JPH02196043A - Shaped body for hermetically enclosing glass powder and method for feeding glass powder into forming mold - Google Patents

Shaped body for hermetically enclosing glass powder and method for feeding glass powder into forming mold

Info

Publication number
JPH02196043A
JPH02196043A JP1427089A JP1427089A JPH02196043A JP H02196043 A JPH02196043 A JP H02196043A JP 1427089 A JP1427089 A JP 1427089A JP 1427089 A JP1427089 A JP 1427089A JP H02196043 A JPH02196043 A JP H02196043A
Authority
JP
Japan
Prior art keywords
glass powder
mold
molded body
forming mold
shaped body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1427089A
Other languages
Japanese (ja)
Inventor
Yoshihiro Nakagawa
中川 義弘
Yoshito Seto
瀬戸 良登
Akitoshi Okabayashi
昭利 岡林
Hiroyuki Kimura
広之 木村
Takashi Shikata
志方 敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP1427089A priority Critical patent/JPH02196043A/en
Publication of JPH02196043A publication Critical patent/JPH02196043A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To efficiently feed glass powder into a forming mold by filling the glass powder into a vessel made of a plastic film and carrying out degassing and hermetical sealing. CONSTITUTION:Glass powder to be fed into the forming mold is filled into a vessel made of a plastic film and degassing and hermetical sealing are carried out to form a hermetically sealed shaped body of the glass powder. When the glass powder is fed into the forming mold, the feed is carried out by each shaped body unit and leveling work after feed is made unnecessary. If the outer surface of the shaped body is coated with a releasing agent before feed into the forming mold, the next shaped body can directly be fed into the forming mold without cooling the hot mold immediately after a molded body of glass powder is taken out.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、建材や壁材等として使用される結晶化ガラス
材の製造に際し、成形型に装入する原料の形状および該
原料の供給方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to the shape of a raw material charged into a mold and a method for supplying the raw material in the production of crystallized glass materials used as building materials, wall materials, etc. Regarding.

(従来の技術) ガラス粉末を原料とし、熱処理によって結晶化ガラス材
を得る好適な方法としての下記のものがある。
(Prior Art) The following is a suitable method for obtaining a crystallized glass material by heat treatment using glass powder as a raw material.

すなわち、軟化点の異なるガラス粉末から成る混合粉末
を、低軟化点ガラス粉末の軟化点以上でかつ同粉末の結
晶化開始温度以下の温度(以下、緻密化温度という。)
で加熱すると共に加圧成形することによってガラス粉末
成形体を得る。そして、該ガラス粉末成形体を成形用金
型から取り出し、高軟化点ガラス粉末の軟化点以下の温
度で熱処理して結晶化を図り、結晶化ガラス材を得る方
法である。この方法によれば、高軟化点ガラス粉末の粒
子表面に沿って、粉末中の空気が抜は出るため、気孔や
気泡がほとんど残留しない緻密な結晶化ガラス材が得ら
れる。
That is, a mixed powder consisting of glass powders with different softening points is heated at a temperature above the softening point of the low softening point glass powder and below the crystallization start temperature of the same powder (hereinafter referred to as the densification temperature).
A glass powder molded body is obtained by heating and pressure molding. Then, the glass powder molded body is taken out from the molding die and heat treated at a temperature below the softening point of the high softening point glass powder to achieve crystallization, thereby obtaining a crystallized glass material. According to this method, the air in the powder is removed along the particle surface of the high softening point glass powder, so that a dense crystallized glass material with almost no remaining pores or air bubbles can be obtained.

上記の方法を具体的に実施するには、まず、第3図に示
すように成形用金型21の内周面に、型の剥離のために
アルミナ粉末や黒鉛粉末などの離型材を塗布する。
To specifically carry out the above method, first, as shown in FIG. 3, a mold release agent such as alumina powder or graphite powder is applied to the inner peripheral surface of the molding die 21 in order to release the mold. .

