JPH02195275A - Ground fault phase detecting device - Google Patents

Ground fault phase detecting device

Info

Publication number
JPH02195275A
JPH02195275A JP1014881A JP1488189A JPH02195275A JP H02195275 A JPH02195275 A JP H02195275A JP 1014881 A JP1014881 A JP 1014881A JP 1488189 A JP1488189 A JP 1488189A JP H02195275 A JPH02195275 A JP H02195275A
Authority
JP
Japan
Prior art keywords
voltage
phase
ground fault
zero
voltages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1014881A
Other languages
Japanese (ja)
Other versions
JPH0619407B2 (en
Inventor
Hiroaki Kato
博明 加藤
Naoki Masuda
直毅 増田
Tomoyoshi Mochizuki
望月 友良
Koichi Endo
光一 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Tokyo Electric Power Co Inc
Priority to JP1014881A priority Critical patent/JPH0619407B2/en
Publication of JPH02195275A publication Critical patent/JPH02195275A/en
Publication of JPH0619407B2 publication Critical patent/JPH0619407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To remove the effect of the situation of a ground fault accident on a time for detection and to enable definite setting of limits of detection by detecting the ground fault accident on the basis of a zero-phase voltage and a reference voltage. CONSTITUTION:The products of a zero-phase voltage V0 and reference voltages Ua to Uc from a phase shifter 9, and of a differential voltage DELTAV0 of the voltage V0 and reference voltages U'a to U'c intersecting the reference voltages Ua to Uc at right angles, are determined by multipliers 11a to 11c and 14a to 14c. An alternating-current component is offset by adders 15a to 15c from the results of these products and only a direct-current component is integrated selectively by integrators 16a to 16c. Subsequently, it is determined by comparators 17a to 17c whether or not the result of integration exceeds a prescribed value and has a prescribed polarity, and thereby a ground fault accident is detected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高抵抗接地系統又は非接地系統の地絡相を
検出する地絡相検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ground fault phase detection device for detecting a ground fault phase in a high resistance grounded system or an ungrounded system.

〔従来の技術〕[Conventional technology]

第12図は従来の地絡相検出装置の一例を示す回路図で
あり、第12図において、la、lb。
FIG. 12 is a circuit diagram showing an example of a conventional ground fault phase detection device. In FIG. 12, la, lb.

1cはa、b及びC相からなる3相平衡電源を形成する
電源、2a、2b、2cは電源1a、lb。
1c is a power supply forming a three-phase balanced power supply consisting of a, b, and C phases, and 2a, 2b, and 2c are power supplies 1a and lb.

1cに接続された各相の配電線、3a、3b、3Cはコ
ンデンサにより等測的に示す配電線2a。
The distribution lines of each phase are connected to 1c, and 3a, 3b, and 3C are distribution lines 2a shown isometrically by capacitors.

2b、2cの対地静電容量、4は以下の動作説明のため
に例示する地絡の事故点を示し、抵抗Rgにより配電線
2aを接地させる。5a、5b、5Cはコンデンサから
なり、配電線2a、2b、2Cの対地電圧を適当な比で
分圧する分圧器、6a。
The ground capacitance of 2b and 2c, 4 indicates a fault point of a ground fault, which will be exemplified for the explanation of the operation below, and the distribution line 2a is grounded by a resistor Rg. 5a, 5b, and 5C are voltage dividers 6a which are composed of capacitors and divide the ground voltages of the distribution lines 2a, 2b, and 2C at an appropriate ratio;

6b、8cは演算増幅器からなり、分圧器5a。6b and 8c are operational amplifiers, and a voltage divider 5a.

5b、5cから出力される電圧VB、Vl+; Vb。Voltages VB and Vl+ output from 5b and 5c; Vb.

VC; VC* Vaを加算して電圧Was Vxe 
Vsを出力する加算器、7は電源1a、lb、lcの中
性点を接地する抵抗値RNを有する抵抗である。
VC; VC* Add Va to get voltage Was Vxe
The adder 7 that outputs Vs is a resistor having a resistance value RN that grounds the neutral points of the power supplies 1a, lb, and lc.

第13図は、第12図に示す装置の動作を説明するベク
トル図である。ここで、配電線2aが事故点4で地絡し
たとすると、中性点0はO′に移行し、分圧器5a、5
b、5cは電圧Va*Vb*v(を出力する。地絡の状
況により変る配電線2a、2b、2cの対地静電容量3
a、3b、3cや地絡抵抗Rgの値において、点Oは円
線図8上いずれかに来る。加算器6a、6b、6cの電
圧V、、v□tV3は次式で示され、図示なしの地絡相
の判定回路に入力される。
FIG. 13 is a vector diagram illustrating the operation of the apparatus shown in FIG. 12. Here, if the distribution line 2a has a ground fault at the fault point 4, the neutral point 0 shifts to O', and the voltage dividers 5a, 5
b, 5c output the voltage Va*Vb*v(.The ground capacitance 3 of the distribution lines 2a, 2b, 2c changes depending on the ground fault situation.
At the values of a, 3b, 3c and the ground fault resistance Rg, the point O falls somewhere on the circle diagram 8. The voltages V, , v□tV3 of the adders 6a, 6b, and 6c are expressed by the following equations, and are input to a ground fault phase determination circuit (not shown).

