JPH02196028A - Production of titanium oxide fine powder - Google Patents

Production of titanium oxide fine powder

Info

Publication number
JPH02196028A
JPH02196028A JP1012982A JP1298289A JPH02196028A JP H02196028 A JPH02196028 A JP H02196028A JP 1012982 A JP1012982 A JP 1012982A JP 1298289 A JP1298289 A JP 1298289A JP H02196028 A JPH02196028 A JP H02196028A
Authority
JP
Japan
Prior art keywords
titanium oxide
titanium
powder
fine powder
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1012982A
Other languages
Japanese (ja)
Other versions
JP2805202B2 (en
Inventor
Hiroyoshi Takagi
弘義 高木
Masanobu Tanno
正信 淡野
Yoshitaka Kubota
吉孝 窪田
Yuji Hoshi
星 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
National Institute of Advanced Industrial Science and Technology AIST
Tosoh Corp
Original Assignee
Agency of Industrial Science and Technology
Nissan Chemical Corp
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Nissan Chemical Corp, Tosoh Corp filed Critical Agency of Industrial Science and Technology
Priority to JP1012982A priority Critical patent/JP2805202B2/en
Publication of JPH02196028A publication Critical patent/JPH02196028A/en
Application granted granted Critical
Publication of JP2805202B2 publication Critical patent/JP2805202B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain titanium oxide fine powder excellent in sinterability by dispersing titanium hydroxide in an organic solvent and distilling this soln. at azeotropic temp. or more and separating hydrated titanium oxide from the mother liquor and calcining it. CONSTITUTION:The aimed titanium oxide fine powder is obtained by dispersing titanium hydroxide in an organic solvent and thereafter distilling this soln. at azeotropic temp. or more and separating hydrated titanium oxide obtained therein from the mother liquor and then drying and calcining it. The utilized titanium hydroxide is obtained by such a method that alkali is directly added to a titanium tetrahalide or titanium sulfate soln. or these compds. are allowed to react with water and thereafter alkali is added to the reacted products. Aqueous ammonia is preferably utilized as alkali because the high-purity product is obtained. In this method for producing titanium oxide fine powder, reaction of the soln. is performed in a vessel and toxic gas is unutilized and ungenerated and therefore the fine granular powder can be produced without causing the possibilities of generation of environmental pollution. Further this method is economical because the need for pulverization is eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、酸化チタンの超微粒子から成る粉体の製造方
法に関するものである。本発明により得られる酸化チタ
ン粉体は、PZT、PTC等の高品位な電子セラミック
スの製造原料や高級化粧品原料、プラスチック添加剤、
塗料、インキ、薬品等の原料として利用されるものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing powder consisting of ultrafine particles of titanium oxide. The titanium oxide powder obtained by the present invention can be used as a raw material for manufacturing high-grade electronic ceramics such as PZT and PTC, as a raw material for high-grade cosmetics, as a plastic additive,
It is used as a raw material for paints, inks, chemicals, etc.

〔従来の技術1 酸化チタン粉体の製造方法としては、従来から硫酸法と
塩素法がある。硫酸法は、イルメナイトを硫酸で蒸解し
た後、分離された含水酸化チタンを洗浄の後、800〜
1000℃で仮焼、粉砕して粉体としている。塩素法で
は、TiCβ4を1000℃位で酸素と反応させて酸化
チタン粒子を生成させて粉体を製造している。
[Prior Art 1] Conventionally, methods for producing titanium oxide powder include a sulfuric acid method and a chlorine method. In the sulfuric acid method, after ilmenite is digested with sulfuric acid and the separated hydrous titanium oxide is washed,
It is calcined at 1000°C and ground into powder. In the chlorine method, TiCβ4 is reacted with oxygen at about 1000° C. to produce titanium oxide particles to produce powder.

