JPH02195604A - Foam insulating electric wire - Google Patents

Foam insulating electric wire

Info

Publication number
JPH02195604A
JPH02195604A JP1483189A JP1483189A JPH02195604A JP H02195604 A JPH02195604 A JP H02195604A JP 1483189 A JP1483189 A JP 1483189A JP 1483189 A JP1483189 A JP 1483189A JP H02195604 A JPH02195604 A JP H02195604A
Authority
JP
Japan
Prior art keywords
polypropylene
density polyethylene
melt index
block copolymer
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1483189A
Other languages
Japanese (ja)
Other versions
JP2618464B2 (en
Inventor
Kazuhide Sakamoto
阪本 一秀
Yoshiaki Oishi
大石 義昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1014831A priority Critical patent/JP2618464B2/en
Publication of JPH02195604A publication Critical patent/JPH02195604A/en
Application granted granted Critical
Publication of JP2618464B2 publication Critical patent/JP2618464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)

Abstract

PURPOSE:To suppress deterioration in stretching of an insulating film as time passes by, and to prevent deterioration in mechanical strength by providing the insulating film composed of a foaming body of a specified mixture. CONSTITUTION:There is provided a conductor, on which an insulating film is extrusively coated. The insulating film is formed out of a foaming body of a mixture of either single polypropylene(PP) or block copolymer of polypropylene(PP) and low density polyethylene(PE), or that of polypropylene(PP) and ethylene propylene rubber(EPR), and high density polyethylene(PE) whose melt index is larger than that of these materials. Since the high density polyethylene whose melt index is larger than that of polypropylene or of block copolymer is excellent in compatibility with polypropylene, polypropylene is disposed in the high density polyethylene while crystal of the polypropylene is dispersed as a whole, and crystallization of polypropylene is thus suppressed to further suppress deterioration in the stretching.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は1例えば、電子計算機の架間または架内の配線
に用いられる高速信号伝送用同軸ケーブルに使用される
発泡絶縁電線に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a foam insulated wire used, for example, in a coaxial cable for high-speed signal transmission used for wiring between or within a computer rack. .

(従来の技術〕 この種の発泡絶縁電線に要求される特性の中に高速信号
伝送特性と外力に対する耐変形性があるが、特に高速信
号伝送特性は伝送時間の一層の短縮化の要求から益々要
求される傾向にある。このため、電線の被覆材料として
比誘電率が小さいものを用い、且つ発泡率を高くするこ
とが要求されるが、発泡率を高くすると、外力に対する
耐変形性が低くなる。これらの要求を満足する材料とし
て通常ポリエチレン(PE)、ポリプロピレン(PP)
及び弗素樹脂等が掲げられる。
(Prior Art) Among the characteristics required of this type of foam insulated wire are high-speed signal transmission characteristics and deformation resistance against external forces.In particular, high-speed signal transmission characteristics are becoming increasingly important due to the demand for further shortening of transmission time. For this reason, it is necessary to use a material with a low dielectric constant as the covering material for electric wires, and to increase the foaming rate. Polyethylene (PE) and polypropylene (PP) are usually used as materials that meet these requirements.
and fluororesins, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

これらの3つの材料のうちポリエチレンは最も特性が悪
く、特に発泡率がおおむね50%を越えると、アンダー
カーペットケーブルの如き高度の耐変形性が要求される
ケーブルには使用することができなかった。また、弗素
樹脂は材料費が極端に高く、一方ボリブロビレンは高い
発泡率でも外力に対する耐変形性が高く安価な材料とし
て最も使用されている。
Of these three materials, polyethylene has the worst properties, and especially when the foaming ratio exceeds approximately 50%, it cannot be used for cables that require a high degree of deformation resistance, such as undercarpet cables. In addition, fluororesin has an extremely high material cost, while polypropylene is most used as an inexpensive material that has high resistance to deformation against external forces even at a high foaming rate.

