JPH02194934A - Socket and spigot joint structure in resin composite pipe and manufacture of socketed resin composite pipe - Google Patents

Socket and spigot joint structure in resin composite pipe and manufacture of socketed resin composite pipe

Info

Publication number
JPH02194934A
JPH02194934A JP1604389A JP1604389A JPH02194934A JP H02194934 A JPH02194934 A JP H02194934A JP 1604389 A JP1604389 A JP 1604389A JP 1604389 A JP1604389 A JP 1604389A JP H02194934 A JPH02194934 A JP H02194934A
Authority
JP
Japan
Prior art keywords
pipe
socket
synthetic resin
resin composite
outer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1604389A
Other languages
Japanese (ja)
Other versions
JPH0759385B2 (en
Inventor
Isao Ogura
小倉 勲
Kuniaki Onishi
国昭 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP1016043A priority Critical patent/JPH0759385B2/en
Publication of JPH02194934A publication Critical patent/JPH02194934A/en
Publication of JPH0759385B2 publication Critical patent/JPH0759385B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Joints With Sleeves (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To contrive to improve the joint strength and watertightness of a resin composite pipe by a method wherein the end face, which faces into a socket part, of a synthetic resin pipe is covered with outer layer constitutional material and, at the same time, the synthetic resin end face at a spigot part is covered with the outer layer constitutional material. CONSTITUTION:Core pipe D has grooves 164..., which are formed on the socket forming parts 161... or socket forming connecting members 16... and grooves 175... of spigot forming connecting members 17... and the surface of the core pipe D is made smooth by burying the grooves 164 and 175 with proper filler. The core pipe D is fed to a stock pipe making means 2 so as to produce resin composite stock pipe E by forming outer layer constitutional material layer onto the outer peripheral surface of the core pipe. In addition, the outer layer constitutional material 20 also enters in gaps S and W, which are respectively ensured just before the end faces of synthetic resin pipe C by midget stoppers 167, 168, 176 and 177 of the respective connecting members 16 and 17. As a result, the end faces of the synthetic pipes C... are covered with the outer layer constitutional material 20. A cutting means 4 cuts off the resin composite stock pipe E, which is fed out of a stock pipe take-off means 3, at their cutting positions or the connecting sites of the synthetic resin pipes C....

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、樹脂複合管における受け挿し接続構造及び受
口付樹脂複合管の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a receiving and connecting structure for a resin composite pipe and a method for manufacturing a resin composite pipe with a socket.

(従来の技術) 硬質塩化ビニル樹脂のような熱可塑性樹脂からなる管は
、優れた耐蝕性をもっているが、耐圧性、耐衝撃性等機
械的強度があまり高くない。このため、厳しい環境下で
の使用、例えば、高温高圧の薬液の輸送が行われる化学
プラント用配管材料や外部からも圧力を受ける地下埋設
管路用材料としての使用に充分耐えられるものではなか
った。そこで、熱可塑性樹脂のもつ優れた耐蝕性はその
ままに、機械的強度の向上を図った樹脂複合管が提案さ
れ、現在様々な分野で多用されている。この樹脂複合管
は、繊維強化熱硬化性樹脂をはじめとする各種の外層構
成材料を、熱可塑性樹脂管の外周面に積層したもので、
このようにすることによって所期の機械的強度を得てい
る。
(Prior Art) Pipes made of thermoplastic resin such as hard vinyl chloride resin have excellent corrosion resistance, but do not have very high mechanical strength such as pressure resistance and impact resistance. For this reason, it could not withstand use in harsh environments, such as piping materials for chemical plants that transport high-temperature, high-pressure chemical solutions, or as materials for underground pipes that are subject to external pressure. . Therefore, resin composite pipes have been proposed that have improved mechanical strength while retaining the excellent corrosion resistance of thermoplastic resins, and are currently widely used in various fields. This resin composite pipe is made by laminating various outer layer constituent materials, including fiber-reinforced thermosetting resin, on the outer peripheral surface of a thermoplastic resin pipe.
By doing so, the desired mechanical strength is obtained.

従来、このような樹脂複合管を製造する方法として、例
えば特開昭57−207061号公報には次の二つの方
法が開示されている。まず、一つめの方法は、熱可塑性
樹脂管の外周面に、繊維強化熱硬化性樹脂(以下、FR
Pという。)との接着効果を高めるための表面処理を施
したのち、FRPを巻回し、次いでそのうえにレジンコ
ンクリートを巻回してから最後に再びFRPを巻回する
ものである。また、二つめの方法は、内面にFRP層を
形成した型の中に、FRPを巻回した管を嵌め入れ、こ
れら型と管との間隙に未硬化のレジンコンクリートを流
し込んで硬化させ、両者を一体化させたのち、型を取り
去るものである。
Conventionally, as methods for manufacturing such resin composite pipes, the following two methods have been disclosed, for example, in Japanese Patent Application Laid-Open No. 57-207061. First, the first method is to apply fiber-reinforced thermosetting resin (hereinafter referred to as FR) to the outer peripheral surface of the thermoplastic resin pipe.
It's called P. ) After applying surface treatment to enhance the adhesion effect with FRP, the FRP is wound, then resin concrete is wound thereon, and finally FRP is wound again. The second method is to fit a pipe wrapped with FRP into a mold with an FRP layer formed on the inner surface, and pour uncured resin concrete into the gap between the mold and the pipe and allow it to harden. After integrating the two, the mold is removed.

ところで、上記した樹脂複合管同士の接続を行うには、
他の合成樹脂管の場合と同様、管の一端に受口部を設け
て、これに他の管の挿口部を挿入して接続する受け挿し
接続が行われるが、この場合、従来は、受口部の内周面
と挿口部の外周面とを接着剤で接着している。
By the way, in order to connect the resin composite pipes mentioned above,
As with other synthetic resin pipes, a socket is provided at one end of the pipe, and the socket of another pipe is inserted into the socket for connection.In this case, conventionally, The inner circumferential surface of the receptacle and the outer circumferential surface of the insertion port are bonded with adhesive.