次に、前記成形用金型21に、ガラス粉末成形体の原料
である前記混合粉末23の所定量を投入した後、上型2
2を嵌入する。そして、成形用金型21ごと熱処理炉に
装入し、緻密化温度で所定時間保持するとガラス粉末成
形体が得られる。徐冷後、成形用金型21からガラス粉
末成形体を取り出す、該成形体は、結晶化のための熱処
理工程に移行される。一方、成形用金型21は、再び離
型材が塗布され、上述の一連のガラス粉末成形体製作工
程で繰り返し使用される。
Next, after putting a predetermined amount of the mixed powder 23, which is the raw material for the glass powder compact, into the molding mold 21, the upper mold 21
Insert 2. Then, the mold 21 is placed in a heat treatment furnace and held at the densification temperature for a predetermined period of time to obtain a glass powder molded body. After slow cooling, the glass powder molded body is taken out from the molding die 21, and the molded body is transferred to a heat treatment step for crystallization. On the other hand, the molding die 21 is again coated with a mold release agent and used repeatedly in the series of glass powder compact production steps described above.

(発明が解決しようとする課題) 上記の結晶化ガラス材の製造方法には下記の問題点があ
る。すなわち、前記混合粉末の成形用金型21への投入
は、振動フィーダーやスクリュコンベヤ等の供給装置に
よって行われるが、供給能率の悪さもさることながら成
形用金型21に混合粉末23を投入した後、上型22を
嵌入する前に粉体の充填密度を上げると共にその表面を
平坦にする、所謂ならし作業を行なう必要があり、生産
性が極めて悪い。
(Problems to be Solved by the Invention) The above method for producing a crystallized glass material has the following problems. That is, although the mixed powder is charged into the molding die 21 using a feeding device such as a vibrating feeder or a screw conveyor, the mixed powder 23 is fed into the molding die 21 due to poor feeding efficiency. After that, before inserting the upper mold 22, it is necessary to perform a so-called leveling operation to increase the packing density of the powder and flatten the surface, resulting in extremely low productivity.

また、ガラス粉末成形体を取り出した後の成形用金型2
1は、通常、500〜600℃と高温であるため、その
ままで塗型材を塗布しようとしても、分散媒(通常、水
が使用される。)が瞬時に沸騰し、塗型材の均一な塗布
ができない。
In addition, the molding die 2 after taking out the glass powder compact
1 is usually at a high temperature of 500 to 600°C, so if you try to apply the coating material as it is, the dispersion medium (usually water is used) will boil instantly, making it impossible to apply the coating material uniformly. Can not.

従って、連続的かつ効率的にガラス粉末の成形を行なう
には、冷却装置によって、成形用金型21を塗型の塗布
が可能な200℃以下の温度に強制的に冷却する工程が
必要となる。
Therefore, in order to continuously and efficiently mold glass powder, it is necessary to forcibly cool the molding die 21 to a temperature of 200° C. or lower, at which the mold can be coated, using a cooling device. .

本発明は上記の問題点に鑑みてなされたもので、ガラス
粉末を成形型に高能率で供給できる手段および高温の成
形型であってもガラス粉末を連続的かつ効率的に供給す
ることができる方法を提供することを目的としている。
The present invention has been made in view of the above-mentioned problems, and is capable of supplying glass powder to a mold with high efficiency, and is capable of continuously and efficiently supplying glass powder even to a high-temperature mold. The purpose is to provide a method.

(課題を解決するための手段) 上記目的を達成するためになされた本発明は、成形型に
供給すべきガラス粉末を、ガラス粉末が合成樹脂製のフ
ィルム6によって形成された容器内に収納され脱気され
た状態で密封されている密封成形体11としたものであ
る。また、該密封成形体を成形型に供給するに際し、該
密封成形体11の外周面に離型材16を塗布するもので
ある。
(Means for Solving the Problems) The present invention, which has been made to achieve the above object, stores glass powder to be supplied to a mold in a container formed by a synthetic resin film 6. The sealed molded body 11 is sealed in a deaerated state. Further, when the sealed molded body is supplied to the mold, a mold release material 16 is applied to the outer peripheral surface of the sealed molded body 11.