しかし、ポリプロピレンは代表的な結晶性の樹脂であり
、押出機等で溶融径電線形状に成形すると、伸びが経時
的に低下する特性を有しており、この傾向は発泡率か高
くなるほど、また肉厚が小さくなるほど顕著となる。こ
のような欠点を改善する材料として低密度ポリエチレン
やエチレン・プロピレンゴム(EPR)とポリプロピレ
ンとのブロックコポリマーが知られているか、これでも
特性を著しく改善することができなかった。
However, polypropylene is a typical crystalline resin, and when it is molded into the shape of a molten wire using an extruder, its elongation decreases over time, and this tendency decreases as the foaming rate increases. This becomes more noticeable as the wall thickness decreases. Low-density polyethylene and block copolymers of ethylene-propylene rubber (EPR) and polypropylene are known as materials that can improve these drawbacks, but even these have not been able to significantly improve the properties.

本発明の目的は、上記の欠点を回避し、伸びの低下を抑
制することかでき、且つ機械的強度がすぐれた絶縁被覆
を有する安価な発泡絶縁電線を提供することにある。
An object of the present invention is to provide an inexpensive foam insulated wire that avoids the above-mentioned drawbacks, can suppress a decrease in elongation, and has an insulation coating with excellent mechanical strength.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記の課題を解決するために、ポリプロピレ
ンとポリプロピレン/ポリエチレンのブロックコポリマ
ーとポリプロピレン/エチレン・プロピレンゴムのブロ
ックコポリマーとのいずれかの材料とこの材料よりもメ
ルトインデックスが大きい高密度ポリエチレンとの混合
物の発泡体から成る絶縁被覆を有することな特徴とする
発泡絶縁電線を提供するものである。
In order to solve the above-mentioned problems, the present invention combines a material consisting of polypropylene, a polypropylene/polyethylene block copolymer, and a polypropylene/ethylene-propylene rubber block copolymer, and a high-density polyethylene having a larger melt index than this material. The present invention provides a foam insulated wire characterized in that it has an insulation coating made of a foam of a mixture of.

〔作用〕 このように、ポリプロピレン、ポリプロピレン/ポリエ
チレンのブロックコポリマー、ポリプロピレン/エチレ
ン・プロピレンゴムのブロックコポリマーに、この材料
よりもメルトインデックスか大きい高密度ポリエチレン
を混合すると、絶縁被覆の伸びの経時的低下を抑制する
ことができる上に機械的強度か向上する。
[Effect] In this way, when high-density polyethylene, which has a higher melt index than this material, is mixed with polypropylene, a block copolymer of polypropylene/polyethylene, or a block copolymer of polypropylene/ethylene propylene rubber, the elongation of the insulation coating decreases over time. In addition to being able to suppress this, it also improves mechanical strength.

〔実施例〕〔Example〕

次に1本発明の発泡絶縁電線を詳細に説明すると1本発
明の発泡絶縁電線は、導体とこの導体の上に押出被覆さ
れた絶縁被覆とから成っているが、この絶縁被覆は、先
にのべたように、ポリプロピレン(pp)単独あるいは
ポリプロピレン(pp)と低密度ポリエチレン(PE)
とのブロックコポリマーまたはポリプロピレン(PP)
とエチレン・プロピレンゴム(EPR)とのブロックコ
ポリマーのいずれかの材料と、これらの材料よりもメル
トインデックスが大きい高密度ポリエチレン(PE)と
の混合物の発泡体から成っている。
Next, the foam insulated wire of the present invention will be explained in detail. The foam insulated wire of the present invention consists of a conductor and an insulating coating extruded on the conductor. As mentioned above, polypropylene (PP) alone or polypropylene (PP) and low density polyethylene (PE)
block copolymer or polypropylene (PP) with
and ethylene propylene rubber (EPR), and high-density polyethylene (PE), which has a higher melt index than these materials.

高密度ポリエチレンのメルトインデックスがポリプロピ
レン単独またはこのポリプロピレンと低密度ポリエチレ
ンまたはエチレン・プロピレンゴムとのブロックコポリ
マーのメルトインデックスよりも小さいと、機械的強度
がよくなるか、樹脂同志の相溶性が悪く、伸びの経時的
低下か抑えられない上に電線の外観が著しく悪くなる。
If the melt index of high-density polyethylene is smaller than the melt index of polypropylene alone or a block copolymer of polypropylene and low-density polyethylene or ethylene-propylene rubber, the mechanical strength may be good, or the compatibility between the resins may be poor, resulting in poor elongation. In addition to the uncontrollable deterioration over time, the appearance of the wires deteriorates significantly.