また、上記した受け挿し接続を行うには、当然のことな
がら、少なくとも一端に受口部を有する受口付樹脂複合
管を用意する必要があるが、このような管を製造する方
法としては、従来、例えば特開昭54−146871号
公報に所載の方法が知られている。
In addition, in order to perform the above-mentioned socket connection, it is of course necessary to prepare a resin composite pipe with a socket having a socket on at least one end, but as a method for manufacturing such a pipe, Conventionally, a method described in, for example, Japanese Unexamined Patent Publication No. 54-146871 is known.

その製造方法は、周方向に回転しながら軸方向に移動す
る芯型及び該芯型上に装着された受口成形用型材の周り
に成形材料を積層したのち硬化炉を通過させて成形材料
を硬化させ、次にこれを前記芯型から脱型してから直管
部と受口部とを切断刃で切断し、最後に受口成形用型材
を離脱させるもので、このような方法で製造される受口
付樹脂複合管は、直管部及び受口部がそれぞれ所定肉厚
の成形材料層で構成されたものである。
The manufacturing method involves laminating the molding material around a core mold that moves in the axial direction while rotating in the circumferential direction and a socket molding material mounted on the core mold, and then passing the molding material through a curing furnace. After curing, this is removed from the core mold, the straight pipe part and the socket part are cut with a cutting blade, and finally the mold material for molding the socket is separated, and it is manufactured by this method. In the resin composite pipe with a socket, the straight pipe part and the socket part are each made of a layer of molding material having a predetermined thickness.

(発明が解決しようとする課題) しかしながら、前記した特開昭57−207061号公
報に所載の樹脂複合管の製造方法にあっては次のような
問題があった。
(Problems to be Solved by the Invention) However, the method for manufacturing a resin composite pipe described in the above-mentioned Japanese Unexamined Patent Publication No. 57-207061 has the following problems.

すなわち、その製造方法の一つめの方法の場合、管の両
端部以外の部分では、第23図に示すように、FRP等
の外層構成材料aを一定のピッチで螺旋状に巻いている
が、外層構成材料aの巻き始めと巻き終わりの部分とな
る両端部では、外層構成材料aを管端に沿うようにして
何回か重ねて巻(、いわゆる余巻きを行っている。この
余巻きは、管を指示しているチャッキング装置す、bに
外層構成材料aが巻き付かないように、また管端部の仕
上がりがよくなるように、必ず行わなければならないも
のである。このため、管の両端部とそれ以外の部分とで
外層構成材料aの積層厚さにどうしても差が生じ、管の
全長にわたって均一な外層構成材料層をもつ樹脂複合管
を得ることができないといった問題があった。また、外
層構成材料aの巻きピッチが、全体に一様でないため、
外観が悪くなるといった問題もあった。さらに、熱可塑
性樹脂管の1本1本について外層構成材料の巻回作業を
行う、いわゆるバッチ処理によるものであるため、作業
能率が悪く、生産性に劣るといった問題もあった。
That is, in the case of the first manufacturing method, as shown in FIG. 23, the outer layer constituent material a such as FRP is spirally wound at a constant pitch in the parts other than both ends of the tube. At both ends, which are the beginning and end of the winding of the outer layer constituent material a, the outer layer constituent material a is wound several times along the tube end (so-called extra winding is performed. This extra winding is This must be done to prevent the outer layer constituent material a from getting wrapped around the chucking device that holds the pipe, and to ensure a good finish at the end of the pipe. There is a problem in that there is inevitably a difference in the laminated thickness of the outer layer constituent material a between both ends and other parts, making it impossible to obtain a resin composite pipe having a uniform outer layer constituent material layer over the entire length of the tube. , since the winding pitch of the outer layer constituent material a is not uniform throughout,
There was also the problem that the appearance deteriorated. Furthermore, since the process involves so-called batch processing in which the outer layer material is wound around each thermoplastic resin pipe one by one, there are problems in that the work efficiency is poor and the productivity is poor.

また、特開昭57−207061号公報に所載の二つめ
の方法の場合6.内面にFRP層を形成した型の中に、
FRPを巻回した管を嵌め入れ、これら型と管との間隙
にレジンコンクリートを流し込んで硬化させるものであ
るため、このような方法ではバッチ処理にならざるを得
ない。したがって、この方法も作業能率が悪く、生産性
に劣るといった問題があった。また、型を別途用意し、
その内面にFRP層を形成しておく必要があるため、工
程が複雑になるといった問題もあった。さらに、レジン
コンクリートを硬化させるための炉を、最も長尺の管に
合うものとする必要があり、このため設備が大掛かりと
なって、経済的に不利になるといった問題もあった。
In addition, in the case of the second method described in Japanese Patent Application Laid-Open No. 57-207061, 6. Inside the mold with an FRP layer formed on the inside,
Since a tube wrapped with FRP is inserted into the mold and resin concrete is poured into the gap between the mold and the tube and hardened, this method requires batch processing. Therefore, this method also has the problem of poor working efficiency and poor productivity. In addition, a mold is prepared separately,
Since it is necessary to form an FRP layer on the inner surface, there is also the problem that the process becomes complicated. Furthermore, it is necessary to use a furnace for curing the resin concrete that is suitable for the longest pipe, which results in large-scale equipment, which is economically disadvantageous.

さらに、上記いずれの方法にあっても、製造される樹脂
複合管は、その両端部において熱可塑性樹脂管の管端が
外部に露出しているため、特に管の両端部に衝撃を受け
ると、そこから外層構成材料層が容易に剥離してしまう
といった問題があった。このため、運搬や配管時に特別
な注意を払う必要があり、取り扱いに不便であった。
Furthermore, in any of the above methods, since the ends of the thermoplastic resin pipe are exposed to the outside at both ends of the resin composite pipe to be manufactured, especially when the ends of the pipe are subjected to impact, There was a problem in that the outer layer constituent material layer easily peeled off from there. Therefore, special care must be taken during transportation and piping, making handling inconvenient.