第13図に示すように、この場合、事故相であるa相の
電圧v1が最小値となり、lv、l<1eaf< l 
V、 l又は1v、1の関係が成立する。他相の地絡事
故の場合も同じような対応関係が成立する。
As shown in FIG. 13, in this case, the voltage v1 of the a phase, which is the fault phase, becomes the minimum value, lv, l<1eaf<l
The relationship V, l or 1v, 1 holds true. A similar relationship holds true in the case of ground faults in other phases.

判定回路は、電圧Vユが最小値となることを判定すると
、配電線2aに地絡事故が発生したことを表わす信号を
出力する。
When the determination circuit determines that the voltage V is at the minimum value, it outputs a signal indicating that a ground fault has occurred in the distribution line 2a.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の地絡相検出装置は、以上のように構成されている
ので、地絡事故時に配電線が有する対地静電容量及び地
絡抵抗が共に大きいと、健全時と事故時の判定電圧の差
が極めて小さくなり、両者間の弁別ができなくなる。こ
のため、例えば増幅器のゲインを増大することにより、
検出機能を高めることもできるが、このようにするため
には各相間の平衡も同時に高度にする必要があり、また
信号対雑音比を改善しない限り、装置の誤動作が起こり
易くなる。さらに、従来の地絡検出装置は、検出限界付
近の地絡事故に対して応動速度が遅いという問題点があ
った。
Since the conventional ground fault phase detection device is configured as described above, if both the ground capacitance and the ground fault resistance of the distribution line are large at the time of a ground fault, the difference in the judgment voltage between the normal state and the fault state will occur. becomes extremely small, making it impossible to distinguish between the two. Therefore, for example, by increasing the gain of the amplifier,
It is possible to improve the detection function, but this requires a high degree of balance between the phases, and unless the signal-to-noise ratio is improved, the device is prone to malfunction. Further, the conventional ground fault detection device has a problem in that the response speed to a ground fault near the detection limit is slow.

この発明は、上記のような問題点を解消するためになさ
れたもので、地絡事故の状況により検出時間が影響され
ることなく、かつ検出限界を明確に設定できる地絡相検
出装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and provides a ground fault phase detection device in which the detection time is not affected by the ground fault situation and the detection limit can be clearly set. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

第1請求項に係る地絡相検出装置は地絡事故の発生に伴
って発生する零相電圧を検出する検出器及び上記零相電
圧を微分して微分電圧を得る微分器を各相毎に設け、電
力系統を形成する配電線の各相の電圧を所定位相だけ移
相して第1の参照電圧を得ると共にこの第1の参照電圧
と直交する位相まで移相して第2の参照電圧を得る移相
器と。
The ground fault phase detection device according to the first claim includes a detector for detecting a zero-sequence voltage generated due to the occurrence of a ground fault, and a differentiator for differentiating the zero-sequence voltage to obtain a differential voltage for each phase. A first reference voltage is obtained by shifting the voltage of each phase of the distribution lines forming the power system by a predetermined phase, and a second reference voltage is obtained by shifting the phase to a phase orthogonal to this first reference voltage. with a phase shifter.

上記零相電圧と上記第1の参照電圧との積をとる第1の
掛算器及び上記微分電圧と上記第2の参照電圧との積を
とる第2の掛算器を各相毎に設け。
A first multiplier that multiplies the zero-phase voltage and the first reference voltage, and a second multiplier that multiplies the differential voltage and the second reference voltage are provided for each phase.

上記各相毎の第1及び第2の掛算器の出力に含まれる交
流分を各相毎に打ち消すように加算する加算器を設け、
この加算器の出方を積分し、その積分出力の絶対値が所
定の閾値を超え、かつ積分出力が所定の極性を有するこ
とを検出する比較器を各相毎に設けたものである。
An adder is provided for adding the alternating current components included in the outputs of the first and second multipliers for each phase so as to cancel each other for each phase,
A comparator is provided for each phase, which integrates the output of the adder and detects that the absolute value of the integrated output exceeds a predetermined threshold and that the integrated output has a predetermined polarity.

第2請求項に係る地絡相検出装置はその第1及び第2の
掛算器が第1及び第2の参照電圧を矩形波に変換する変
換器を備えたものである。
In the ground fault phase detection device according to the second aspect, the first and second multipliers each include a converter that converts the first and second reference voltages into rectangular waves.