(作 用) 本発明の密封成形体は、ガラス粉末が合成樹脂フィルム
によって被包されかつ脱気された状態となっているので
、有機バインダーを介することなく、ガラス粉末同士は
密に接触して摩擦によって保形された状態となっている
。従って、ガラス粉末を成形型に供給するに際しては、
成形体単位で供給すればよく、供給後のならし作業も不
要である。尚、加熱成形時に前記合成樹脂フィルムは速
やかに熱分解し消失する。もし、ガラス粉末の保形を有
機バインダーで行ったとすると、加熱成形時に有機バイ
ンダーを熱分解させるのに多大の時間を要し生産性の低
下を余儀な(される。
(Function) In the sealed molded article of the present invention, the glass powder is encapsulated in a synthetic resin film and degassed, so the glass powder is in close contact with each other without an organic binder. It is held in shape by friction. Therefore, when supplying glass powder to the mold,
It is sufficient to supply the molded product in units of molded bodies, and there is no need for a break-in operation after supply. Incidentally, during hot molding, the synthetic resin film quickly thermally decomposes and disappears. If the shape of the glass powder is maintained using an organic binder, it will take a long time to thermally decompose the organic binder during hot molding, which will inevitably lead to a decrease in productivity.

そして、成形型投入前の前記密封成形体11の外周に、
あらかじめ離型材16を塗布しておくと、ガラス粉末成
形体が取り出された直後の高温の成形型に対しても、該
成形型を冷却することなく密封成形体11をそのまま供
給することができる。すなわち、高温の金型にガラス粉
末を供給することができ、生産性が向上する。
Then, on the outer periphery of the sealed molded body 11 before being introduced into the mold,
If the mold release material 16 is applied in advance, the sealed molded body 11 can be supplied as is without cooling the mold, even after the glass powder molded body has been removed from the mold at a high temperature. That is, glass powder can be supplied to a high-temperature mold, improving productivity.

(実施例) 本発明のガラス粉末密封成形体11について、その製作
方法に従って以下に説明する。
(Example) The glass powder sealed molded body 11 of the present invention will be described below according to its manufacturing method.

第1図は本発明に係る密封成形体11の製作方法の1例
を示す説明図である。まず、軟化点の異なるガラス粉末
AおよびBを所定の配合割合でホッパー3に投入する。
FIG. 1 is an explanatory view showing one example of a method for manufacturing a sealed molded body 11 according to the present invention. First, glass powders A and B having different softening points are charged into the hopper 3 at a predetermined mixing ratio.

投入されたガラス粉末は、ホッパ−3内部で混合されて
混合粉末15となり、ホッパ−3下部で、押し出しモー
ター4によって、成形型部13の開口部に向って押し出
される。一方、成形型部13の開口部には、合成樹脂製
フィルム6で形成され、一端が融着封止された筒状シー
トが装着しである。そして脱気孔5を介して混合粉末1
5中の空気を脱気しながら前記成形型部13の開口部よ
り前記筒状シート内に混合粉末が押し出されることによ
って、合成樹脂製フィルム6に包まれかつ脱気されて固
形状となった混合粉末15の気密な充てん体14を得る
ことができる。そして搬送口−シー9上を移動させなが
ら、該充てん体14の形状を、厚さおよび幅の調整ロー
ラー7.8によって成形用金型12に収納可能な所定の
形状に矯正した後、脱気状態を保ちつつ切断融着装置1
0によって金型寸法に合して切断する。この際、フィル
ム内に空気が入らないように切断口を密封しながら切断
作業を行なう、このような作業を連続して行なうことに
より、密封成形体11が連続的に製作される。
The introduced glass powder is mixed inside the hopper 3 to form a mixed powder 15, which is pushed out toward the opening of the mold section 13 by the extrusion motor 4 at the bottom of the hopper 3. On the other hand, a cylindrical sheet made of a synthetic resin film 6 and having one end fused and sealed is attached to the opening of the mold part 13. Then, the mixed powder 1 is passed through the deaeration hole 5.
By extruding the mixed powder into the cylindrical sheet through the opening of the mold part 13 while deaerating the air in the powder 5, the mixed powder was wrapped in a synthetic resin film 6 and deaerated to become solid. An airtight packing body 14 of mixed powder 15 can be obtained. Then, while moving on the transport port-sea 9, the shape of the packed body 14 is corrected by thickness and width adjustment rollers 7.8 into a predetermined shape that can be stored in the mold 12, and then degassed. Cutting and fusing device 1 while maintaining the condition
Cut according to the mold size using 0. At this time, the cutting operation is performed while sealing the cut opening to prevent air from entering the film. By continuously performing such an operation, the sealed molded body 11 is continuously manufactured.