また、前記した従来の樹脂複合管における受け挿し接続
にあっては、受口部も直管部と同様、芯材と外層構成材
料層の複層構造である場合が多く、受口部と挿口部との
接着は、芯材内周面と外層構成材料層との接着となる。
In addition, in the case of the above-mentioned conventional socket-insertion connection in the resin composite pipe, the socket part, like the straight pipe part, often has a multilayer structure consisting of a core material and an outer layer of material. The adhesion with the mouth portion is the adhesion between the inner circumferential surface of the core material and the outer layer constituent material layer.

そして、芯材が熱可塑性樹脂であり、外層構成材料が熱
硬化性樹脂であると、両者の接着は非常に難しいものと
なる。このため、接続強度が低(、また水密性に劣ると
いった問題があった。
If the core material is a thermoplastic resin and the outer layer constituent material is a thermosetting resin, adhesion between the two becomes extremely difficult. For this reason, there were problems such as low connection strength (and poor watertightness).

一方、前記した特開昭54−146871号公報に開示
された製造方法にあっては、次のような問題があった。
On the other hand, the manufacturing method disclosed in JP-A-54-146871 mentioned above had the following problems.

すなわち、受口成形用型材の装着位置を決定するための
工夫が何らなされていないため、管の長さにばらつきが
生じるといった問題があった。
That is, since no measures have been taken to determine the mounting position of the socket molding material, there is a problem in that the length of the tube varies.

また、連続生産を行おうとした場合、周方向に回転しな
がら軸方向に進む芯型の動きにタイミングを合わせなが
ら受口成形用型材を芯型の所定の位置に装着する必要が
生じるが、このようなことは実際にはほとんど不可能で
ある。したがって、受口付樹脂複合管の連続生産を行う
ことができないといった問題があった。
In addition, if continuous production is attempted, it will be necessary to attach the socket molding material to a predetermined position on the core mold while synchronizing the timing with the movement of the core mold that rotates in the circumferential direction and moves in the axial direction. In reality, such a thing is almost impossible. Therefore, there was a problem that continuous production of resin composite pipes with sockets could not be carried out.

さらに、専ら、直管部及び受口部がそれぞれ所定肉厚の
成形材料層で構成された受口付樹脂複合管の製造を目的
とする方法であるため、例えば熱可塑性樹脂管等の合成
樹脂管を芯材とする樹脂複合管の製造には到底対応でき
るものではなかった。
Furthermore, since this method is exclusively aimed at manufacturing a resin composite pipe with a socket, in which the straight pipe part and the socket part are each composed of a layer of molding material with a predetermined thickness, it is possible to It was not possible to manufacture resin composite pipes using tubes as the core material.

本発明は、上記した従来の技術がもつ問題点を解消する
ためになされたものであり、接続強度及び水密性に優れ
た樹脂複合管における受け挿し接続構造及び該接続構造
をとるのに適した樹脂複合管の製造方法を提供しようと
するものである。
The present invention has been made in order to solve the problems of the above-mentioned conventional techniques, and provides a receiving and inserting connection structure for resin composite pipes with excellent connection strength and watertightness, and a structure suitable for the connection structure. The present invention aims to provide a method for manufacturing a resin composite pipe.

また、本発明は、FRP等の外層構成材料層の厚みが管
の全長にわたって均一な受口付樹脂複合管を効率よく連
続的に製造することのできる方法を提供しようとするも
のである。
Another object of the present invention is to provide a method that can efficiently and continuously manufacture a resin composite pipe with a socket in which the thickness of the outer layer material such as FRP is uniform over the entire length of the pipe.

(課題を解決するための手段) 上記目的を達成するため、本発明に係る樹脂複合管にお
ける受け挿し接続構造は、芯材となる合成樹脂管の外周
面に外層構成材料層が形成されるとともに少な(とも一
端に受口部を有する受口付樹脂複合管と、芯材となる合
成樹脂管の外周面に外N構成材料層が形成されるととも
に少なくとも一端に挿口部を有する樹脂複合管との受け
挿し接合において、前記受口付樹脂複合管は、受口部が
外層構成材料で形成されるとともに、該受口部内に臨む
前記芯材の管端面が外層構成材料で被覆されてなり、一
方、前記樹脂複合管は、挿口部における芯材の管端面が
外層構成材料で被覆されてなり、このようになる樹脂複
合管の挿口部が、前記受口付樹脂複合管の受口部内に挿
入され、前記各芯材の管端面をそれぞれ被覆している外
層構成材料同士が衝合されるとともに、これら外層構成
材料同士、及び前記受口部内周面と挿口部外周面とが接
着剤により固着されたものである。
(Means for Solving the Problems) In order to achieve the above object, the receiving and connecting structure for the resin composite pipe according to the present invention is such that an outer layer constituent material layer is formed on the outer peripheral surface of the synthetic resin pipe serving as the core material. A resin composite pipe with a socket, which has a socket at one end, and a resin composite pipe in which an outer N constituent material layer is formed on the outer peripheral surface of a synthetic resin pipe serving as a core material, and a resin composite pipe that has a socket at at least one end. In the socket-equipped resin composite pipe, the socket part is formed of the outer layer material, and the pipe end surface of the core material facing into the socket part is covered with the outer layer material. On the other hand, in the resin composite tube, the pipe end surface of the core material at the insertion part is covered with an outer layer constituent material, and the insertion part of the resin composite pipe thus made is a receptacle of the resin composite pipe with a socket. The outer layer constituent materials inserted into the mouth part and covering the pipe end faces of each of the core materials are brought into contact with each other, and the inner circumferential surface of the socket part and the outer circumferential surface of the socket part are brought into contact with each other. are fixed with adhesive.