逆に、高密度ポリエチレンのメルトインデックスがポリ
プロピレン等の材料のインデックスよりも大きすぎる場
合には伸びの経時的低下は著しく抑制されるが、機械的
強度、耐衝撃性等が著しく悪くなるので高密度ポリエチ
レンのメルトインデックスは10g710分以下が適当
である。尚、ポリプロピレン及びそのブロックコポリマ
ーと高密度ポリエチレンとの混合率はいかなる場合でも
効果かある。
On the other hand, if the melt index of high-density polyethylene is larger than the index of materials such as polypropylene, the decline in elongation over time will be significantly suppressed, but mechanical strength, impact resistance, etc. will deteriorate significantly, so high-density polyethylene The appropriate melt index of polyethylene is 10 g, 710 minutes or less. Incidentally, the mixing ratio of polypropylene or its block copolymer with high density polyethylene is effective in any case.

本発明に用いられる発泡材料としては、アゾジカルボン
アミド(ADCA)、アゾビスイソブチロニトリル(A
IBN)、ジニトロソペンタメチレンテトラミン(DP
T)、p−)ルエンスルホニルヒドラジド(TSH)、
p、p−オキシビス(ベンゼンスルホニルヒドラジド)
(OBSH)等の熱分解型有機発泡材、窒素、炭酸ガス
、クロロフルオロカーボン(フロン)等のガス類または
これらの組み合わせを用いることができる。押出しに際
してはその外に発泡核材、老化防止剤、銅害防止剤1着
色剤等を添加してもよいことはもちろんである。
Foamed materials used in the present invention include azodicarbonamide (ADCA), azobisisobutyronitrile (A
IBN), dinitrosopentamethylenetetramine (DP
T), p-) luenesulfonyl hydrazide (TSH),
p,p-oxybis(benzenesulfonylhydrazide)
A pyrolyzable organic foaming material such as (OBSH), gases such as nitrogen, carbon dioxide, chlorofluorocarbon (fluorocarbon), or a combination thereof can be used. Of course, during extrusion, a foaming core material, an anti-aging agent, a copper damage inhibitor, a coloring agent, etc. may also be added.

ポリプロピレンの伸びの経時的低下は、ポリプロピレン
が溶融し、凝固した後の結晶の成長によるものであり、
発泡絶縁電線では結晶の成長の仕方が不均一となり、更
に絶縁被覆が薄肉である場合には加工時の残留歪が加わ
って伸びの低下が促進されると考えられる。
The decrease in elongation of polypropylene over time is due to the growth of crystals after the polypropylene melts and solidifies;
In foam insulated wires, crystals grow unevenly, and if the insulation coating is thin, it is thought that residual strain during processing is added, accelerating the decline in elongation.

これに対して、メルトインデックスがポリプロピレンま
たはブロックコポリマーより大きい高密度ポリエチレン
は、ポリプロピレンとの相溶性にすぐれているため、ポ
リプロピレンにこのような高密度ポリエチレンを混合す
ると、ポリプロピレンか高密度ポリエチレンに分散し。
On the other hand, high-density polyethylene, which has a higher melt index than polypropylene or block copolymers, has excellent compatibility with polypropylene, so if such high-density polyethylene is mixed with polypropylene, it will disperse into the polypropylene or high-density polyethylene. .

ポリプロピレンの結晶も全体的に分散するのてポリプロ
ピレンの結晶化が抑制されて伸びの低下が抑えられると
考えられる。
It is thought that since the polypropylene crystals are also dispersed throughout, crystallization of the polypropylene is suppressed and a decrease in elongation is suppressed.