上記の製作例では、混合粉末の密封成形体11を連続的
に製作する方法を示したが、これに限定されるものでな
く、たとえば、合成樹脂製のフィルムまたはシートによ
って成形用金型12に収納可能な形状の下型容器に所定
量の混合粉末15を供給し、脱気しながら合成樹脂製の
フィルムを融着密封して、所定の形状および充てん密度
を有する密封成形体を形成してもよい。
In the above manufacturing example, a method of continuously manufacturing the sealed molded body 11 of mixed powder was shown, but the method is not limited to this. A predetermined amount of mixed powder 15 is supplied to a lower mold container with a shape that can be stored, and a synthetic resin film is fused and sealed while degassing to form a sealed molded body having a predetermined shape and packing density. Good too.

上記で作成された密封成形体11は、内周面に離型材が
塗布された成形用金型12に成形体単位で供給され、熱
処理炉中で緻密化温度(600〜800°C)で加熱さ
れると共に加圧されてガラス粉末成形体とされる。
The sealed molded body 11 created above is supplied as a molded body unit to a molding die 12 whose inner peripheral surface is coated with a mold release agent, and heated in a heat treatment furnace at a densification temperature (600 to 800°C). It is then pressed and made into a glass powder molded body.

前記密封成形体11を形成するための合成樹脂製フィル
ム6としては、該フィルムの厚さは成形用金型12への
供給に際して供給雰囲気の温度などによって早期に軟化
あるいは破損して密封成形体としての取り扱いに支障を
きたすことがない程度の厚さ(通常、0.05〜IIm
程度のものが用いられる。
As for the synthetic resin film 6 for forming the sealed molded body 11, the thickness of the film is such that when it is supplied to the molding die 12, it may be softened or damaged early due to the temperature of the supply atmosphere, etc., so that the sealed molded body is not formed. Thickness that does not interfere with handling (usually 0.05~IIm)
A certain degree is used.

)であればよい。また、材質は、成形用金型12へ供給
後前記緻密化温度において速やかに完全に熱分解すると
共に消失してガラス粉末成形体の形成に悪影響を及ぼす
ことのない材質から適宜選択使用される。フィルム材質
例としては、例えば、ポリエチレン、ポリプロピレンが
あげられる。
). Further, the material is appropriately selected and used from materials that completely thermally decompose and disappear immediately at the densification temperature after being supplied to the molding die 12, and that do not adversely affect the formation of the glass powder compact. Examples of film materials include polyethylene and polypropylene.

尚、密封成形体の容器としては、本実施例のような合成
樹脂製のフィルム6だけでなく、合成樹脂製フィルムと
金属箔や紙などの複合フィルムを適宜使用してもよい。
As the container for the sealed molded product, not only the synthetic resin film 6 as in this embodiment, but also a composite film of a synthetic resin film, metal foil, paper, etc. may be used as appropriate.

