950°C in an oxygen atmosphere.
After raising the temperature at the maximum temperature (950°C) for 5 hours,
A sintered sample was obtained by cooling to room temperature at 200 °C/hr.

(iv)得られた焼結試料について、かさ比重の測定、
SEM(走査型電子顕微鏡)での組成観察、及び粉砕試
料のXRD測定を行なった。また、四端子法により温度
に対する抵抗変化を測定し、オンセット温度(Tco)
、オフセット温度(Tce)を調べた。更に、電流密度
の測定を次の要領で行なった。
(iv) measuring the bulk specific gravity of the obtained sintered sample;
The composition was observed using a SEM (scanning electron microscope), and the ground sample was subjected to XRD measurement. In addition, the resistance change with respect to temperature was measured using the four-probe method, and the onset temperature (Tco) was measured.
, the offset temperature (Tce) was investigated. Furthermore, current density was measured in the following manner.

即ち、四端子法に従いサンプル表面に電流リード線をA
gペーストで取付け、試料を銅ブロックに固定した後液
体窒素中に浸し、温度が安定した段階で電流を流し始め
、徐々にその値を大きくし電圧が急激に発生して1μV
となった時の電流値をIcとし、それを断面積で割った
値を臨界電流密度Jcとした。
That is, according to the four-terminal method, a current lead wire is connected to the sample surface at A.
After fixing the sample to a copper block and immersing it in liquid nitrogen, once the temperature stabilized, a current was started to flow, and the value was gradually increased until a voltage suddenly occurred and reached 1μV.
The current value when the current value became Ic was defined as Ic, and the value obtained by dividing it by the cross-sectional area was defined as the critical current density Jc.

(V)結果; 仮焼処理前と後の含有炭素量は、夫々4.2重量%、0
.4重量%であった。焼結体のかさ比重は理論比重(理
論密度)の98%まで達しており、極めて緻密であるこ
とが理解される。これはSEMa!(察からも実証され
た。また、XRD分析から不純物ピークは見られず、焼
結体は Y  Ba  Cu  Oの単相であることが知見さ1
 2 37−δ れた。更に、Tco=93K(絶対温度、以下同様)、
Tce=91に、Jc=1010A/aJであり、良好
な超電導特性を得た。
(V) Results: The carbon content before and after the calcination treatment was 4.2% by weight and 0% by weight, respectively.
.. It was 4% by weight. The bulk specific gravity of the sintered body reaches 98% of the theoretical specific gravity (theoretical density), and it is understood that it is extremely dense. This is SEMa! (This was also confirmed by observation. In addition, no impurity peak was observed from XRD analysis, and it was found that the sintered body was a single phase of Y Ba Cu O.
2 37-δ was obtained. Furthermore, Tco=93K (absolute temperature, same below),
Tce=91, Jc=1010 A/aJ, and good superconducting properties were obtained.

〈比較例−1〉 (i)実施例−1において、仮焼処理条件を900℃×
1時間とする以外は全く同様にして試料を作成し、上記
同様の各種測定を行なった。
<Comparative Example-1> (i) In Example-1, the calcination treatment conditions were changed to 900°C
Samples were prepared in exactly the same manner except that the heating time was 1 hour, and various measurements similar to those described above were performed.

(it)結果; 仮焼処理前と後の含有炭素量は、夫々4.2重量%、1
.3重量%であった。焼結体のかさ比重は理論比重の7
6%であり、これより緻密性が実施例−1より大幅に劣
ることが理解される。またXRD分析よりわずかに炭酸
バリウムのピークが観測された。更に、Tco=92に
、Tce=87に、Jc=110A/cdであり、超電
導特性が実施例−1より劣っていることが実証された。
(it) Results: The carbon content before and after the calcination treatment was 4.2% by weight and 1% by weight, respectively.
.. It was 3% by weight. The bulk specific gravity of the sintered body is 7 of the theoretical specific gravity.
6%, which indicates that the density is significantly inferior to that of Example-1. Further, a slight peak of barium carbonate was observed by XRD analysis. Furthermore, Tco=92, Tce=87, and Jc=110 A/cd, demonstrating that the superconducting properties were inferior to Example-1.

(実施例−2) (i)Y(Now)a、B a (No、)、及びCu
 (N Oy )Zの各水溶液をモル比が1:2:3に
なるよう混合し、この混合物にクエン酸及びエチレング
リコールを添加してキレート化し、ゲル状混合物を作成
した。
(Example-2) (i) Y (Now) a, B a (No, ), and Cu
Each aqueous solution of (N Oy )Z was mixed at a molar ratio of 1:2:3, and citric acid and ethylene glycol were added to this mixture to form a chelate, thereby creating a gel-like mixture.

(ji)この混合物を500℃で加熱乾燥し、得られた
粉末についてLECO法により炭素量を測定したところ
4.1重量%であった。
(ji) This mixture was heated and dried at 500° C., and the carbon content of the obtained powder was measured by the LECO method and found to be 4.1% by weight.