第3請求項に係る地絡相検出装置はその第1及び第2の
掛算器が零相電圧及びその微分電圧を矩形波に変換する
変換器を備えたものである。
In the ground fault phase detection device according to the third aspect, the first and second multipliers include a converter that converts a zero-phase voltage and its differential voltage into a rectangular wave.

〔作用〕[Effect]

第1請求項における地絡相検出装置は保護対象の配電線
から零相電圧を検出し、この零相電圧と配電線から検出
した第1の参照電圧並びに上記零相電圧の微分電圧と第
1の参照電圧に直交した第2の参照電圧との間の積をと
り、これらの積の結果から直流成分のみを選択的に積分
し、その結果が所定値を超え、かつ所定の極性であるが
否がを判定して地絡事故を検出することにより地絡事故
状況により検出時間が影響されることなく、かつ検出限
界が明確に設定できる。
The ground fault phase detection device in claim 1 detects a zero-sequence voltage from a distribution line to be protected, and detects the zero-sequence voltage, a first reference voltage detected from the distribution line, a differential voltage of the zero-sequence voltage, and a first reference voltage detected from the distribution line. and a second reference voltage that is orthogonal to the reference voltage of By detecting a ground fault by determining whether or not the ground fault occurs, the detection time is not affected by the ground fault situation, and the detection limit can be clearly set.

第2請求項における地絡相検出装置は第1及び第2の参
照電圧を矩形波に変換してから掛算処理をすることによ
り雑音に対して安定し、装置の誤動作が起らなくなる。
The ground fault phase detection device according to the second aspect converts the first and second reference voltages into rectangular waves and then performs multiplication processing, thereby making the device stable against noise and preventing malfunctions of the device.

第3請求項における地絡相検出装置は零相電圧及びその
微分電圧を矩形波に変換してから掛算処理をすることに
より検出限界を明確に設定できる。
The ground fault phase detection device according to the third aspect can clearly set the detection limit by converting the zero-phase voltage and its differential voltage into a rectangular wave and then performing multiplication processing.

〔実施例〕〔Example〕

以下、この発明の一実施例を図面について説明する。こ
の発明による第1の実施例を示す第1図において、9は
配電線2a、2b、2cに接続された巻線9a、配電線
2a、2b、2cの電圧eaw eh+ eCから角度
αだけ遅れた参照電圧ua。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1 showing a first embodiment according to the present invention, 9 is a winding 9a connected to distribution lines 2a, 2b, 2c, and a voltage delayed by an angle α from the voltage ea eh + eC of the distribution lines 2a, 2b, 2c. Reference voltage ua.

ul、、 ucを発生する巻線9b及び参照電圧u1u
b+ucに対し直交する即ちこれらより90@進相の参
照電圧ua  # uk  * uc# を発生する巻
線9cを有し、移相器の機能をも備えた変圧器。
Winding 9b generating ul, uc and reference voltage u1u
A transformer having a winding 9c that generates a reference voltage ua # uk * uc # that is orthogonal to b + uc, that is, 90 @ phase advanced from these, and also has the function of a phase shifter.

10は配電線2a、2b、2cに接続され、零相電圧V
、を検出する容量型の変圧器で5分圧器及び零相電圧v
0の検出器として機能する。lla。
10 is connected to the distribution lines 2a, 2b, 2c, and has a zero-phase voltage V
, a capacitive transformer that detects 5 voltage dividers and zero-sequence voltage v
It functions as a 0 detector. lla.

1 l b、11 cは零相電圧V、と参照電圧uat
ulltucとの間で掛算をする掛算器、12は零相電
圧v0を微分し、微分電圧V。、  (=l  dJ上
) をω  dt 得る微分器、14a、14b、14aは微分電圧v 、
 / と参照電圧u@、uし 、uc′ とを掛算する
掛算器、15a、15b、15cは掛算器11a、ll
b、lieの電圧W @1 g W @1 @ W (
1と掛算器14a、14b、14oの電圧Vast W
ba+w(、とを加算する加算器、16a、16b、1
6Cは加算@ 16 a 、 15 b 、 15 c
の電圧W a tW b * W cを積分し、電圧W
&* Wbe W(を得る積分[%、17a、17b、
17cは電圧Was W、。
1 l b, 11 c are the zero-sequence voltage V, and the reference voltage uat
A multiplier 12 that performs multiplication between ulltuc and ulltuc differentiates the zero-sequence voltage v0 to obtain a differential voltage V. , (=on l dJ) ω dt , a differentiator, 14a, 14b, 14a are differential voltages v,
Multipliers 15a, 15b, and 15c are multipliers 11a and 11a for multiplying / by the reference voltages u@, u, and uc'.
b, lie voltage W @1 g W @1 @ W (
1 and the voltages of the multipliers 14a, 14b, 14o Vast W
Adder for adding ba+w(, 16a, 16b, 1
6C is addition @ 16 a , 15 b , 15 c
The voltage W a tW b * W c is integrated, and the voltage W
&* Wbe W(integral [%, 17a, 17b,
17c is a voltage WasW.