硫酸法では、含水酸化チタンを1000℃位の温度で焼
いているため、生成した粒子は大きく成長し、堅く凝集
している。従って、その後の粉砕操作が必要であるが、
機械的粉砕では超微粒子まで粉砕することは現実には不
可能であり、また、粉砕によって不純物のはいる確度が
高く、純度の高い焼結性の優れた粉体な製造することは
困離である。塩素法は純度の高い粉体な作れるが、反応
温度が高いためやはり生成粒子が大きく、活性のある微
粒子粉体な作ることは出来ない。また、塩素法は塩素ガ
スを利用するため反応装置の腐食が激しく、その維持管
理に多くの費用と労力を要する。
In the sulfuric acid method, hydrous titanium oxide is baked at a temperature of about 1000°C, so the particles produced grow large and aggregate tightly. Therefore, a subsequent crushing operation is necessary, but
It is actually impossible to grind down to ultra-fine particles using mechanical grinding, and there is a high probability that impurities will be introduced through grinding, making it difficult to produce powder with high purity and excellent sinterability. be. Although the chlorine method can produce powder with high purity, the reaction temperature is high, so the particles produced are large, and it is not possible to produce active microparticle powder. In addition, since the chlorine method uses chlorine gas, the reaction equipment is severely corroded, and its maintenance requires a lot of cost and labor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したように、従来の技術ではいずれも高温熱処理を
しているため、生成された微粒子が強固に結合して大き
な粒子となり、焼結性に優れた高純度の超微粒子粉体を
製造することができなかった。
As mentioned above, all conventional techniques involve high-temperature heat treatment, which makes it possible for the generated fine particles to firmly combine to form large particles, producing high-purity ultrafine powder with excellent sinterability. I couldn't do it.

本発明者等は、このような高温での熱処理を必要とせず
に超微粒子粉体を製造できる方法を鋭意研究して本発明
を完成した。
The present inventors completed the present invention by intensively researching a method for producing ultrafine powder without requiring heat treatment at such high temperatures.

本発明の目的は、従来技術では得られない焼結性の優れ
た高純度の超微粒子(約0.ll1m以下)から成る粉
体を提供することにある。
An object of the present invention is to provide a powder made of highly pure ultrafine particles (approximately 0.11 m or less) with excellent sinterability that cannot be obtained using conventional techniques.

本発明による超微粒子から成る焼結性の良い粉体な利用
することによって、PLZT、P  Z  T  、 
 B  a  T  I  O3、P  b  T  
1 0 3T i Oz等のエレク1−ロセラミックス
を従来よりも効率良く、しかも従来のものより品質の優
れたものを製造することができる。このほか、本発明に
よる粉体は超微粒子より成るため、高級化粧用原料等に
も使用することができ、従来品よりも紫外線特性におい
て優れた製品を製造することができる。
By utilizing the powder with good sinterability made of ultrafine particles according to the present invention, PLZT, PZT,
B a T I O3, P b T
It is possible to manufacture electroceramics such as 103T i Oz more efficiently than before and with better quality than conventional ones. In addition, since the powder according to the present invention is composed of ultrafine particles, it can be used as a raw material for high-grade cosmetics, etc., and it is possible to manufacture products that have better ultraviolet properties than conventional products.

本発明は、溶液反応は容器内で行い、塩素のような毒性
のあるガスの使用も発生もないため公害発生の心配もな
く微粒子粉体を製造することができる。また、本発明は
従来技術のような粉砕をする必要がないため経済的であ
る。
In the present invention, the solution reaction is carried out in a container, and since toxic gases such as chlorine are not used or generated, fine particle powder can be produced without worrying about pollution. Furthermore, the present invention is economical because it does not require pulverization as in the prior art.

〔課題を解決するための手段〕[Means to solve the problem]

即ち、本発明の第一発明は、水酸化チタンを有機溶剤中
に分散させた後、共沸温度以上で蒸留し、ここに得られ
る水和酸化チタンを母液から分離した後、乾燥、仮焼す
ることを特徴とする酸化チタン微粉体の製造方法に関す
る。
That is, in the first aspect of the present invention, titanium hydroxide is dispersed in an organic solvent, then distilled at a temperature higher than the azeotropic temperature, and the resulting hydrated titanium oxide is separated from the mother liquor, followed by drying and calcining. The present invention relates to a method for producing fine titanium oxide powder, characterized in that:

また、本発明の第二発明は、チタンのハロゲン化物ある
いは硫酸チタンな鉱酸酸性の水で稀釈し、加熱して加水
分解し、この加水分解さ1また液に有様溶剤を加λ共沸
温度以トで蒸留した後、生成した水和酸化f−タ:ノを
分離1ツ、仝21葉、仮焼tろ、二)−φ、s’t’r
71.Q) h・”’)l−’、I)m 41.”、、
 fり゛ノ徹扮体・・7)I、i’、j l1lj j
i沈(4[己(16・、゛)、、:K   ’−、ニア
?:  1.j月 (9:  イ1訃f’l”]  ”
’l−67j(j’、lfi  化I′−,□9 0.
、、y  i−i:  、  4  ハTL、1う゛、
)化%、<、、;”、’、/、bで、1箇’、”、、l
 6)f 酸−r′う゛” l容ン(!(I5.7直I
)j+j ;)−た (づ:(−醤7 パ)  X、”
  ’、’f<  )1  ノ)/:  ム−?、: 
 ;\  11 、′、  ;多 (4゛、7パ リ、
)ノ  リ  ヘ カ11λ−、ン、−プ)2去 T3
  得 1ら tv、  6  、、  ア ル ノ1
 リ 、!y:  [、”U  lニー、j  、  
)′ −に二、ンパ水/゛創ぼIIE L、、、、、、
い、高1i度(+)4’)の7”バイl[、i−、、1
い”> ’−t” 、i ・づ)、 ′1−5成し、パ
こ゛ノミく醸什−1° し♂・J“、”Rjl’; F
  片部1、=1’、’−/′l)1′い−1、:)、
、  ((7:4均 ti、11 (、何 ;°川 中
 (1゛  介 Fk  、l、l  、、、M  、
  ;11、゛・小、;鳶1胃 ・5行い 11:[弗
111φ/i(ケイ)4、分散r、ニーt4−る水酸イ
1)〜イ’ 、”、>’ (7’、) if;l 、T
暑7 、l、: 1.、37 (、,4、T i O、
とt、、、、、、 −(、’−[) 、 X−([、5
+t+o 1 /璽フイ?lが1:い。レー〕1シ徹 
Uこ 175  (・ 【°(バ 、  ν11jii
 ?舌・’f、I:  Ik’し手ど 1°・1イ 1
tl  1.、、y  −(−ハ 1、 い 。
In addition, the second invention of the present invention is to dilute a mineral acid such as a titanium halide or titanium sulfate with acidic water, hydrolyze it by heating, and add a certain solvent to the hydrolyzed solution by azeotroping. After distillation at a temperature below 100 ml, the produced hydrated oxidized f-ta: is separated into 1, 21 leaves, calcined, and 2)-φ, s't'r.
71. Q) h・”')l-', I)m 41.”,,
fri-no-tetsu costume...7) I, i', j l1lj j
i sink (4 [self (16., ゛),,:K'-, near?: 1.j month (9: ii1訃f'l''])
'l-67j(j', lfi cation I'-, □9 0.
,,y ii: , 4 HaTL, 1 U゛,
) conversion%, <,, ;”, ', /, b, 1 item', ",, l
6) f acid-r'u゛'' l yon (! (I5.7 direct I
)j+j ;)-ta (zu: (-sho7 pa) X,”
','f< )1 ノ)/: Mu-? , :
;\ 11、′、;多(4゛、7Paris、
) no ri he ka11λ-, n, -p)2 left T3
TV, 6, Arno 1
Ri,! y: [,”U lny,j,
)′-Ni2, Npa Water/゛Create IIE L,,,,,,
, high 1i degree (+)4') 7" bil[,i-,,1
">'-t", i ・zu), ``1-5 completed, panicked -1° shi ♂・J'', ``Rjl''; F
Piece part 1, = 1', '-/'l) 1'-1, :),
, ((7:4 uniform ti, 11 (, what; ° Kawanaka (1゛ intervention Fk, l, l,,,M
;11, ゛・small;;Tobi 1 stomach ・5 rows 11: [弗111φ/i (K) 4, dispersion r, knee t4- hydroxyl I1) ~ i','',>'(7', ) if;l,T
Heat 7, l: 1. ,37 (,,4,T i O,
and t, , , , -(,'-[) , X-([,5
+t+o 1/seal hui? l is 1: yes. Le] 1 Shi Toru
Uko 175 (・ [°(ba, ν11jii
? Tongue/'f, I: Ik' hand 1°/1i 1
tl 1. ,,y-(-ha1,i.