また、本発明に係る受口付樹脂複合管の製造方法は、定
尺の合成樹脂管をその管軸周りに回転させながら管軸に
沿って前進させるとともに、この合成樹脂管の回転運動
及び前進運動を伝達することができ、且つ、軸方向中央
部に受口成形部を有する受口成形用連結部材を介して前
記合成樹脂管の後端部に線管と同じ定尺の合成樹脂管を
連結し、次に、この連結した合成樹脂管の後端部に、線
管の回転運動及び前進運動を伝達することのできる挿口
成形用連結部材を介して、もしくは再び前記受口成形用
連結部材を介して線管と同じ定尺の合成樹脂管を連結し
、以下同様に、定尺の合成樹脂管同士の間に前記受口成
形用連結部材と前記挿口成形用連結部材とを交互に介装
して、もしくは前記受口成形用連結部材のみを介装して
前記合成樹脂管の連結を順次行い、複数の合成樹脂管が
連結一体化されてなる芯管を形成する工程と、管軸周り
に回転しながら管軸に沿って前進する前記芯管の外周面
に外層構成材料を巻回し積層して樹脂複合原管を形成す
る工程と、前記外層構成材料の硬化後、前記樹脂複合原
管を前記各合成樹脂管の連結部位で順次切断して定尺の
樹脂複合管に分離する工程とを含むものである。
Further, the method for manufacturing a resin composite pipe with a socket according to the present invention includes rotating a synthetic resin pipe of a fixed length around its pipe axis and moving it forward along the pipe axis, and also rotating and moving the synthetic resin pipe forward. A synthetic resin pipe of the same standard length as the wire pipe is connected to the rear end of the synthetic resin pipe via a socket molding connecting member that can transmit motion and has a socket molded part in the axial center. Then, the connected synthetic resin pipe is connected to the rear end of the connected synthetic resin pipe via a socket-forming connecting member that can transmit the rotational motion and forward movement of the wire tube, or again to the socket-forming joint. Synthetic resin pipes of the same standard length as the wire pipes are connected via the member, and the connecting member for socket molding and the connecting member for socket molding are alternately connected between the synthetic resin pipes of the standard length in the same manner. A step of sequentially connecting the synthetic resin pipes by interposing the connecting member for socket molding or by interposing only the connecting member for socket molding to form a core pipe in which a plurality of synthetic resin pipes are connected and integrated; A step of winding and laminating an outer layer constituent material around the outer circumferential surface of the core tube which moves forward along the tube axis while rotating around the tube axis to form a resin composite original tube; and after curing the outer layer constituent material, the resin This method includes the step of sequentially cutting the composite original tube at the connecting portions of each of the synthetic resin tubes to separate it into regular length resin composite tubes.

さらに、本発明に係る受口付樹脂複合管の製造方法は、
前記芯管を形成する工程において、合成樹脂管の管端面
と当接して該管端面の直前に間隙を確保するための微小
ストッパが設けられた受口成形用連結部材及び挿口成形
用連結部材を用いるとともに、前記樹脂複合原管を形成
する工程において、前記間隙にも外層構成材料を入り込
ませ、各合成樹脂管の管端面を該外層構成材料で被覆す
るものであってもよく、この方法は、前記した接続構造
に適する受口付樹脂複合管を製造するのに適している。
Furthermore, the method for manufacturing a resin composite pipe with a socket according to the present invention includes:
In the step of forming the core tube, a connecting member for socket molding and a connecting member for socket molding are provided with a minute stopper that comes into contact with the pipe end face of the synthetic resin pipe to ensure a gap immediately before the pipe end face. In addition, in the step of forming the resin composite original tube, the outer layer constituent material may also be introduced into the gap, and the tube end surface of each synthetic resin tube may be covered with the outer layer constituent material, and this method is suitable for manufacturing a resin composite pipe with a socket suitable for the connection structure described above.

(作用) 本発明に係る樹脂複合管における受け挿し接続構造にあ
っては、樹脂複合管の挿口部が、受口付樹脂複合管の受
口部内に挿入され、これら各管の芯材の管端面をそれぞ
れ被覆している外層構成材料同士が衝合されるとともに
、これら外層構成材料同士、及び受口部内周面と挿口部
外周面とが接着剤で固着されたことにより、両管の間の
接着面積が、単に受口部内周面と挿口部外周面とを接着
した場合に比べて太き(なり、しかも、接着面はすべて
外層構成材料面であるから、両管の接続強度及び該接続
部分におけろ水密性が非常に高いものとなる。
(Function) In the insertion and connection structure for resin composite pipes according to the present invention, the insertion part of the resin composite pipe is inserted into the socket part of the resin composite pipe with a socket, and the core material of each of these pipes is inserted into the socket part of the resin composite pipe with a socket. The outer layer constituent materials covering each tube end surface are abutted against each other, and the outer layer constituent materials and the inner circumferential surface of the socket and the outer circumferential surface of the socket are fixed with adhesive. The bonding area between the tubes is larger than that of simply bonding the inner circumferential surface of the receptacle and the outer circumferential surface of the receptacle. Moreover, since all the bonding surfaces are on the surface of the outer layer constituent material, it is difficult to connect both pipes. The strength and watertightness of the connection portion are extremely high.

本発明に係る受口付樹脂複合管の製造方法にあっては、
複数本の定尺の合成樹脂管を、受口成形用連結部材と挿
口成形用連結部材とを交互に用いて、または受口成形用
連結部材のみを用いて連結し、芯管を形成するとともに
、この芯管を管軸周りに回転させながら前進させ、これ
に例えばFRP等の外層構成材料を一定のピッチで螺旋
状に巻回し、この外層構成材料を硬化させて、樹脂複合
原管としたのち、この原管を合成樹脂管の連結部位で切
断する。このようにして得られる受口付樹脂複合管は、
長さが常に一定で、4且つ、管の全長にわたって外層構
成材料の巻きピッチが一定、すなわち外層構成材料層の
厚みが均一なものとなり、しかも管端部の仕上がりもき
れいなものとなる。
In the method for manufacturing a resin composite pipe with a socket according to the present invention,
A core tube is formed by connecting a plurality of fixed-length synthetic resin pipes by alternately using a connecting member for socket molding and a connecting member for insert molding, or using only a connecting member for socket molding. At the same time, this core tube is advanced while rotating around the tube axis, and an outer layer constituent material such as FRP is spirally wound at a constant pitch, and this outer layer constituent material is hardened to form a resin composite master tube. After that, this original tube is cut at the joint portion of the synthetic resin tube. The resin composite pipe with a socket obtained in this way is
The length is always constant, the winding pitch of the outer layer material is constant over the entire length of the tube, that is, the thickness of the outer layer material layer is uniform, and the end of the tube is finished neatly.