Wcと閾値−wthとを比較する比較器、18は加算器
15a、15b、15cの電圧wa、 wb、 Wcか
ら最小値のもの、即ち事故発生相のものを選択する選択
器、19は選択器18から出力される電圧Wlkl ’
jlb又はWcと閾値−vthとを比較する比較器、2
0a、20b、20cは比較器17a。
A comparator that compares Wc and a threshold value -wth, 18 a selector that selects the minimum value from the voltages wa, wb, and Wc of the adders 15a, 15b, and 15c, that is, the phase in which the accident occurred; 19 a selector Voltage Wlkl' output from 18
Comparator for comparing jlb or Wc with threshold value -vth, 2
0a, 20b, and 20c are comparators 17a.

17b、17cの出力と比較器19の出力とのアンドを
とるアンド・ゲートで、地絡の検出を示す信号F、、F
し、FCを出力する。
An AND gate that ANDs the outputs of 17b and 17c and the output of comparator 19, and generates signals F, , F indicating the detection of a ground fault.
and outputs FC.

次に動作について説明する。電源1a、lb。Next, the operation will be explained. Power supply 1a, lb.

1cの電圧e&s efi、acは次式で表わされる。The voltage e & s efi, ac of 1c is expressed by the following equation.

変圧器9の参照電圧uat ul+e ue、 ua 
 tubu cIは(1)式から次式のようになる。
Reference voltage of transformer 9 uat ul+e ue, ua
tubu cI is calculated from equation (1) as follows.

参照電圧ua+ ube ucs ua  e ub 
 + ucは線間電圧に関係しているので、事故点4の
ような地絡事故には変化がない。しかし、このような地
絡事故により、中性点Oの電位が変化し、零相電圧V、
が発生する。零相電圧v0は対地静電容量3 a + 
3 b * 3 cの容量C0、地絡抵抗Rg、抵抗7
の抵抗値R,と次式のような関係をもっv、=−v、s
in (ωt−θ)      …(4)ただし N g u@’  wEcos ((II t −a)第2図は
、電圧eas f3b* ’ec、参照電圧ua+ub
e ucs ua  + ub  v uc’及び零相
電圧v0間のベクトル関係を示すベクトル図である0図
示のように、地絡抵抗Rgの値により零相電圧v0のベ
クトルは円線図8上のいずれかに来る。掛算1111a
、llb、llcの電圧W at t W h1* W
 clは次式のようになる。
Reference voltage ua+ ube ucs ua e ub
+ uc is related to the line voltage, so there is no change in a ground fault like fault point 4. However, due to such a ground fault, the potential at the neutral point O changes, and the zero-sequence voltage V,
occurs. The zero-sequence voltage v0 is the ground capacitance 3 a +
3 b * 3 c capacity C0, ground fault resistance Rg, resistance 7
The relationship between the resistance value R, and the following equation is v, = -v, s
in (ωt-θ)...(4) However, N g u@' wEcos ((II t -a) In Figure 2, the voltage eas f3b* 'ec, the reference voltage ua+ub
e ucs ua + ub v uc' and the zero-sequence voltage v0. The crab is coming. Multiplication 1111a
, llb, llc voltage W at t W h1* W
cl is expressed as follows.

W l+11 W C@は次式で表わされる。W l+11 W C@ is expressed by the following formula.

(9)式の右辺第2項は(7)式の右辺第2項と逆符号
なので、加算器15a、15b、15cは。
Since the second term on the right side of equation (9) has the opposite sign to the second term on the right side of equation (7), the adders 15a, 15b, and 15c.

両者を加算することによりその交流成分を消去する。即
ち (7)式の第1項は直流成分であり、■、及びEに比例
しており、第2項は2ωの交流成分である。
By adding both, the alternating current component is eliminated. That is, the first term in equation (7) is a DC component and is proportional to ■ and E, and the second term is an AC component of 2ω.

零相電圧v0は微分器12により微分されると、(4)
式から次式のような微分電圧v 、I が発生する。
When the zero-sequence voltage v0 is differentiated by the differentiator 12, (4)
From the equation, differential voltages v and I are generated as shown in the following equation.

Va’=−V、C08((1)を−〇’)拳−−・−・
(8)従って、掛算器14a、14b、14cの電圧w
□。
Va'=-V, C08 ((1) -〇') Fist---・-・
(8) Therefore, the voltage w of multipliers 14a, 14b, 14c
□.

電圧Was Why W(は積分器16a、16b、1
6cにより積分され、次式のようになる。
The voltage Was Why W (is the integrator 16a, 16b, 1
6c, it is integrated as shown in the following equation.