((、仙i %a 1iWl iJ、jf’A点;、5
(4:l; i・% 、)、!、j、イ、) 、tl、
it 、、、Q、、 iil ;1.1 自’Et (
1,);J11点j’c、 ’7) i”%n t:’
) 4.IE ’、eX !’、)、) ?:t fs
c :i2S ’t”j゛〕lhs、6沸、i;!、シ
lす′し今、くど、覧h tl5−10 ’(、’、”
ニーJ−が)t:・?’FIAII′:’(、i;、4
”i“)4二41.・)X望ましい7この蒸留−コ・肋
木を終了ぜ11.めた後、冷却し、生成された酸化ヂク
シを有機溶剤から分離し、ぞ−の後100℃fl’it
後T′乾燥、 300・・80()℃で仮焼!、−(丁
扮体イ、:得る、 7 # (0’p’ffi、 IIL’、y用いら、l
−1,−1u 6’A 9’j7”剤トj、”(IQ、
水11゛   疾 :1ti  ;、r例 jl′7S
  き  イ゛)  ?)l  の  il’、、  
l’、1lji  こL  !:r  土  く  、
   べ ゛、・・ じ゛、 トノ! ・−゛・・、 
λ ・2)・ン、炭素、・改1〔1(メ[−ζt’J)
 ’、−、、i’ルr  ル:l:lU、1・′t、1
.Jl、−r:% Qlニー” フル(1,’) 1.
:、” & N ’i:1別的−+:2.7、j・ I
I’:  tlll)I”’、’f  6 1−(: 
 7:l’ ”(:”  、q  、  r−a’%2
  ら しり’、1  (f!  :よ、 ノー は:
’> トii 、1ストj5、信用□−j□□ z、(
:: i’:l:が−(“きる。シタ゛、ン7 I’t
 ’lU3、ijB;晶J5j−↓ス l・ (′11
・用1’t’r ’i’i’、l  自 [−1(〕)
1・;i旨・長 、1“ −(−゛ ・カ’l’、lI
U (、J、 lし“ 1f−)、 )じ)”h JIR水j、’5 :F’L jsi’%
’t 4i、7.、−j” y9−、−’ (t :’
l”+: JE L−”、 l’lj2 :/lイ゛\
41)゛、・ ・ハ())←゛((な く 、 1・“
0乍(υ ・’JS b<”(’、、’I  ’0..
−D)1):ハ・:、−1,1・i−路1、(いイ゛)
Iパ干ルアー、・スの水和jutイヒ゛i:ノ] ”(
F J、6 J’lば、((ハ 、  、、の ’h”
 f II j’:% N l: Q”j]]i、:L
、、l(+、(・串?+(ii 1.k  1以 下 
(ノ、)2□(:点 (゛・、$−1゛?醪・1 7)
 と (1阜 に・ 、tl ・・′、   J+、:
、、j  :=・ )+  ブ:〜・ づく 丁旧耳i
、i 、(P 、I、4.  (、、Xル:′l:’、
’・[、:、1’rN )!”ト 1 (T f)”C
’l冒((1,’、” t:l: 、:!f’、’l−
’(’、)”行t [−ji <’l、いが1.1;J
、i l工 ト−c Fi 、>:  ン!: 、に 
 ’、);%1.lり:白−rF  1ll)、、:”
、  、芒 j・\11 ’f、)t ())(、[・
J’l;置1、 ’(WQ  ′1.I  ・ぢ鳥:ハ
:1.1.1″′呂、 ・:、1、(1−7・)Fl、
 6 jb2化 −1−り ゛ノ粉体が凝集してしまう
恐れがあるので、 300〜800℃で行うことが望ま
しい。
((, Seni %a 1iWl iJ, jf'A point;, 5
(4:l; i・%,),! ,j,i,) ,tl,
it ,,,Q,, iil;1.1 self'Et (
1,); J11 points j'c, '7) i''%n t:'
) 4. IE', eX! ',),)? :t fs
c: i2S 't"j゛]lhs, 6 boiling, i;!, silsu' now, Kudo, viewing h tl5-10 '(,',"
Knee J-ga)t:・? 'FIAII':'(,i;,4
"i")4241.・) After that, it was cooled, the produced oxidized sardines were separated from the organic solvent, and then heated at 100℃ fl'it.
After T' drying, calcination at 300...80()℃! , -(Ding tai ii, : get, 7 # (0'p'ffi, IIL', y use et al., l
-1, -1u 6'A 9'j7"agentj,"(IQ,
Water 11゛ Speed: 1ti ;, r example jl'7S
Kiii)? )l's il',,
l', 1lji koL! :r soil,
Be,... Ji, Tono!・−゛・・、
λ ・2)・N, Carbon,・Kai 1 [1 (Me[−ζt'J)
', -,, i'le r le:l:lU,1・'t,1
.. Jl, -r:% Ql knee'' full (1,') 1.
:,”&N'i:1separate-+:2.7,j・I
I': tllll)I"','f 6 1-(:
7:l'"(:", q, r-a'%2
Ra Shiri', 1 (f!: Yo, no is:
'> To ii, 1st j5, credit □−j□□ z, (
:: i':l:ga-(“kiru.shita・n7 I't
'lU3, ijB; Akira J5j-↓su l・ ('11
・For 1't'r 'i'i', l self [-1(])
1・;i , long , 1 “ −(−゛ ・KA'l', lI
U (, J, lshi" 1f-), )ji)"h JIR water j,'5 :F'L jsi'%
't 4i, 7. , -j'' y9-, -'(t:'
l"+: JE L-", l'lj2:/lii゛\
41)゛、・・Ha())←゛((without 、1・“
0乍(υ ・'JS b<”(',,'I '0..
-D) 1): C:, -1,1・i-path 1, (ii)
I dry the lure, the hydration of the water juhi:ノ] ”(
F J, 6 J'lba, ((ha, ,,'h'
f II j':% N l: Q"j]]i,:L
,,l(+,(・skewer?+(ii 1.k 1 or less
(ノ、)2□(:Point (゛・、$−1゛?Moromi・1 7)
and (1 day..., tl...', J+,:
,,j :=・ )+ bu :〜・ Zuku Ding old ear i
,i,(P,I,4.(,,Xle:'l:',
'・[,:,1'rN)! "T 1 (T f)"C
'l-
'(',)'' line t [-ji <'l, iga1.1;J
, il 工 ト ーc FI , >: N! : , to
',);%1. 1ll: White-rF 1ll),,:”
, , awn j・\11 'f,)t ())(,[・
J'l; Put 1, '(WQ '1.I ・Dibird: Ha: 1.1.1'''ro, ・:, 1, (1-7・) Fl,
Since there is a risk that the powder may aggregate, it is desirable to carry out the reaction at a temperature of 300 to 800°C.