この場合、金属箔などは合成樹脂フィルムのように前記
緻密化温度では完全に分解せず、ガラス粉末成形体の外
周に残留するが、ガラス粉末成形体を結晶化熱処理した
後、研磨などの方法によって適宜容易に除去されるので
、結晶化ガラス材を製作するうえで、特に障害とはなら
ない。
In this case, unlike synthetic resin films, the metal foil does not completely decompose at the densification temperature and remains on the outer periphery of the glass powder molded body, but after the glass powder molded body is heat-treated for crystallization, polishing or other methods are used. Since it can be easily removed as needed, it does not pose a particular hindrance to the production of crystallized glass materials.

また、本実施例において結晶化ガラス材の原料となるガ
ラス粉末には、下記の主成分(重量%)を含有するガラ
ス粉末を用いるのが好適である。
Further, in this example, it is preferable to use a glass powder containing the following main components (% by weight) as a raw material for the crystallized glass material.

■ 低軟化点ガラス粉末 Sif! ? 65〜80%、CaO:5〜10%Na
tO+KzO: 10〜20%、MgO:2〜8%■ 
高軟化点ガラス粉末 5iOt : 65〜80%、/Vzo3:25%以下
NatO十KzO:  5〜15% そして、上記組成のガラス粉末の他、上記組成の一部に
着色成分を含む高、低軟化点着色ガラス粉末から成る着
色混合粉末や、前記■および■のガラス粉末から成る混
合粉末に金属酸化物の着色剤(たとえば、Feze4、
Coo 、CrzOz )を添加混合した添加混合粉末
を使用してもよい、この場合には、各種の色模様の混合
粉末を内存したガラス粉末密封成形体が得られる。そし
て、該密封成形体を所定の熱処理工程によって結晶化ガ
ラス材として形成すれば、種々の色模様の結晶化ガラス
材を簡単に得ることができる。
■ Low softening point glass powder Sif! ? 65-80%, CaO: 5-10% Na
tO+KzO: 10-20%, MgO: 2-8%■
High softening point glass powder 5iOt: 65 to 80%, /Vzo3: 25% or less NatO and KzO: 5 to 15% And, in addition to the glass powder with the above composition, high and low softening glass powders containing coloring components as part of the above composition A colored mixed powder consisting of point-colored glass powder or a mixed powder consisting of the glass powders (1) and (2) above may be mixed with a metal oxide coloring agent (for example, Feze4,
Coo, CrzOz) may be used. In this case, a glass powder sealed molded body containing mixed powder of various color patterns can be obtained. If the sealed molded body is formed into a crystallized glass material through a predetermined heat treatment process, crystallized glass materials with various color patterns can be easily obtained.

さらに、本発明の密封成形体に被包されるガラス粉末は
、上述のような混合粉末に限らず、特定組成の単一種類
のガラス粉末を用いてもよい、たとえば、特開昭48−
78217号公報に開示されている、所謂、集積法にお
いて特定ガラスの粉粒体を用いて密封成形体を形成すれ
ば、耐火性成形型にガラス粉末体単位で連続的にかつ簡
単に供給することができる。
Further, the glass powder to be encapsulated in the sealed molded body of the present invention is not limited to the above-mentioned mixed powder, but a single type of glass powder with a specific composition may be used.
If a sealed molded body is formed using a specific glass powder in the so-called accumulation method disclosed in Japanese Patent No. 78217, the glass powder can be continuously and easily supplied to a fire-resistant mold in units of glass powder. Can be done.