(11)式で示される電圧wa、w、、wcは、零相電
圧vaに関連したものなので、地絡事故がなく、かつ各
相の電圧f3&t eb* acが平衡しているときは
零となる。しかし、地絡事故により零相電圧v0が発生
すると、電圧Wa、W、、Wcは時間と共に増大し、こ
の場合、電圧Waは負、電圧Wし及びWcは正の値を示
す。
The voltages wa, w, and wc shown in equation (11) are related to the zero-phase voltage va, so if there is no ground fault and the voltages f3 & t eb * ac of each phase are balanced, they are zero. Become. However, when a zero-sequence voltage v0 occurs due to a ground fault, the voltages Wa, W, .

第3図は時刻tgで地絡事故が発生したときの電圧Wa
、Wb−Wcの波形を示す。このように事故相の電圧W
aのみが負方向へ増加し、他の電圧Wb及びWcは正方
向に増加する。電圧Waは時刻tdで閾値−wthと交
差するので、これが比較器17aにより検出され、その
出力が1となる。電圧waは、選択器18を介して比較
器19に入力され、閾値−vthと比較され、第4図に
示すように1時刻tgで直ちに閾値−vthと交差した
ものとなる。従って、比較器19は出力を1にし、アン
ド・ゲート20aが開き、a相即ち配電線2aの地絡を
示す信号F、が出力される。配電線2b又は2cの地絡
の場合もa相の場合と同じような説明となる。
Figure 3 shows the voltage Wa when a ground fault occurs at time tg.
, Wb-Wc waveforms are shown. In this way, the fault phase voltage W
Only voltage a increases in the negative direction, and the other voltages Wb and Wc increase in the positive direction. Since the voltage Wa crosses the threshold value -wth at time td, this is detected by the comparator 17a, and its output becomes 1. The voltage wa is input to the comparator 19 via the selector 18 and compared with the threshold value -vth, and immediately crosses the threshold value -vth at one time tg as shown in FIG. Therefore, the comparator 19 sets the output to 1, the AND gate 20a opens, and the signal F indicating the a-phase, that is, the ground fault in the distribution line 2a, is output. In the case of a ground fault in the distribution line 2b or 2c, the explanation is similar to that in the case of the a-phase.

なお、積分器16a、16b、16cは完全な時間積分
を行なう場合を説明したが、掛算器14a、14b、1
4cの出力に、その演算精度などが原因で少しでも直流
成分が含まれると、積分器16 a * 16 b *
 16 cの積分で直流成分が蓄積され、誤差を大きく
する。このため、積分器16a、16b、16cに伝達
関数工。77の一次送れ要素をもたせてもよく、時定数
Tは地絡事故の現象よりも長くなるように設定しておけ
ばよい。
Although the case where the integrators 16a, 16b, 16c perform complete time integration has been described, the multipliers 14a, 14b, 1
If the output of 4c contains even a small amount of DC component due to its calculation accuracy, the integrator 16 a * 16 b *
16 c, a DC component is accumulated and increases the error. Therefore, a transfer function is used in the integrators 16a, 16b, and 16c. 77 primary feed elements may be provided, and the time constant T may be set to be longer than the phenomenon of a ground fault.

更に、電圧wat Why Wcは、地絡事故が発生す
る以前に、配電線2a、2b、2cに関連する不平衡が
原因で、ある値の直流分を有することがあるので、第5
図に示すように電圧W a e W b * W cを
それぞれコンデンサCを介して出力するようにしてもよ
い、コンデンサCは抵抗Rと共に微分回路を形成し、そ
の時定数CRは予想される地絡事故の現象及び系統に常
時発生する擾乱より長くなるように設定すればよい。
Furthermore, the voltage wat Why Wc may have a DC component of a certain value before a ground fault occurs due to the unbalance associated with the distribution lines 2a, 2b, 2c.
As shown in the figure, the voltages W a e W b * W c may be outputted through capacitors C, respectively. The capacitors C form a differentiating circuit together with the resistor R, and the time constant CR is determined by the expected ground fault. It may be set to be longer than the phenomenon of an accident or the disturbance that constantly occurs in the system.

また、第1の実施例では参照電圧u as u 11 
u C。
Further, in the first embodiment, the reference voltage u as u 11
uC.