第二発明の4ハロゲン化チタンあるいは硫酸チタン溶液
を鉱酸酸性溶液で稀釈する際の、これらのチタン化合物
の濃度はT i Osとしてo、i〜0.5o+ol/
I2で、稀釈後の酸濃度は2N以上であればよいが、好
ましくは4N以上とする。このように稀釈したT 14
 *含有溶液を加熱沸騰して、T i”と水との加水分
解を十分に行う、加水分解後に有機溶剤を加えて共沸蒸
留を行う。
When diluting the titanium tetrahalide or titanium sulfate solution of the second invention with an acidic mineral acid solution, the concentration of these titanium compounds as T i Os is o, i ~ 0.5 o + ol/
In I2, the acid concentration after dilution may be 2N or more, but preferably 4N or more. T14 diluted in this way
*The containing solution is heated to boiling to sufficiently hydrolyze Ti" and water. After hydrolysis, an organic solvent is added to perform azeotropic distillation.

共沸蒸留は、第一発明の時と同様に行う、使用する有機
溶剤としては、第一発明と同じでよいが、水への溶解度
の小さいものを用いるのがこの方法の後の操作に都合が
よい。
The azeotropic distillation is carried out in the same manner as in the first invention. The organic solvent used may be the same as in the first invention, but it is convenient for the subsequent operations of this method to use one with low solubility in water. Good.

蒸留操作の終了後、生成した水和酸化物を濾過あるいは
遠心分離等の方法により分離後、第一発明と同様の操作
を行い粉体を得る。
After the distillation operation is completed, the produced hydrated oxide is separated by a method such as filtration or centrifugation, and then the same operation as in the first invention is performed to obtain a powder.