次に、本発明の発泡絶縁電線の具体例と比較例とを表1
に示す、いずれの例も発泡絶縁電線は、直径が40 m
 mの押出機を用いて製造したが、押出機内で表1に示
す材料に発泡核剤、老化防止剤及び銅害防止剤を添加し
たものを溶融混練し、更に押出機バレルの途中から発泡
剤としてクロロフルオロカーボン500(通称フロン5
00;CCl2F2/CH3−C)(F、=73.8/
26.2重量比)を注入し、直径が0.226mmの軟
鋼単線導体の上に仕上り径約1.35mmとなるように
発泡率が約55%の絶縁被覆を施した。また、各個の伸
び試験の結果は表2に示されているが、この伸び試験は
J I 5C3005に基き管状のサンプルを用いてテ
ンシロン型引張り試験機によって引張り速度50mm/
分で求め、その測定は常温放置で押出し当日と7日目と
300日目100日目0で行った。更に、常温変形率は
JISC3005の加熱変形試験機の装置、方法を用い
、測定温度のみ常温(23℃)で行なった。尚、荷重は
750gとした。
Next, Table 1 shows specific examples and comparative examples of the foam insulated wire of the present invention.
The foam insulated wires shown in both examples have a diameter of 40 m.
The material shown in Table 1 was melt-kneaded in the extruder with a foaming nucleating agent, an anti-aging agent, and a copper damage inhibitor added, and the foaming agent was added from the middle of the extruder barrel. Chlorofluorocarbon 500 (commonly known as Freon 5)
00; CCl2F2/CH3-C) (F, = 73.8/
26.2 weight ratio), and an insulating coating with a foaming rate of about 55% was applied on a mild steel single wire conductor with a diameter of 0.226 mm so that the finished diameter was about 1.35 mm. In addition, the results of each elongation test are shown in Table 2, and this elongation test was conducted using a tubular sample according to J I 5C3005 using a Tensilon type tensile tester at a tensile speed of 50 mm/
The measurement was performed on the day of extrusion, on the 7th day, on the 300th day, and on the 100th day 0 after being left at room temperature. Further, the room temperature deformation rate was measured using the apparatus and method of a JISC3005 heating deformation tester, and the measurement temperature was only at room temperature (23° C.). Note that the load was 750 g.

具体例1.2は、ノーブレンBC8D (三菱油化製P
PとPEのブロックコポリマー:メルトインデックス1
.2g/lo分、密度0.89g/Cm″″)に、レク
スロンE750 (C)(日石化学製高密度PE;メル
トインデックス5.3g/lo分、密度0.963g/
cm’) (具体例1)、レクスロンE780 (C)
(0石化学製高密度PE、メルトインデックス8.0g
/10分、密度0.963g/cm’ )をそれぞれ重
量比で80 : 20で混合した材料を使用した。
Specific example 1.2 is Noblen BC8D (Mitsubishi Yuka P
Block copolymer of P and PE: melt index 1
.. 2g/lomin, density 0.89g/Cm''''), Lexron E750 (C) (Nisseki Chemical high density PE; melt index 5.3g/lomin, density 0.963g/
cm') (Example 1), Rexron E780 (C)
(High-density PE made by 0 Rock Chemical, melt index 8.0g
/10 minutes, density 0.963 g/cm') were mixed at a weight ratio of 80:20.

また、具体例3.4は、UBE  C211(宇部興産
製PPとPEのブロックコポリマー;メルトインデック
ス2.7g710分、密度0.90g/cm″′)にレ
クスロンE750 (C)(具体例3)及びレクスロン
E780 (C)(具体例4)をそれぞれ重量比80 
: 20で混合した材料を使用した。
Further, in Specific Example 3.4, LEXRON E750 (C) (Specific Example 3) and Rexron E780 (C) (Specific Example 4) at a weight ratio of 80
: Materials mixed in step 20 were used.