ua  e ul  # uc’ を正弦波としたが、
これらの正弦波を第6図に示すように例えば掛算器に変
換器を備え、一定振幅の矩形波に変換してから掛算の処
理をしてもよい、第6図において、(a)は第1の参照
電圧ua、(b)は第2の参照電圧ua   (c)は
零相電圧v@、  (d)は微分電圧vs’   (8
)は電圧Waい (f)は電圧W6m、(g)は電圧w
aの波形を示す、この場合、時刻tgで地絡事故が発生
すると、電圧wa# w、、Woの波形は第7図に示す
ように変化する。第7図に示す電圧wa# Wb−Wc
の波形は、第3図に示すものと異なり、振動成分をもつ
が、基本的な点は同じであり、電圧Waは時刻tdにお
いて閾値−wthと交差し、地絡事故の判定がなされる
Although ua e ul # uc' is a sine wave,
As shown in Fig. 6, for example, the multiplier may be equipped with a converter to convert these sine waves into rectangular waves of constant amplitude, and then the multiplication process may be performed. 1 reference voltage ua, (b) is the second reference voltage ua (c) is the zero-sequence voltage v@, (d) is the differential voltage vs' (8
) is the voltage Wai, (f) is the voltage W6m, (g) is the voltage w
In this case, when a ground fault occurs at time tg, the waveforms of voltages wa# w, , Wo change as shown in FIG. Voltage wa# Wb-Wc shown in FIG.
The waveform differs from that shown in FIG. 3 and has a vibration component, but the basic points are the same: the voltage Wa crosses the threshold value -wth at time td, and a ground fault fault is determined.

また、第1の実施例では零相電圧及びその微分電圧を正
弦波のまま演算処理に用いたが例えば掛算器に変換器を
備え、これらを矩形波に変換してから掛算の処理をして
も第1の実施例と同様の効果を奏する。
In addition, in the first embodiment, the zero-phase voltage and its differential voltage were used as sine waves for calculation processing, but for example, a converter is provided in the multiplier to convert them into rectangular waves and then perform multiplication processing. This embodiment also produces the same effects as the first embodiment.

また、第1の実施例では零相電圧及びその微分電圧と参
照電圧との掛算を掛算器により行なう場合を説明したが
、第8図に示す波形図から明らかなように、ゲート回路
によって掛算と同一の機能を実行しても第1の実施例と
同様の効果を奏する。
Furthermore, in the first embodiment, a case was explained in which the zero-sequence voltage and its differential voltage are multiplied by the reference voltage using a multiplier, but as is clear from the waveform diagram shown in FIG. 8, the multiplication is performed using a gate circuit. Even if the same functions are executed, the same effects as in the first embodiment can be obtained.

第8図において、(a)は零相電圧vll及びその微分
電圧v、’   (b)は参照電圧ua及びua(c)
は電圧fax及びwa2、(d)は電圧Wfiの波形を
示す。この場合、地絡事故が時刻tgで発生すると、電
圧w、、W、e Wcは第9図に示すように変化し、上
記説明から地絡事故の判定が可能なことが解る。
In FIG. 8, (a) is the zero-sequence voltage vll and its differential voltage v,' (b) is the reference voltage ua and ua (c)
shows the voltages fax and wa2, and (d) shows the waveform of the voltage Wfi. In this case, when a ground fault occurs at time tg, the voltages w, , W, and eWc change as shown in FIG. 9, and from the above explanation, it is understood that a ground fault can be determined.

また、第1の実施例では、参照電圧ua* ub+uc
+ua*uし *uC’ を変圧器9から得る場合を説
明したが、これらを第10図及び第11図で示すように
、コンデンサからなる分圧器5a。
Further, in the first embodiment, the reference voltage ua* ub+uc
The case where +ua*u and *uC' are obtained from the transformer 9 has been described, but as shown in FIGS. 10 and 11, the voltage divider 5a is composed of a capacitor.

5b、5cから得るようにしてもよい。第10図におい
て、加算器21a、21b、21cは分圧器5a、5b
、5cの出力電圧から2相分ずつ入力して加算し、参照
電圧uat ub+ ucを得、微分器22a、22b
、22cはこれらを微分して参照電圧u%、u艶’ 、
u(’ を得る・第11図において、微分器23a、2
3b、23cは、参照電圧ull* ub+ ucから
2相分ずつ入力して加算し、参照電圧ua  s ub
’ e ucを得る。
It may also be obtained from 5b and 5c. In FIG. 10, adders 21a, 21b, 21c are voltage dividers 5a, 5b.
, 5c are input and added for each two phases to obtain a reference voltage uat ub + uc, and the differentiators 22a and 22b
, 22c differentiate these to obtain the reference voltage u%, u gloss',
Obtain u(' In Fig. 11, differentiators 23a, 2
3b and 23c input and add two phases each from the reference voltage ull*ub+uc, and add the reference voltage ua s ub
'Get euc.

〔発明の効果〕〔Effect of the invention〕

以上のように、第1請求項によれば、保護対象の配電線
から零相電圧を検出し、この零相電圧と配電線から検出
した参照電圧並びにそれらの直交信号との間の積をとり
、これらの積の結果から直流成分のみを選択的に積分し
、その結果が所定値を超え、かつ所定の極性となるか否
かを判定することにより、地絡事故を検出するようにし
たので、地絡事故の状況により検出時間が影響されるこ
となく、雑音に対し安定、かつ検出速度に影響されるこ
となく、検出限界を明確に設一定できる効果がある。
As described above, according to the first claim, the zero-sequence voltage is detected from the distribution line to be protected, and the product of this zero-sequence voltage and the reference voltage detected from the distribution line and their orthogonal signals is calculated. , ground faults are detected by selectively integrating only the DC component from the results of these products and determining whether the result exceeds a predetermined value and has a predetermined polarity. , the detection time is not affected by the ground fault situation, is stable against noise, and is not affected by the detection speed, and has the effect of clearly setting the detection limit.