(作 用) 本発明の特徴は、水酸化チタンあるいは水和酸化チタン
をそのまま乾燥するのでなく、有機溶剤に接しせしめな
がら脱水を行い、有機溶剤分子に包まれた水和酸化物粒
子を取り出して乾燥させている点にある。このような方
法を行っているため、コロイドとしての粒子の一つ一つ
が互いに強固に結合することなく粉体とすることができ
るのである。また、仮焼温度も300〜800℃でよい
ため、強固に凝集した粒子のない粉体を得ることができ
る。
(Function) The feature of the present invention is that, instead of drying titanium hydroxide or hydrated titanium oxide as it is, it is dehydrated while being brought into contact with an organic solvent, and hydrated oxide particles wrapped in organic solvent molecules are extracted. The point is that it is dried. Because this method is used, each colloidal particle can be made into a powder without strongly bonding to each other. Further, since the calcination temperature may be 300 to 800°C, a powder free of strongly agglomerated particles can be obtained.

以下、実施例をもって本発明を更に詳細に説明するが、
本発明はこれらに限定されるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these.

実施例I T i O*として0.3mol/I2に相当するT 
i C124を水500m 12に加えてから十分に撹
拌しながらアンモニア水を加えて水酸化チタンを得た。
Example I T corresponding to 0.3 mol/I2 as T i O*
i C124 was added to 500 m 12 of water, and then aqueous ammonia was added with sufficient stirring to obtain titanium hydroxide.

この水酸化チタンを母液から遠心分離法で分離後、直ち
に1リツトルのイソアミルアルコール中に分散させ、加
熱蒸留して、沸点が105℃の点で蒸留を停止し、静置
後、沈降物を濾過分離し、 100℃で十分に乾燥の後
、 500℃で1時間仮焼してTiO□の超微粒子粉体
を得た。
After separating this titanium hydroxide from the mother liquor by centrifugation, it is immediately dispersed in 1 liter of isoamyl alcohol, heated and distilled, and the distillation is stopped when the boiling point reaches 105°C. After standing still, the precipitate is filtered. It was separated, thoroughly dried at 100°C, and then calcined at 500°C for 1 hour to obtain ultrafine powder of TiO□.

得られた酸化チタン微粉体の電子顕微鏡写真を第1図に
示す、また、比較のため市販の酸化チタン微粉体(チタ
ン工業■製)の電子顕微鏡写真を第2図に示す6第1図
の顕微鏡写真かられかるように、本実施例で得られたT
 i O2は粒径0.1μm以下、より具体的には0.
02μm〜0.05μmの超微粒子粉体である。
An electron micrograph of the obtained titanium oxide fine powder is shown in Fig. 1, and for comparison, an electron micrograph of a commercially available titanium oxide fine powder (manufactured by Titan Kogyo ■) is shown in Fig. 6. As can be seen from the micrograph, the T obtained in this example
i O2 has a particle size of 0.1 μm or less, more specifically 0.1 μm or less.
It is an ultrafine powder of 0.02 μm to 0.05 μm.

実施例2 実施例1と同様にして、遠心分離後の水酸化チタンを1
リツトル中のオクタツール中に入れ、界面活性剤を10
mβ加えてから撹拌したのち蒸留し、沸点が110°C
となった時点で蒸留を止め、以後は実施例1と同様に行
いT i Ozの超微粒子粉体な得た。得られた超微粒
子粉体は粒径0.lu、m以下で、大部分が0.02g
 m 〜0.05g、 mのものであった。
Example 2 In the same manner as in Example 1, titanium hydroxide after centrifugation was
Add 10% surfactant to Octatool in a small bottle.
After adding mβ, stirring and distilling, the boiling point is 110°C.
Distillation was stopped at the time when , and the rest was carried out in the same manner as in Example 1 to obtain ultrafine powder of T i Oz. The obtained ultrafine powder has a particle size of 0. lu, m or less, mostly 0.02g
m~0.05g, m.

実施例3 T i Oaとして0.5mol/βに相当する量のT
 i C124を水1000mβ中に加えてから塩酸で
4Nに調整し、10時間加熱沸騰させて十分に白濁させ
る0次いで、ブクノールを500m 12加えて蒸留し
、沸点が100℃の点で蒸留を停止し、遠心分離法で沈
降物を分離した後、実施例1と同様に行いT i O2
の超微粒子粉体を得た。得られた超微粒子粉体は、上記
実施例1および2と同様に粒径0.lLLm以下で、9
0%以上が0.02μm〜0.05μmのものであった
Example 3 An amount of T equivalent to 0.5 mol/β as T i Oa
i Add C124 to 1000 mβ of water, adjust to 4N with hydrochloric acid, boil for 10 hours and make it sufficiently cloudy. Next, add 500 m of Buknor and distill it, and stop the distillation when the boiling point is 100°C. , After separating the sediment by centrifugation, the same procedure as in Example 1 was carried out to obtain T i O2
An ultrafine powder was obtained. The obtained ultrafine particle powder had a particle size of 0.5 mm as in Examples 1 and 2 above. lLLm or less, 9
0% or more had a diameter of 0.02 μm to 0.05 μm.