(iii)上記粉末を第1表に示す条件下酸素気流中で
熱処理(仮焼)し、含有炭素量の異なる4種の仮焼粉末
を得た。
(iii) The above powder was heat-treated (calcined) in an oxygen stream under the conditions shown in Table 1 to obtain four types of calcined powders having different amounts of carbon.

(泣)これらの仮焼粉末を実施例−1と同様に焼成処理
して焼結体を得、上記同様に各種測定を行なった。その
結果を仮焼条件と共に第1表に示す。
(Cry) These calcined powders were subjected to firing treatment in the same manner as in Example 1 to obtain a sintered body, and various measurements were performed in the same manner as above. The results are shown in Table 1 along with the calcination conditions.

第1表の結果から、本発明の範囲外であるNo 4の試
料は、仮焼粉末中の含有炭素量が1重量%を超え、かさ
比重も小さく緻密性に乏しいことが理解される。また、
Tco、Tce及びJcも他の試料(&1〜3・・・本
発明の範囲内)に比べ低く、超電導特性が劣る。
From the results in Table 1, it is understood that sample No. 4, which is outside the scope of the present invention, has a carbon content in the calcined powder of more than 1% by weight, a small bulk specific gravity, and a poor density. Also,
Tco, Tce, and Jc are also lower than other samples (&1 to 3...within the scope of the present invention), and the superconducting properties are inferior.

(実施例−3) (i )Y(Now)a、B a (N 0a)−及び
Cu (N O,)。
(Example-3) (i) Y(Now)a, B a (N 0a)- and Cu (N O,).

の各水溶液をモル比で1:2:3となるよう混合し、こ
れにシュウ酸を加えてPH副調整、 Y(C00)3、
B a (COO)z及びCu(Coo)、から成る共
沈物を得た。この共沈物の含有炭素量を測定したところ
13.5重量%であった。
Mix each aqueous solution in a molar ratio of 1:2:3, add oxalic acid to sub-adjust the pH, Y(C00)3,
A coprecipitate consisting of B a (COO)z and Cu(Coo) was obtained. The amount of carbon contained in this coprecipitate was measured and found to be 13.5% by weight.

(ii)上記共沈物粉末を、酸素気流中で900℃5時
間仮焼し、含有炭素量を測定したところ0.5重量%で
あった。
(ii) The coprecipitate powder was calcined at 900° C. for 5 hours in an oxygen stream, and the carbon content was measured to be 0.5% by weight.

(iii)上記仮焼粉末を実施例−1と同じ条件で焼成
して焼結体を得た。この焼結体について上記と同様にそ
の特性を測定したところ、理論比重に対するかさ比重が
92%で緻密性に優れ、またTc。
(iii) The above calcined powder was fired under the same conditions as in Example-1 to obtain a sintered body. The properties of this sintered body were measured in the same manner as above, and the bulk specific gravity was 92% of the theoretical specific gravity, indicating excellent compactness and Tc.

=93に、Tce=90に、Jc=1320A/dで優
れた超電導特性を示した。
=93, Tce=90, and Jc=1320 A/d, showing excellent superconducting properties.

尚、上記実施例ではYBaCuO系酸化物超電導体の製
造方法について述べたが、B i S r C,aCu
O系その他の酸化物超電導体の場合でも同様の結果が得
られることは本発明者によって確認された。
Incidentally, in the above example, a method for manufacturing a YBaCuO-based oxide superconductor was described, but B i S r C, aCu
The inventors have confirmed that similar results can be obtained with O-based and other oxide superconductors.

(発明の効果) 叙上の如く、本発明の製造方法は、仮焼条件を特定する
ことにより仮焼粉末中の残留炭素量を1重量%以下に抑
え、これにより焼成時の反応を促進して焼結体の緻密化
を図り、また超電導特性の一層の向上を可能とするもの
であり、従ってこの種超電導体の応用開発に多大の利益
をもたらすことは必至である。
(Effects of the Invention) As described above, the manufacturing method of the present invention suppresses the amount of residual carbon in the calcined powder to 1% by weight or less by specifying the calcining conditions, thereby promoting the reaction during firing. This makes it possible to make the sintered body denser and further improve the superconducting properties, and therefore it is inevitable that it will bring great benefits to the application development of this type of superconductor.