一方、比較例1はノーブレンBC8Dのみを使用し、比
較例2.3はノーブレンBC8DにHizex5305
E (三井石油化学製高密度PE:メルトインデックス
0.8g710分、密度0.945g/cm’ )(比
較例2)及びレクスロンM41(0石化学製低密度PE
:メルトインデックス6.0g/10分、密度0゜92
2g/cm:l)をそれぞれ重量比で8020で混合し
た材料を使用した。
On the other hand, Comparative Example 1 uses only Noblen BC8D, and Comparative Example 2.3 uses Noblen BC8D and Hizex5305.
E (high-density PE made by Mitsui Petrochemicals: melt index 0.8 g 710 minutes, density 0.945 g/cm') (Comparative Example 2) and Rexron M41 (low-density PE made by 0 Seki Kagaku)
: Melt index 6.0g/10min, density 0°92
2g/cm:l) were mixed at a weight ratio of 8020.

比較例4はUBE  C211のみを使用し、また比較
例5.6はUBE  C211にHizex5305E
 (比較例5)及びUBE  C180(比較例6)を
それぞれ重量比で80:20で混合した材料を使用した
Comparative example 4 uses only UBE C211, and comparative example 5.6 uses Hizex5305E in UBE C211.
(Comparative Example 5) and UBE C180 (Comparative Example 6) were mixed at a weight ratio of 80:20.

表1 表 表2から明らかなように、比較例1.2及び4.5では
E数の経過と共に絶縁被覆の伸びか低下し、押出し後l
OO日目下ば絶対値で100%以下、残率(押出し当日
との比)で20%以下となった。また、比較例3.6は
日数の経過による絶縁被覆の伸びの低下は小さく、10
0日目0も残率で90%以上あるが、常温変形率が著し
く悪くなって機械的強度が低下する。これに対して本発
明の具体例では押出し当日の当初の絶縁被覆の伸びが比
較例1〜6に比べて大きく、且lOO日経過しても絶対
値で350%以上、残率で90%以上伸びが保持され、
且つ常温変形率も極めて小さいことか解る。
Table 1 As is clear from Table 2, in Comparative Examples 1.2 and 4.5, the elongation of the insulation coating decreased as the E number increased, and after extrusion
On day OO, the absolute value was 100% or less, and the residual rate (ratio to the day of extrusion) was 20% or less. In addition, in Comparative Example 3.6, the decrease in elongation of the insulation coating with the passage of days was small, and 10
On the 0th day, the residual ratio is 90% or more, but the room temperature deformation rate becomes significantly worse and the mechanical strength decreases. On the other hand, in the specific example of the present invention, the initial elongation of the insulation coating on the day of extrusion is larger than that in Comparative Examples 1 to 6, and even after 100 days, the absolute value is 350% or more and the residual rate is 90% or more. Elongation is maintained,
It can also be seen that the deformation rate at room temperature is extremely small.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、上記のように、ポリプロピレンあるい
はポリプロピレン/ポリエチレンのブロックコポリマー
またはポリプロピレン/エチレン・プロピレンゴムのプ
ロウクコボリマーにこれらの材料よりもメルトインデッ
クスが大きい高密度ポリエチレンを混合するだけで絶縁
被覆の伸びの経時的な低下を抑制することができ、且つ
機械的強度が低下することかない安価な発泡絶縁電線を
提供することができる実益かある。
According to the present invention, as described above, insulation can be achieved by simply mixing polypropylene, a block copolymer of polypropylene/polyethylene, or a block copolymer of polypropylene/ethylene-propylene rubber with high-density polyethylene having a higher melt index than these materials. There is a practical benefit in that it is possible to suppress the deterioration of the elongation of the coating over time and to provide an inexpensive foam insulated wire that does not have a decrease in mechanical strength.

じ−ざf四声。Ji-za f four tones.

Claims (1)

【特許請求の範囲】[Claims] ポリプロピレンとポリプロピレン/ポリエチレンのブロ
ックコポリマーとポリプロピレン/エチレン・プロピレ
ンゴムのブロックコポリマーとのいずれかの材料とこの
材料よりもメルトインデックスが大きい高密度ポリエチ
レンとの混合物の発泡体から成る絶縁被覆を有すること
を特徴とする発泡絶縁電線。
having an insulating coating consisting of a foam of a mixture of polypropylene, a block copolymer of polypropylene/polyethylene, a block copolymer of polypropylene/ethylene-propylene rubber, and a high-density polyethylene having a higher melt index than this material; Features foam insulated wire.
JP1014831A 1989-01-24 1989-01-24 Foam insulated wire Expired - Lifetime JP2618464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1014831A JP2618464B2 (en) 1989-01-24 1989-01-24 Foam insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1014831A JP2618464B2 (en) 1989-01-24 1989-01-24 Foam insulated wire