実施例4 上記実施例で得られたT i O2超微粒子粉体を静水
圧法で成形後、1300 ’Cで2時間焼成した。得ら
れた焼結体のカサ比重は、4.18であった。これに対
し、市販品のTiO□粉体を同様にして成形し、焼成し
た焼結体のカサ比重は3.85であった。この結果が示
すように、本発明j・こより得られた超微粉体の焼結体
は、比重が大ぎく緻密であり、非常に優れた物性および
機械特性を示す。
Example 4 The T i O2 ultrafine particle powder obtained in the above example was molded by a hydrostatic pressure method and then calcined at 1300'C for 2 hours. The bulk specific gravity of the obtained sintered body was 4.18. On the other hand, a sintered body obtained by molding and firing a commercially available TiO□ powder in the same manner had a bulk specific gravity of 3.85. As shown by these results, the sintered body of ultrafine powder obtained from the method of the present invention has a high specific gravity and is very dense, and exhibits very excellent physical and mechanical properties.

以上述べたように、上記各実施例で得られた酸化チタン
微粉体は、いずれも粒径0.1μm以下の超微粒子粉体
であり、焼結材料として使用したとき良好な圧粉性を示
し、得られた焼結体は真比重に近い高密度体であった。
As mentioned above, the titanium oxide fine powder obtained in each of the above examples is an ultrafine powder with a particle size of 0.1 μm or less, and exhibits good compactability when used as a sintering material. The obtained sintered body was a high-density body with close to true specific gravity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1によって得た酸化チタン微粉体の電子
顕微鏡写真、 第2図は市販の酸化チタン微粉体の電子顕微鏡写真を示
す。
FIG. 1 shows an electron micrograph of the titanium oxide fine powder obtained in Example 1, and FIG. 2 shows an electron micrograph of the commercially available titanium oxide fine powder.

Claims (2)

【特許請求の範囲】[Claims] (1)水酸化チタンを有機溶剤中に分散させた後、共沸
温度以上で蒸留し、ここに得られる水和酸化チタンを母
液から分離した後、乾 燥、仮焼することを特徴とする酸化チタン微粉体の製造
方法。
(1) Oxidation characterized by dispersing titanium hydroxide in an organic solvent and then distilling it above the azeotropic temperature, separating the resulting hydrated titanium oxide from the mother liquor, followed by drying and calcining. A method for producing titanium fine powder.
(2)チタンのハロゲン化物あるいは硫酸チタンを鉱酸
酸性の水で稀釈し、加熱して加水分解し、この加水分解
された液に有機溶剤を加え共沸温度以上で蒸留した後、
生成した水和酸化チタンを分離し、乾燥、仮焼すること
を特徴とする酸化チタン微粉体の製造方法。
(2) Titanium halide or titanium sulfate is diluted with mineral acidic water, heated and hydrolyzed, an organic solvent is added to this hydrolyzed liquid, and the mixture is distilled at a temperature higher than the azeotropic temperature.
A method for producing fine titanium oxide powder, which comprises separating, drying, and calcining the produced hydrated titanium oxide.
JP1012982A 1989-01-21 1989-01-21 Method for producing titanium oxide fine powder Expired - Lifetime JP2805202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1012982A JP2805202B2 (en) 1989-01-21 1989-01-21 Method for producing titanium oxide fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1012982A JP2805202B2 (en) 1989-01-21 1989-01-21 Method for producing titanium oxide fine powder

Publications (2)

Publication Number Publication Date
JPH02196028A true JPH02196028A (en) 1990-08-02
JP2805202B2 JP2805202B2 (en) 1998-09-30

Family

ID=11820413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1012982A Expired - Lifetime JP2805202B2 (en) 1989-01-21 1989-01-21 Method for producing titanium oxide fine powder

Country Status (1)