また、それとともに、各工程が連続したものとなり、バ
ッチ処理で行わざるをえない従来の方法に比べて、生産
性が大幅に向上する。
Additionally, each process is continuous, greatly improving productivity compared to conventional methods that require batch processing.

また、上記した各連結部材として、合成樹脂管の管端面
と当接して該管端面の直前に間隙を確保するための微小
ストッパが設けられた受口成形用連結部材及び挿口成形
用連結部材を用いるとともに、樹脂複合原管を形成する
工程において、前記間隙にも外層構成材料を入り込ませ
、各合成樹脂管の管端面を該外層構成材料で被覆するこ
とにより、管の全長にわたって外層構成材料層の厚みが
均一で、しかも合成樹脂管の両端面が外層構成材料で被
覆された定尺の受口付樹脂複合管が得られる。
In addition, as each of the above-mentioned connecting members, a connecting member for socket molding and a connecting member for spigot molding are provided with a minute stopper for abutting against the pipe end face of the synthetic resin pipe and securing a gap immediately before the pipe end face. At the same time, in the step of forming the resin composite original pipe, the outer layer constituent material is introduced into the gap, and the end surface of each synthetic resin pipe is coated with the outer layer constituent material, so that the outer layer constituent material is spread over the entire length of the pipe. A resin composite pipe with a socket of a regular length having a uniform layer thickness and both end faces of the synthetic resin pipe covered with the material constituting the outer layer can be obtained.

(実施例) 以下、本発明の実施例を、図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明に係る樹脂複合管における受け挿し接続
構造を示す部分断面図である。
FIG. 1 is a partial sectional view showing a receiving and connecting structure in a resin composite pipe according to the present invention.

この接続構造は、樹脂複合管F1の挿口部8が、受口付
樹脂複合管F2の受口部9内に挿入され、これら樹脂複
合管F1.F2の各芯材C9Cの管端面81.91をそ
れぞれ被覆している外層構成材料20.20同士が衝合
されるとともに、これら外層構成材料20.20同士、
及び受口部9内周面と挿口部8外周面とが接着剤により
固着されたものである。
In this connection structure, the insertion part 8 of the resin composite pipe F1 is inserted into the socket part 9 of the resin composite pipe F2 with a socket, and these resin composite pipes F1. The outer layer constituent materials 20.20 covering the tube end faces 81.91 of each core material C9C of F2 are abutted against each other, and these outer layer constituent materials 20.20 are
The inner circumferential surface of the socket part 9 and the outer circumferential surface of the socket part 8 are fixed with adhesive.

なお、この接続部分の外周面を、さらにFRPで被覆す
る(図中破線で示す。)と接続がより強固となるので好
ましい。
Note that it is preferable to further cover the outer circumferential surface of this connection portion with FRP (indicated by a broken line in the figure) because the connection becomes stronger.

上記受口付樹脂複合管F2は、芯材となる合成樹脂管C
の外周面に外層構成材料層20が形成されるとともに少
なくとも一端に受口部9を有するものである。そして、
この受口付樹脂複合管F2は、受口部9が外層構成材料
20で形成されるとともに、該受口部9内に臨む前記芯
材Cの管端面91が外層構成材料20で被覆されている
The above resin composite pipe F2 with a socket is a synthetic resin pipe C serving as a core material.
An outer layer constituent material layer 20 is formed on the outer peripheral surface of the holder, and a socket 9 is provided at at least one end. and,
In this resin composite pipe F2 with a socket, the socket part 9 is formed of the outer layer constituent material 20, and the pipe end surface 91 of the core material C facing into the socket part 9 is covered with the outer layer constituent material 20. There is.

一方、前記樹脂複合管F1は、芯材となる合成樹脂管C
の外周面に外層構成材料層20が形成されるとともに少
なくとも一端に挿口部8を有するものである。そして、
この樹脂複合管F2は、挿口部8における芯材Cの管端
面81が外層構成材料20で被覆されている。なお、樹
脂複合管F2は通常、他端(図外)に受口部をもつ受口
付樹脂複合管であることが多い。
On the other hand, the resin composite pipe F1 is a synthetic resin pipe C serving as a core material.
An outer layer constituent material layer 20 is formed on the outer circumferential surface of the holder, and an insertion port 8 is provided at at least one end. and,
In this resin composite tube F2, the tube end surface 81 of the core material C in the insertion port 8 is covered with the outer layer constituent material 20. Note that the resin composite pipe F2 is usually a resin composite pipe with a socket having a socket at the other end (not shown).

なお、上記合成樹脂管Cとしては、例えば塩化ビニル等
の熱可塑性樹脂管が、また外層構成材料20としては繊
維強化熱硬化性樹脂(FRP)が挙げられる。
The synthetic resin pipe C may be a thermoplastic resin pipe such as vinyl chloride, and the outer layer material 20 may be fiber-reinforced thermosetting resin (FRP).

以上のようになる樹脂複合管の受け挿し接続構造にあっ
ては、受口部と挿口部との接着領域が、受口部内周面及
び挿口部外周面から、各樹脂複合管の芯材の管端面をそ
れぞれ被覆している外層構成材料面にまで及んでおり、
しかも外層構成材料同士の接着となるから高い接続強度
と水密性とが同時に得られる。
In the above-mentioned resin composite pipe receiving and connecting structure, the bonding area between the socket part and the insertion part extends from the inner peripheral surface of the socket part and the outer peripheral surface of the socket part to the core of each resin composite pipe. It extends to the surface of the outer layer constituent material that covers each pipe end surface of the material.
Moreover, since the outer layer constituent materials are bonded to each other, high connection strength and watertightness can be obtained at the same time.

次に、本発明の請求項2に係る受口付樹脂複合管の製造
方法の一実施例について、第2図乃至第16図を参照し
て説明する。
Next, an embodiment of the method for manufacturing a resin composite pipe with a socket according to claim 2 of the present invention will be described with reference to FIGS. 2 to 16.