第2請求項によれば地絡相検出装置の第1及び第2の掛
算器に第1及び第2の参照電圧を矩形波に変換する機能
を付加することにより、雑音に対して安定し、誤動作が
起らないという効果が得られる。
According to the second claim, by adding a function of converting the first and second reference voltages into rectangular waves to the first and second multipliers of the ground fault phase detection device, it is stabilized against noise; The effect is that malfunctions do not occur.

第3請求項は、地絡相検出装置の第1及び第2の掛算器
に零相電圧及びその微分電圧を矩形波に変換する機能を
付加することにより検出限界を明確に設定できる効果が
得られる。
The third claim provides the effect of clearly setting the detection limit by adding a function of converting the zero-sequence voltage and its differential voltage to a rectangular wave to the first and second multipliers of the ground fault phase detection device. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の実施例による地絡相検出装置
のブロック図、第2図は第1図に示す装置の各部の電圧
のベクトル図、第3図及び第4図は第1図に示す装置の
動作の波形図、第5図はこの発明の第2の実施例による
地絡相検出装置のブロック図、第6図及び第7図はこの
発明の第3の実施例の動作の波形図、第8図及び第9図
はこの発明の第4の実施例による動作の波形図、第10
図はこの発明の第5の実施例によるブロック図。 第11図はこの発明の第6の実施例によるブロック図、
第12図は従来の地絡相検出装置のプロッり図、第13
図は第12図に示す装置の各部の電圧のベクトル図であ
る。 2 a 、 2 b 、 2 c−−・配電線、5a、
5b、5o。 i o ・・・分圧器、9・・・変圧器、lla、ll
b、11 o 、 14 a 、 14 b 、 l 
4 e−・−掛算器、12゜22 a 、 22 b 
、 22 c−微分器、15a、15b、15c、21
a、21b、21c、23a。 23b、23cm加算器、16a、16b、16e ’
・・積分器、 17 a 、 17 b 、 l 7 
c 、 19−比較器、18 ・・・選択器、20 a
 、 20 b I20 c ・”アンド・ゲート。 なお1図中の同一符号は同一部分を示す。 代理人  大  岩  増  雄 Wj2図 e 第 図 第 図 第 図 第 図 第 図 撫 図 Va’ 一−−−−− −−−−+++ −−wj第10図 第 図 第 図 第 図
FIG. 1 is a block diagram of a ground fault phase detection device according to a first embodiment of the present invention, FIG. 2 is a vector diagram of voltages at various parts of the device shown in FIG. 1, and FIGS. FIG. 5 is a block diagram of the ground fault phase detection device according to the second embodiment of the present invention, and FIGS. 6 and 7 are waveform diagrams of the operation of the device shown in FIG. FIGS. 8 and 9 are waveform diagrams of the operation according to the fourth embodiment of the present invention, and FIGS.
The figure is a block diagram according to a fifth embodiment of the present invention. FIG. 11 is a block diagram according to a sixth embodiment of the present invention;
Figure 12 is a plot diagram of a conventional ground fault phase detection device, Figure 13
The figure is a vector diagram of voltages at various parts of the device shown in FIG. 12. 2a, 2b, 2c--・Distribution line, 5a,
5b, 5o. i o... Voltage divider, 9... Transformer, lla, ll
b, 11 o, 14 a, 14 b, l
4 e-・-multiplier, 12°22 a, 22 b
, 22 c-differentiator, 15a, 15b, 15c, 21
a, 21b, 21c, 23a. 23b, 23cm adder, 16a, 16b, 16e'
...Integrator, 17 a, 17 b, l 7
c, 19-comparator, 18...selector, 20 a
, 20 b I20 c ・"And gate. Note that the same reference numerals in Figure 1 indicate the same parts. Agent Masuo Oiwa Wj2 Figure e Figure Figure Figure Figure Figure Figure Figure Figure Figure Va' 1-- −−− −−−−+++ −−wj Figure 10 Figure Figure Figure

Claims (3)