尚、本実施例において密封成形体の供給に際しては、離
型材塗布後でも成形用金型の温度は通常100℃以上あ
るが、上述のように該成形体の成形用金型への供給操作
が簡単で迅速に作業ができるうえ、成形用金型表面に塗
布された離型材が金型の熱輻射を防ぎ、万一密封成形体
が金型に接触しても離型材の断熱作用によって該成形体
外周面の合成樹脂フィルムを保護するので、密封成形体
が成形金型への供給途中で破損する心配はない。
In this example, when supplying the sealed molded body, the temperature of the molding die is usually 100°C or higher even after applying the mold release agent, but as described above, the operation of supplying the molded body to the molding die is In addition to being easy and quick to work with, the mold release material applied to the surface of the mold prevents heat radiation from the mold, and even if the sealed molded product comes into contact with the mold, the heat insulating action of the mold release material prevents the molding. Since the synthetic resin film on the outer peripheral surface of the body is protected, there is no fear that the sealed molded body will be damaged during feeding into the molding die.

第2図は、密封成形体11の外周面に離型材16を塗布
した例を示している。離型材16としては、前記金型に
塗布したものと同様のものでよく、前記緻密化温度(6
00〜800″C)において化学的に安定な材料(たと
えば、アルミナ、黒鉛)の微粉末を適当な分散媒(通常
、水が用いられる)に分散させたものが適宜使用される
FIG. 2 shows an example in which a mold release material 16 is applied to the outer peripheral surface of the sealed molded body 11. As the mold release material 16, the same material as that applied to the mold may be used, and the mold release material 16 may be the same as that applied to the mold.
A fine powder of a chemically stable material (eg, alumina, graphite) dispersed in a suitable dispersion medium (usually water) is used as appropriate.

上記の離型材16は、密封成形体11の外周面全体に均
一に塗布されていることが望ましく、塗布厚さも0.0
5m+〜0.5閣程度であればよい、そして、該離型材
16乾燥後、成形用金型に供給される。
It is desirable that the above-mentioned mold release material 16 is uniformly applied to the entire outer peripheral surface of the sealed molded body 11, and the application thickness is also 0.0
The release material 16 may have a thickness of about 5 m+ to 0.5 m+, and after drying, it is supplied to a mold for molding.

上述のように、密封成形体11の外周面にあらかじめ離
型材16を塗布することによって、金型の冷却および離
型材の塗布工程を必要とすることなく、ガラス成形体が
取り出された直後の高温の成形用金型にそのまま密封成
形体を供給することができる。
As described above, by applying the mold release material 16 on the outer circumferential surface of the sealed molded body 11 in advance, the glass molded body can be heated at high temperatures immediately after being taken out without requiring a cooling of the mold and a process of applying a mold release material. The sealed molded body can be directly supplied to the mold for molding.

また、高温で安定な離型材16が外周に塗布されている
ことによって、密封成形体11を成形用金型に供給する
際に、該成形体11を形成する合成樹脂製フィルム6が
早期に軟化あるいは溶解することがさらに防止されるの
で、高温の成形用金型への密封成形体の供給作業を安全
かつ確実に行なうことができる。
In addition, since the mold release material 16, which is stable at high temperatures, is applied to the outer periphery, the synthetic resin film 6 forming the molded body 11 softens quickly when the sealed molded body 11 is supplied to the molding die. Alternatively, since melting is further prevented, the operation of supplying the sealed molded body to a high-temperature molding die can be carried out safely and reliably.

(発明の効果) 上述のように本発明の密封成形体11は、ガラス粉末が
合成樹脂製のフィルム6によって形成された容器内に収
納されかつ脱気された状態で密封されているので、所定
の形状に保形されかつ充てん密度も高く、成形型への供
給に際して、成形体単位で簡単に供給することができ、
しかも供給後のならし作業も不要であり、ガラス粉末を
連続的かつ効率的に成形型に供給することができ、生産
性が極めて高い。
(Effects of the Invention) As described above, in the sealed molded body 11 of the present invention, the glass powder is stored in the container formed by the synthetic resin film 6 and sealed in a deaerated state. It maintains its shape and has a high packing density, so it can be easily fed in units of molded bodies when feeding it to the mold.
Moreover, there is no need for a break-in operation after supply, and the glass powder can be continuously and efficiently supplied to the mold, resulting in extremely high productivity.