まず、製造装置について説明し、その後製造方法につい
て装置の動作とともに説明する。
First, the manufacturing apparatus will be explained, and then the manufacturing method will be explained together with the operation of the apparatus.

第2図は、本発明に係る受口付樹脂複合管の製造方法及
びそれに用いられる製造装置の構成を示す概略図である
FIG. 2 is a schematic diagram showing a method for manufacturing a resin composite pipe with a socket and a configuration of a manufacturing apparatus used therein according to the present invention.

製造装置は、芯管製管手段1、原管製管手段2、原管引
取手段3、及び切断手段4から構成されており、この製
造装置の前段には、合成樹脂管製管装置5が設置されて
いる。ここで、合成樹脂管製管装置5について説明して
おくと、この装置5は、合成樹脂管Bを連続的に製する
製管機51と、この製管機51で製管された合成樹脂管
Bを所定の寸法に裁断して定尺の合成樹脂管Cとする自
動裁断機52とから構成されたものである。製管機51
は、例えば保合部(図示省略)が両側縁に形成された合
成樹脂製の帯状体Aを、螺旋状に巻回して筒状に形成す
るとともに、隣合う係合部同士を係合させて、合成樹脂
管Bに製管するものである。
The manufacturing device is composed of a core tube making means 1, a raw tube making means 2, a raw tube taking means 3, and a cutting means 4, and a synthetic resin tube making device 5 is installed at the front stage of this manufacturing device. is set up. Here, to explain the synthetic resin pipe making device 5, this device 5 includes a pipe making machine 51 that continuously makes synthetic resin pipes B, and a synthetic resin pipe made by this pipe making machine 51. It is comprised of an automatic cutting machine 52 that cuts the pipe B into a predetermined size to make a synthetic resin pipe C of a fixed length. Pipe making machine 51
For example, a belt-like body A made of synthetic resin with retaining parts (not shown) formed on both side edges is spirally wound to form a cylinder, and adjacent engaging parts are engaged with each other. , to manufacture a synthetic resin pipe B.

なお、製管機51は、これ以外に、例えば溶融樹脂を押
し出して合成樹脂管Bを製管する、いわゆる押出機であ
ってもよい。
In addition, the pipe making machine 51 may be a so-called extruder that produces the synthetic resin pipe B by extruding a molten resin, for example.

さて、本発明の製造装置の初段に位置する芯管製管手段
1は、上記した構成の合成樹脂管製管装置5と、管案内
レール61を介して接続されている。この芯管製管手段
1は、合成樹脂管製管装置5から管案内レール61に案
内されて送り込まれてくる定尺の合成樹脂管Cを、次々
と連結一体化して芯管りに製管するとともに、その芯管
りを次段の原管製管手段2に送り出すものである。この
ような機能をもつ芯管製管手段lは2定尺の合成樹脂管
Cを受けるとともに、この管Cをその管軸周りに回転可
能に支承する架台11と、この架台11上に支承された
合成樹脂管Cを、線管Cの管軸に沿う一方向(この例の
場合、第1図において右方向)に、管軸周りの回転運動
を妨げることなく押し出す押出装置12と、この押出装
置12により押し出されてくる合成樹脂管Cを、その管
軸周りに回転させながら押出方向に送り出す送出機13
と、この送出機13により送り出されていく合成樹脂管
Cの後端部と次の合成樹脂管Cの前端部との間に介装さ
れ、両者を連結一体化するとともに受口部9を成形する
ための複数個の受口成形用連結部材14と、前記合成樹
脂管C同士を連結一体化するとともに挿口部8を成形す
るための複数個の挿口成形用連結部材15とを備えてい
る。
Now, the core pipe manufacturing means 1 located at the first stage of the manufacturing apparatus of the present invention is connected to the synthetic resin pipe manufacturing apparatus 5 having the above-described configuration via a pipe guide rail 61. This core pipe manufacturing means 1 connects and integrates synthetic resin pipes C of a fixed length, which are guided by a pipe guide rail 61 and fed from a synthetic resin pipe manufacturing device 5 to a pipe guide rail 61 one after another, into a core pipe. At the same time, the core tube is sent to the next step, the raw tube manufacturing means 2. The core tube manufacturing means l having such a function receives two fixed length synthetic resin tubes C, and has a pedestal 11 that supports the tube C rotatably around its tube axis, and a pedestal 11 that is supported on the pedestal 11. an extrusion device 12 for extruding a synthetic resin tube C in one direction along the tube axis of the wire tube C (rightward in FIG. 1 in this example) without interfering with rotational movement around the tube axis; A sending machine 13 sends out the synthetic resin tube C extruded by the device 12 in the extrusion direction while rotating it around its tube axis.
It is interposed between the rear end of the synthetic resin pipe C being sent out by this sending machine 13 and the front end of the next synthetic resin pipe C, connecting and integrating the two and forming the socket part 9. A plurality of connecting members 14 for socket molding are provided, and a plurality of connecting members 15 for connecting socket molding are provided for connecting and integrating the synthetic resin pipes C with each other and molding the socket part 8. There is.

なお、両端に受口部9を有する受口付樹脂複合管を製造
する場合には、上記挿口成形用連結部材15は使用され
ない。第2図中、符号63は、上記各連結部材14.1
5を合成樹脂管Cに挿着するための作業台を示している
In addition, when manufacturing a resin composite tube with sockets having sockets 9 at both ends, the above-mentioned connecting member 15 for molding the socket is not used. In FIG. 2, the reference numeral 63 indicates each of the connecting members 14.1.
5 into the synthetic resin pipe C is shown.

前記架台11及び押出装置12は、第3図及び第4図に
示すように構成されている。ここで7.第3図は部分省
略正面図、第4図は同右側面図である。
The pedestal 11 and extrusion device 12 are constructed as shown in FIGS. 3 and 4. Here 7. FIG. 3 is a partially omitted front view, and FIG. 4 is a right side view of the same.