【特許請求の範囲】[Claims] (1)電力系統を形成する各相の配電線の各電圧から零
相電圧を検出する検出器と、上記零相電圧を微分した微
分電圧を発生する微分器と、を備えると共に、上記各電
圧を所定位相だけ移相して第1の参照電圧を発生すると
共に上記各電圧を上記所定位相と直交する位相まで移相
して第2の参照電圧を発生する移相器と、上記零相電圧
と上記第1の参照電圧との積をとる第1の掛算器と、上
記微分電圧と上記第2の参照電圧との積をとる第2の掛
算器と、上記第1及び第2の掛算器の出力をその出力に
含まれる交流分を打ち消すように加算する加算器と、上
記加算器の出力を積分する積分器と、上記積分器の出力
の絶対値が所定の閾値を超え、かつ上記積分器の出力が
所定の極性を有することを検出する比較器とを上記各相
毎に備え、上記比較器の検出出力を対応する配電線の地
絡事故の発生を示す信号とした地絡相検出装置。
(1) A detector that detects a zero-sequence voltage from each voltage of distribution lines of each phase forming an electric power system, and a differentiator that generates a differential voltage obtained by differentiating the zero-sequence voltage, and each of the voltages a phase shifter that generates a first reference voltage by shifting the phase by a predetermined phase and generates a second reference voltage by shifting the phase of each of the voltages to a phase orthogonal to the predetermined phase; and the first reference voltage; a second multiplier that multiplies the differential voltage and the second reference voltage; and the first and second multipliers. an adder that adds the output of the adder so as to cancel the alternating current component included in the output; an integrator that integrates the output of the adder; A ground fault phase detection method, in which each phase is equipped with a comparator that detects that the output of the device has a predetermined polarity, and the detection output of the comparator is used as a signal indicating the occurrence of a ground fault accident in the corresponding distribution line. Device.
(2)第1及び第2の掛算器はそれぞれ第1及び第2の
参照電圧を矩形波に変換する変換器を含むことを特徴と
する請求項第1項記載の地絡相検出装置。
(2) The ground fault phase detection device according to claim 1, wherein the first and second multipliers each include a converter that converts the first and second reference voltages into rectangular waves.
(3)第1及び第2の掛算器はそれぞれ零相電圧及びそ
の微分電圧を矩形波に変換する変換器を含むことを特徴
とする請求項第1項記載の地絡相検出装置。
(3) The ground fault phase detection device according to claim 1, wherein the first and second multipliers each include a converter that converts the zero-phase voltage and its differential voltage into a rectangular wave.
JP1014881A 1989-01-24 1989-01-24 Ground fault detector Expired - Lifetime JPH0619407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1014881A JPH0619407B2 (en) 1989-01-24 1989-01-24 Ground fault detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1014881A JPH0619407B2 (en) 1989-01-24 1989-01-24 Ground fault detector

Publications (2)

Publication Number Publication Date
JPH02195275A true JPH02195275A (en) 1990-08-01
JPH0619407B2 JPH0619407B2 (en) 1994-03-16

Family

ID=11873356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1014881A Expired - Lifetime JPH0619407B2 (en) 1989-01-24 1989-01-24 Ground fault detector

Country Status (1)

Country Link
JP (1) JPH0619407B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103487725A (en) * 2013-10-10 2014-01-01 北京三杰网联科技有限公司 Overhead distributing line ground fault indicating device based on zero-sequence component method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103487725A (en) * 2013-10-10 2014-01-01 北京三杰网联科技有限公司 Overhead distributing line ground fault indicating device based on zero-sequence component method
CN103487725B (en) * 2013-10-10 2015-12-02 北京三杰网联科技有限公司 A kind of overhead distribution earth fault indicating device based on zero-sequence component method

Also Published As

Publication number Publication date
JPH0619407B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
JP3338159B2 (en) Amplitude / phase detector
EP0738433B1 (en) Method and device for determining the direction to a fault on a power transmission line
WO2016203633A1 (en) Leak current detecting device
US3992651A (en) Active symmetrical component network for protective relays
JPH02195275A (en) Ground fault phase detecting device
JPH05232157A (en) Voltage drop detection device
CN1174330A (en) Circuit for detecting phase angle of three-phase alternating current
JP2630862B2 (en) Change width detector
JP3266966B2 (en) Positive / negative phase component detection circuit for three-phase electricity
JPS6019492Y2 (en) ground fault distance relay
JP2723286B2 (en) Ground fault detector
JPH0843453A (en) Voltage drop detection circuit
JP4191582B2 (en) AC voltage drop detection device
JP2889133B2 (en) Control device for power converter
JP3370241B2 (en) Ground fault line selective protection relaying method and device
JP2633637B2 (en) Symmetrical protection relay
JPS58127172A (en) Insulation resistance measuring apparatus for electric line with suppressed stray capacity
JPS6350932B2 (en)
JPH0113298B2 (en)
JPS61147731A (en) Ground-fault phase detector
JPS598130B2 (en) Circuit device for monitoring ground faults in non-grounded DC circuits
JPS61147728A (en) Ground-fault phase detector
JPS61147730A (en) Ground-fault phase detector
JPH0527326B2 (en)
JPS6248452B2 (en)