Country Link
JP (1) JP2805202B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744126A (en) * 1995-06-02 1998-04-28 Miyoshi Kasei, Inc. Cosmetics containing silicone surface-modified particles of titanium oxide and zinc oxide
US6156324A (en) * 1996-05-16 2000-12-05 Miyoshi Kasei, Inc. Compositions for cosmetics and cosmetics
EP1160202A1 (en) * 2000-05-24 2001-12-05 Sumitomo Chemical Company, Limited Titanium hydroxide, photocatalyst produced from the same and photocatalytic coating agent
KR100343395B1 (en) * 1999-05-28 2002-07-15 유석범 Method for production of titanium dioxide ultrafine powders with rutile phase from titanium sulfate
EP1323676A3 (en) * 1999-06-30 2004-01-21 Sumitomo Chemical Company, Limited Titanium oxide, photocatalyst comprising same and photocatalytic coating agent
KR100450225B1 (en) * 2001-08-31 2004-09-24 재단법인 포항산업과학연구원 Fabrication method of nanoscale-porous body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744126A (en) * 1995-06-02 1998-04-28 Miyoshi Kasei, Inc. Cosmetics containing silicone surface-modified particles of titanium oxide and zinc oxide
US6156324A (en) * 1996-05-16 2000-12-05 Miyoshi Kasei, Inc. Compositions for cosmetics and cosmetics
KR100343395B1 (en) * 1999-05-28 2002-07-15 유석범 Method for production of titanium dioxide ultrafine powders with rutile phase from titanium sulfate
EP1323676A3 (en) * 1999-06-30 2004-01-21 Sumitomo Chemical Company, Limited Titanium oxide, photocatalyst comprising same and photocatalytic coating agent
EP1160202A1 (en) * 2000-05-24 2001-12-05 Sumitomo Chemical Company, Limited Titanium hydroxide, photocatalyst produced from the same and photocatalytic coating agent
KR100450225B1 (en) * 2001-08-31 2004-09-24 재단법인 포항산업과학연구원 Fabrication method of nanoscale-porous body

Also Published As

Publication number Publication date
JP2805202B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
CN102659149B (en) Preparation method for monodisperse high-purity alpha-Al2O3 powder
Yang et al. Preparation of rutile titania nanocrystals by liquid method at room temperature
JP2017515786A (en) Method for preparing nanometer titanium dioxide
CN101333002B (en) Titanium dioxide nanometer powder with special appearance and method for preparing same
CN101973578A (en) Water-based sol-gel method for preparing high-purity monodisperse barium titanate nanopowder
CN104591259B (en) Engraftment type nano-zinc oxide and production process thereof
CN104894636B (en) The preparation method of eight potassium titanate crystal whiskers
CN103588246A (en) Preparation process for nano zirconia powder
CN109721357A (en) A kind of Zirconium oxide powder and its preparation method and application that the nanometer yttrium that monodisperse granularity is controllable is stable
JP3198494B2 (en) Conductive oxide particles and method for producing the same
JPH02196028A (en) Production of titanium oxide fine powder
KR101152382B1 (en) Manufacturing method of titanium oxide improved whiteness
WO2015030388A1 (en) Method for preparing titanium carbide powder
Nagabhushana et al. An efficient and a novel route for the synthesis of titania via solution combustion of peroxotitanic acid
CN113860350A (en) Method for preparing thorium dioxide nano material based on molten salt method and thorium dioxide nano material obtained by method
CN103274460B (en) Method for preparing rutile phase titanium dioxide sub-microsphere through selective dispergation
CA2377241C (en) Processing aqueous titanium solutions to titanium dioxide pigment
JPH05163022A (en) Spherical anatase titanium oxide and its production
CN108002435B (en) Method for improving production quality of titanium dioxide by sulfuric acid process
JP3324164B2 (en) Indium oxide powder, method for producing the same, and method for producing ITO sintered body
JPH04280815A (en) Fine particulate alkali titanate and its production
CN107140690A (en) It is a kind of to improve the method that bismuth ferrotitanium type oxide nano-powder is reunited
CN207129969U (en) The preparation system of nano titanium oxide
CN106865600B (en) A kind of preparation method of size tunable stannic oxide nano powder
KR20000075055A (en) Method for production of titanium dioxide ultrafine powders with rutile phase from titanium sulfate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term