まず、架台11から説明すると、この架台11は、水平
な機枠111上に、合成樹脂管Cの下側周面を受ける8
個の支持ローラ112・・・と、合成樹脂管Cの最下面
を受ける3個の案内ローラ113・・・とが設けられた
もので、前記した前案内レール61の終端近傍位置に設
置されている。8個の支持ローラ112・・・は、2列
に水平に並べられ、各列の支持ローラ112・・・、1
12・・・は、それぞれ軸芯が同一直線上に位置するよ
う、且つ、所定間隔を隔てて配設されている。そして、
列同士の間隔は、合成樹脂管Cの外径よりも小さく設定
されている。一方、3個の案内ローラ113・・・は、
それぞれ支持ローラ112・・・の軸芯と直交するよう
にして、支持ローラ】12・・・の列間に所定間隔を隔
てて1列に並べられている。また、これら案内ローラ1
13・・・は、それぞれ支持ローラ112・・・よりも
やや低い位置に設けられている。そして、各案内ローラ
113・・・は、第2図において破線で示すように、合
成樹脂管Cの進行方向(第1図において右方向)に倒伏
可能となされている。
First, the pedestal 11 will be explained. This pedestal 11 has an 8-8 frame on a horizontal machine frame 111 that receives the lower circumferential surface of the synthetic resin pipe C.
It is provided with three support rollers 112... and three guide rollers 113... that receive the bottom surface of the synthetic resin pipe C, and is installed near the end of the front guide rail 61. There is. The eight support rollers 112... are arranged horizontally in two rows, and each row of support rollers 112..., 1
12 are arranged so that their respective axes are located on the same straight line and are spaced apart from each other by a predetermined interval. and,
The interval between the rows is set smaller than the outer diameter of the synthetic resin pipe C. On the other hand, the three guide rollers 113...
The support rollers 12 are arranged in a row with a predetermined interval between the rows so as to be perpendicular to the axes of the support rollers 112, respectively. In addition, these guide rollers 1
13... are provided at slightly lower positions than the support rollers 112..., respectively. Each of the guide rollers 113... is capable of collapsing in the advancing direction of the synthetic resin pipe C (rightward in FIG. 1), as shown by broken lines in FIG.

なお、支持ローラ112及び案内ローラ113の個数並
びに設置間隔等は、上記した例に限るものではなく、合
成樹脂管Cの長さや外径、重量等に応じて適宜決定され
る。
Note that the number, installation interval, etc. of the support rollers 112 and the guide rollers 113 are not limited to the above-mentioned example, and are appropriately determined according to the length, outer diameter, weight, etc. of the synthetic resin pipe C.

前記押出装置12は、上記した架台11の後端部側に設
置されている。この押出装置12は、水平な機枠120
と、この機枠120上に滑動可能に設けられた台車12
1と、この台車121上に支持体124,124を介し
て水平に設けられた押出具125と、台車121を前進
及び後退させるシリンダ128とから構成されている。
The extrusion device 12 is installed on the rear end side of the pedestal 11 described above. This extrusion device 12 has a horizontal machine frame 120
and a truck 12 slidably provided on this machine frame 120.
1, a pusher 125 horizontally provided on this truck 121 via supports 124, 124, and a cylinder 128 for moving the truck 121 forward and backward.

台車121は、案内車輪122を備えており、機枠12
0上に取り付けられた案内レール123に案内されて、
合成樹脂管Cの進行方向に沿う方向に前進及び後退でき
るようになされている。押出具125は、シャフト12
6と、このシャフト126の先端に固着された押出板1
27とから構成されている。押出板127は、合成樹脂
管Cの外径よりもやや大きな直径をもつ円板であり、シ
ャフト126は、例えばベアリングを備えた支持体12
4゜124により軸芯周りに回動可能に支承されている
。シリンダ128は、油圧または空気圧によって作動す
るもので、前記した台車121の後方に配置されるとと
もに、ロッド129を介して台車121と接続されてい
る。このようになる押出装置12は、押出具125のシ
ャフト126の軸芯が、前記した架台ll上の合成樹脂
管Cの管軸と一致するように設けられている。
The truck 121 is equipped with guide wheels 122, and the machine frame 12
Guided by a guide rail 123 attached to 0,
It is configured to be able to move forward and backward in the direction along the direction of movement of the synthetic resin pipe C. The extrusion tool 125 is the shaft 12
6, and an extrusion plate 1 fixed to the tip of this shaft 126.
It consists of 27. The extruded plate 127 is a disc having a diameter slightly larger than the outer diameter of the synthetic resin pipe C, and the shaft 126 is a support member 12 equipped with a bearing, for example.
It is rotatably supported around the axis by 4°124. The cylinder 128 is actuated by hydraulic pressure or pneumatic pressure, and is arranged at the rear of the truck 121 described above, and is connected to the truck 121 via a rod 129. The extrusion device 12 configured as described above is provided so that the axis of the shaft 126 of the extrusion tool 125 coincides with the tube axis of the synthetic resin tube C on the above-mentioned pedestal 11.

なお、押出装置12の構成は上記した例に限るものでは
なく、合成樹脂管Cを管軸に沿う一方向にその回転を妨
げることなく押し出すことができるのであれば、他の構
成であってもよい。例えば、合成樹脂管Cの管軸と平行
な軸芯をもつ複数個のローラを介して合成樹脂管Cを挟
持又は掴持し、その状態で管軸に沿う方向に移動するよ
うな構成をもつものが考えられる。また、押出装置(1
2は、押出板127がモータ等で駆動され送出機13と
同期して回転する構成とされていてもよい。
The configuration of the extrusion device 12 is not limited to the example described above, and other configurations may be used as long as the synthetic resin tube C can be extruded in one direction along the tube axis without interfering with its rotation. good. For example, it has a structure in which the synthetic resin pipe C is held or gripped via a plurality of rollers whose axes are parallel to the pipe axis of the synthetic resin pipe C, and the synthetic resin pipe C is moved in a direction along the pipe axis in this state. I can think of things. In addition, an extrusion device (1
2 may be configured such that the extrusion plate 127 is driven by a motor or the like and rotates in synchronization with the delivery device 13.