Publications (2)

Publication Number Publication Date
JPH02195604A true JPH02195604A (en) 1990-08-02
JP2618464B2 JP2618464B2 (en) 1997-06-11

Family

ID=11871984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1014831A Expired - Lifetime JP2618464B2 (en) 1989-01-24 1989-01-24 Foam insulated wire

Country Status (1)

Country Link
JP (1) JP2618464B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532434A (en) * 1993-07-26 1996-07-02 Mitsubishi Denki Kabushiki Kaisha Insulated wire
KR20120092076A (en) * 2011-02-10 2012-08-20 엘에스전선 주식회사 Cable including insulation layer with non-crosslinking resin
KR20120095309A (en) * 2011-02-18 2012-08-28 엘에스전선 주식회사 Cable including insulation layer with non-crosslinking resin
KR101957049B1 (en) * 2017-10-11 2019-03-11 한화토탈 주식회사 Polypropylene for insulation layer of power cable

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505224A (en) * 1972-12-01 1975-01-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505224A (en) * 1972-12-01 1975-01-20

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532434A (en) * 1993-07-26 1996-07-02 Mitsubishi Denki Kabushiki Kaisha Insulated wire
KR20120092076A (en) * 2011-02-10 2012-08-20 엘에스전선 주식회사 Cable including insulation layer with non-crosslinking resin
KR20200058334A (en) * 2011-02-10 2020-05-27 엘에스전선 주식회사 Mixture with non-crosslinking resin for preparing insulation layer of power cable
KR20120095309A (en) * 2011-02-18 2012-08-28 엘에스전선 주식회사 Cable including insulation layer with non-crosslinking resin
KR20200060306A (en) * 2011-02-18 2020-05-29 엘에스전선 주식회사 Mixture with non-crosslinking resin for preparing insulation layer of power cable
KR101957049B1 (en) * 2017-10-11 2019-03-11 한화토탈 주식회사 Polypropylene for insulation layer of power cable

Also Published As

Publication number Publication date
JP2618464B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
JP3267228B2 (en) Foam wire
US6335490B1 (en) Insulating material for coaxial cable, coaxial cable and method for producing coaxial cable
US8723041B2 (en) Electric cable comprising a foamed polyolefine insulation and manufacturing process thereof
US4683166A (en) Foamed plastic insulated wire and method for producing same
US6130385A (en) Coaxial high-frequency cable and dielectric material thereof
EP1440119B1 (en) Insulating foam composition
US5346926A (en) Small diameter electric wire insulated with highly expanded cellular polyethylene and production thereof
US5180754A (en) Polymer composition for foam molding
CA1124950A (en) Foamed plastic insulated wire and method for producing the same
US4547328A (en) Method for producing foamed plastic insulator
JPH02195604A (en) Foam insulating electric wire
JP2006022276A (en) Composition for insulator and high-foaming insulator and coaxial cable for high frequency using the composition
JPH02195603A (en) Foam insulating electric wire
US8766096B2 (en) Production method of foamed electric wire
JP3241126B2 (en) Small diameter high foam polyethylene insulated cable and method of manufacturing the same
JP2007237645A (en) Foam molding method, foamed coaxial cable, and manufacturing method therefor
JPH11213759A (en) Thin foamed electric wire and manufacture of electric wire
JPH03146532A (en) Polyolefin resin composition for expansion
US6613983B1 (en) Thin-conductor foamed-polyolefin-insulated wire and manufacturing method thereof
JP2597299B2 (en) Foam and method for producing foam
JPH087672A (en) Communication cable
JPH04146940A (en) Expandable polyethylene resin composition for communication cable
JPH08203349A (en) Foam-insulated wire
JPH02210722A (en) Formation of highly foamed propylene series resin insulating cover
JPH08185720A (en) Electric wire insulated with foamed plastic and manufacture thereof