一以上一one or more one

Claims (3)

【特許請求の範囲】[Claims] 1.金属塩を含む原料金属化合物粉末を所定量秤量混合
し、これを800〜900℃、2〜5時間酸素雰囲気中
で仮焼して残留炭素が1重量%以下の仮焼粉末を得、該
仮焼粉末を成形焼成して酸化物超電導体を得るようにし
た緻密質酸化物超電導体の製造方法。
1. A predetermined amount of raw metal compound powder containing a metal salt is weighed and mixed, and this is calcined in an oxygen atmosphere at 800 to 900°C for 2 to 5 hours to obtain a calcined powder with residual carbon of 1% by weight or less. A method for producing a dense oxide superconductor, in which an oxide superconductor is obtained by molding and firing a sintered powder.
2.原料金属の金属塩を所定量秤量して水に溶解混合し
、これに有機物を作用せしめキレート化してゲル状混合
物を得、該ゲル状混合物を加熱乾燥した後750〜90
0℃、5〜10時間酸素雰囲気中で仮焼して残留炭素が
1重量%以下の仮焼粉末を得、該仮焼粉末を成形焼成し
て酸化物超電導体を得るようにした緻密質酸化物超電導
体の製造方法。
2. A predetermined amount of the metal salt of the raw material metal is weighed, dissolved and mixed in water, and an organic substance is applied thereto to form a chelate to obtain a gel-like mixture. After heating and drying the gel-like mixture, the temperature is 750-900
A dense oxidized material is calcined in an oxygen atmosphere at 0°C for 5 to 10 hours to obtain a calcined powder with residual carbon of 1% by weight or less, and the calcined powder is shaped and fired to obtain an oxide superconductor. Method for manufacturing physical superconductors.
3.原料金属の金属塩を所定量秤量して水に溶解混合し
、これに有機酸を加えてPH調整し上記原料金属の有機
酸塩を共沈させ、該共沈物を加熱乾燥した後750〜9
00℃、5〜10時間酸素雰囲気中で仮焼して残留炭素
が1重量%以下の仮焼粉末を得、該仮焼粉末を焼成して
酸化物超電導体を得るようにした緻密質酸化物超電導体
の製造方法。
3. A predetermined amount of the metal salt of the raw material metal is weighed, dissolved and mixed in water, an organic acid is added thereto to adjust the pH, the organic acid salt of the raw material metal is coprecipitated, and the coprecipitate is heated and dried. 9
A dense oxide obtained by calcining in an oxygen atmosphere at 00°C for 5 to 10 hours to obtain a calcined powder with residual carbon of 1% by weight or less, and then sintering the calcined powder to obtain an oxide superconductor. Method for manufacturing superconductors.
JP1013692A 1989-01-23 1989-01-23 Production of dense oxide superconductor Pending JPH02196053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1013692A JPH02196053A (en) 1989-01-23 1989-01-23 Production of dense oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1013692A JPH02196053A (en) 1989-01-23 1989-01-23 Production of dense oxide superconductor

Publications (1)

Publication Number Publication Date
JPH02196053A true JPH02196053A (en) 1990-08-02

Family

ID=11840244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1013692A Pending JPH02196053A (en) 1989-01-23 1989-01-23 Production of dense oxide superconductor

Country Status (1)

Country Link
JP (1) JPH02196053A (en)

Similar Documents

Publication Publication Date Title
Song et al. Rapid Formation of the 110 K Phase in BI‐Pb‐Sr‐Ca‐Cu‐O through Freeze‐Drying Powder Processing
Kayser et al. Preparation of High TC YBa 2 Cu 3 O 7− x Powders from Nitrate and Oxalate Precursors
JPH02196053A (en) Production of dense oxide superconductor
JP2637622B2 (en) Manufacturing method of lead-based copper oxide superconductor
JPH01264930A (en) Production of oxide superconductor and applied product of said oxide superconductor
Padam et al. Synthesis and characterization of Y-Ba-Cu-O and Bi (Pb)-Sr-Ca-Cu-O superconductors from the oxine co-precipitation method
KR960003803B1 (en) Process for producing (bipb)2sr2ca2cu3o10+x superconductor
JP2637617B2 (en) Manufacturing method of superconducting material
JPH01172211A (en) Production of raw material for compound oxide superconductor
JP3164392B2 (en) Manufacturing method of oxide superconductor
JPH0196016A (en) Starting material for conjugate oxide superconductor and production thereof
JP2866484B2 (en) Manufacturing method of oxide superconductor
JPH01320226A (en) Production of bismuth-containing oxide superconducting material
JPH01160855A (en) Production of superconductor
JPH0459654A (en) Oxide superconductor
JPH04275971A (en) Production of oxide superconductor
JPH0397658A (en) Superconductor composition
JPH026304A (en) Production of compound oxide
JPH02196058A (en) Production of superconductor
Ataev et al. Preparation of Dense Pb, sb-Substituted Htsc Bi-2223 Ceramics by a Citrate Combustion Route
ROUTE PREPARATION OF DENSE Pb, Sb-SUBSTITUTED HTSC Bi-2223
JPH07102968B2 (en) Manufacturing method of superconducting material
JPH02239103A (en) Precursor solution for superconducting ceramics
JPH0280304A (en) Production of oxide superconducting material
JPH04124033A (en) Vanadium-containing superconducting substance and its production