さらに、本発明の密封成形体11は、ガラス粉末の供給
装置による成形型へのガラス粉末供給工程と全く別の工
程で製作することができる。従って、品種の異なる密封
成形体を事前に製作しておくことができ、必要に応じて
必要な成形体を熱処理・することにより所期の結晶化ガ
ラス材の製造が可能であり、多品種少量生産に適応でき
る。
Furthermore, the sealed molded body 11 of the present invention can be manufactured in a process completely different from the process of supplying glass powder to a mold using a glass powder supply device. Therefore, sealed molded bodies of different types can be manufactured in advance, and by heat-treating the necessary molded bodies as necessary, it is possible to manufacture the desired crystallized glass material, making it possible to produce a wide variety of products in small quantities. Can be adapted to production.

また、本発明の密封成形体11の外周面に、あらかじめ
離型材16を塗布しておくと、ガラス粉末成形体が取り
出された直後の高温の成形型に対しても、密封成形体(
すなわち、ガラス粉末)をそのまま供給することができ
る。従って、成形型を離型材16塗布温度まで特に強制
冷却する必要がなく、また成形型の昇温時間を短縮する
ことができ、生産効率が高い。
Moreover, if the mold release agent 16 is applied in advance to the outer circumferential surface of the sealed molded body 11 of the present invention, the sealed molded body (
That is, glass powder) can be supplied as is. Therefore, there is no need to forcefully cool the mold to the temperature at which the mold release material 16 is applied, and the time required to raise the temperature of the mold can be shortened, resulting in high production efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る密封成形体の製作方法の1例を示
す説明図、第2図は密封成形体の外周面に離型材を塗布
した該成形体の一部省略縦断面図、第3図は従来例にお
ける成形型へのガラス粉末の供給状況を示す縦断面説明
図である。 6−・合成樹脂製フィルム、11−密封成形体、16−
離型材。 特許出願人 久保田鉄工株式会社
FIG. 1 is an explanatory diagram showing an example of the method for producing a sealed molded body according to the present invention, FIG. 2 is a partially omitted longitudinal cross-sectional view of the molded body with a release agent applied to the outer peripheral surface of the sealed molded body, and FIG. FIG. 3 is an explanatory longitudinal cross-sectional view showing the state of supply of glass powder to a mold in a conventional example. 6-・Synthetic resin film, 11- Sealed molded body, 16-
Mold release material. Patent applicant Kubota Iron Works Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)ガラス粉末を融着成形するための成形型に供給さ
れるガラス粉末の成形体であって、 該成形体は、ガラス粉末が合成樹脂製のフィルム(6)
によって形成された容器内に収納され脱気された状態で
密封されている密封成形体(11)であることを特徴と
するガラス粉末密封成形体。
(1) A molded body of glass powder supplied to a mold for fusion molding glass powder, the molded body comprising a film (6) in which the glass powder is made of a synthetic resin.
1. A sealed molded article of glass powder, characterized in that it is a sealed molded article (11) which is housed in a container formed by and sealed in a deaerated state.
(2)請求項(1)の密封成形体(11)の外周面に離
型材(16)を塗布し、該密封成形体(11)を成形型
に供給することを特徴とするガラス粉末の成形型への供
給方法。
(2) Molding of glass powder characterized in that a mold release material (16) is applied to the outer peripheral surface of the sealed molded body (11) according to claim (1), and the sealed molded body (11) is supplied to a mold. How to feed the mold.
JP1427089A 1989-01-23 1989-01-23 Shaped body for hermetically enclosing glass powder and method for feeding glass powder into forming mold Pending JPH02196043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1427089A JPH02196043A (en) 1989-01-23 1989-01-23 Shaped body for hermetically enclosing glass powder and method for feeding glass powder into forming mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1427089A JPH02196043A (en) 1989-01-23 1989-01-23 Shaped body for hermetically enclosing glass powder and method for feeding glass powder into forming mold

Publications (1)

Publication Number Publication Date
JPH02196043A true JPH02196043A (en) 1990-08-02

Family

ID=11856399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1427089A Pending JPH02196043A (en) 1989-01-23 1989-01-23 Shaped body for hermetically enclosing glass powder and method for feeding glass powder into forming mold

Country Status (1)

Country Link
JP (1) JPH02196043A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6317221B1 (en) 1994-08-22 2001-11-13 Nikon Corporation Image reading device and method
JP2011091068A (en) * 2009-10-20 2011-05-06 Sony Corp Luminescent color conversion member and method of manufacturing the same, and light-emitting element
KR20110117102A (en) * 2008-12-23 2011-10-26 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Moldable articles, method of making same and method of molding
JP2014099625A (en) * 2013-12-17 2014-05-29 Dexerials Corp Luminous color conversion member, manufacturing method thereof, and light-emitting element
JP2016027168A (en) * 2015-09-16 2016-02-18 デクセリアルズ株式会社 Method for manufacturing emission color conversion member

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6317221B1 (en) 1994-08-22 2001-11-13 Nikon Corporation Image reading device and method
US6897980B2 (en) * 1994-08-22 2005-05-24 Nikon Corporation Image reading device and method
KR20110117102A (en) * 2008-12-23 2011-10-26 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Moldable articles, method of making same and method of molding
JP2012513371A (en) * 2008-12-23 2012-06-14 スリーエム イノベイティブ プロパティズ カンパニー Moldable article, method of making the same, and molding method
EP2376395A4 (en) * 2008-12-23 2014-04-09 3M Innovative Properties Co Moldable articles, method of making same and method of molding
JP2011091068A (en) * 2009-10-20 2011-05-06 Sony Corp Luminescent color conversion member and method of manufacturing the same, and light-emitting element
JP2014099625A (en) * 2013-12-17 2014-05-29 Dexerials Corp Luminous color conversion member, manufacturing method thereof, and light-emitting element
JP2016027168A (en) * 2015-09-16 2016-02-18 デクセリアルズ株式会社 Method for manufacturing emission color conversion member

Similar Documents

Publication Publication Date Title
TWI252843B (en) Method for manufacture of a component made of opaque synthetic quartz glass, and quartz glass tube manufactured according to the method
JPS5964198A (en) Production of granular structure
JPH02196043A (en) Shaped body for hermetically enclosing glass powder and method for feeding glass powder into forming mold
EP0258457B1 (en) Process for manufacturing glass
KR930009955A (en) Ceramic material
TW328545B (en) Process for the production of products of light cellular plastic with closed cells
JPH02113912A (en) Production of composite foamed molded body
JPH11329353A (en) Luminescent container and its manufacture
JPS59179318A (en) Biaxial orientation blow molding method of polypropylene
US2876097A (en) Aluminum filters and method of production
JPH0428210B2 (en)
US3798740A (en) Method of extruding a porous compacted mass of metal powder having a sealed outer surface
US2864128A (en) Apparatus for molding inlet and outlet flanges from powdered polyethylene and similar thermoplastic materials with simultaneous production of molded threads thereon
KR880011829A (en) Manufacturing method of superconducting ceramics
JP2010047449A (en) Method for molding quartz glass material using mold material
JPS6227341A (en) Production of fused glass
JPH0760803A (en) Injection molding method of green polyethylene terephthalate
JPH0220495B2 (en)
JP2629551B2 (en) Composite mold for superplastic forming and superplastic forming method
JPS60224702A (en) Production of sintered metallic body
JPH02214647A (en) Manufacture of ultra-high-molecular weight polyethylene porous material
JPS6043813A (en) Manufacture of silicon wafer
JP2945213B2 (en) Soft body packaging method
JPS58147333A (en) Blow molding method for thermosetting resin
JPS61203189A (en) Thermal energy storing molding