前記送出機13は、架台11の前方、つまり上記した押
出装置12とは反対側であって、且つ、架台11から押
し出されてきた合成樹脂管Cをそのまま管軸に沿って引
き取ることのできる位置に、架台11と所定間隔を隔て
て設置されている。この送出機13は、第5図及び第6
図に示すように、合成樹脂管Cの外周面と当接するよう
に、同一円周上に配設された複数個の送出ローラ131
・・・からなるものである。送出ローラ131・・・は
、それぞれ軸芯が合成樹脂管Cの送出方向に対しある一
定の角度θをもって傾けられている。また、これら送出
ローラ131・・・は、その全部又は一部が駆動源(図
示省略)と接続されている。そして、このようになる送
出ローラ131・・・が一方向(図中矢符P参照)に回
転することによって、合成樹脂管Cは、その管軸周りに
回転されながら一方向に送り出されていく(図中矢符Q
及びR参照)。合成樹脂管Cの送出速度は、送出ローラ
131・・・の傾き又は回転速度を変化させることで、
容易に調整することができる。
The feeder 13 is located in front of the pedestal 11, that is, on the opposite side from the above-mentioned extrusion device 12, and at a position where the synthetic resin pipe C extruded from the pedestal 11 can be taken out as it is along the tube axis. It is installed at a predetermined distance from the pedestal 11. This sending device 13 is shown in FIGS. 5 and 6.
As shown in the figure, a plurality of delivery rollers 131 are arranged on the same circumference so as to come into contact with the outer peripheral surface of the synthetic resin pipe C.
It consists of... The respective axes of the delivery rollers 131 are inclined at a certain angle θ with respect to the delivery direction of the synthetic resin pipe C. Further, all or part of these delivery rollers 131 are connected to a drive source (not shown). By rotating the delivery roller 131 in this way in one direction (see arrow P in the figure), the synthetic resin pipe C is sent out in one direction while being rotated around its pipe axis ( Arrow Q in the diagram
and R). The feeding speed of the synthetic resin pipe C can be adjusted by changing the inclination or rotational speed of the feeding rollers 131.
Can be easily adjusted.

なお、前記した架台11に、この送出機13と同様の構
成をもったものを採用してもよい。
Note that the above-mentioned pedestal 11 may have a configuration similar to that of the sending device 13.

前記受口成形用連結部材14は、合成樹脂材がら成形さ
れた略円筒状のもので、第7図及び第8図に示すように
、軸方向中央部に受口成形部141が形成されるととも
に、この受口成形部14の両端に、一方の合成樹脂管C
の端部に嵌入される嵌入部142と、他方の合成樹脂管
Cの端部に嵌入される嵌入部143とが形成されている
。受口成形部141は、その長さが、成形しようとする
受口部9の倍の長さとされるとともに、その外径が、該
受口部9の内径と等しくされている。また、このように
なる受口成形部141の中央部には、全周にわたって凹
溝144が形成されている。この凹溝144は、最終工
程において樹脂複合原管Eを定尺の受口付樹脂複合管F
に切断分離する際、切断刃41が受口成形部141に接
触して、該受口成形部141が損傷することがないよう
にするためのものである。したがって、この凹溝144
の幅は、切断刃41の厚さよりも厚くなされていること
が必要である。また、この凹溝144の深さは、切断刃
41の接触を回避することのできる深さとされているこ
とが必要である。前記嵌入部142.143は、上記受
口成形部141と同心状に形成されており、これら各嵌
入部142,143にそれぞれ合成樹脂管C2Cを接続
した際、両方の管軸同士が一致するように図られている
The connection member 14 for socket molding is a substantially cylindrical member molded from a synthetic resin material, and as shown in FIGS. 7 and 8, a socket molding portion 141 is formed in the central portion in the axial direction. At the same time, one synthetic resin pipe C is attached to both ends of this socket molding part 14.
A fitting part 142 to be fitted into the end of the synthetic resin pipe C, and a fitting part 143 to be fitted to the end of the other synthetic resin pipe C are formed. The length of the socket molding part 141 is twice the length of the socket part 9 to be molded, and its outer diameter is made equal to the inner diameter of the socket part 9. Furthermore, a groove 144 is formed in the center of the socket molded part 141 over the entire circumference. This concave groove 144 allows the resin composite original tube E to be transferred to a fixed length resin composite tube F with a socket in the final process.
This is to prevent the cutting blade 41 from coming into contact with the socket molding part 141 and damaging the socket molding part 141 when cutting and separating. Therefore, this groove 144
The width of the cutting blade 41 needs to be thicker than the thickness of the cutting blade 41. Further, the depth of the groove 144 must be such that contact with the cutting blade 41 can be avoided. The fitting portions 142 and 143 are formed concentrically with the socket molding portion 141, and when the synthetic resin pipes C2C are connected to each of the fitting portions 142 and 143, the axes of both tubes are aligned. is planned.

また、嵌入部142,143は、それぞれ先端に向かう
にしたがって漸次窄められているのが好ましい。それは
、合成樹脂管Cの内径寸法のばらつきや、受口成形用連
結部材14それ自体の成形上の寸法誤差を吸収して、嵌
入部142,143と合成樹脂管C内面との密着性を高
めるためである。
Further, it is preferable that the fitting portions 142 and 143 are gradually narrowed toward the respective tips. It absorbs variations in the inner diameter dimension of the synthetic resin pipe C and dimensional errors in the molding of the connection member 14 itself for socket molding, and improves the adhesion between the fitting parts 142, 143 and the inner surface of the synthetic resin pipe C. It's for a reason.

そして、嵌入部142,143をそれぞれこのように形
成しておくと、合成樹脂管Cと嵌入部142.143と
の間で周方向及び軸方向のいずれの方向にも滑りを生じ
ることはない。なお、嵌入部142.143の窄め具合
は、嵌入部142.143自体の長さ、合成樹脂管Cの
内径、合成樹脂管Cとの間の摩擦力の大小、受口成形用
連結部材14自体の成形精度等、諸条件に応じて適宜決
定される。
If the fitting parts 142 and 143 are formed in this manner, no slippage will occur between the synthetic resin pipe C and the fitting parts 142 and 143 in either the circumferential direction or the axial direction. The degree to which the fitting portions 142 and 143 are narrowed depends on the length of the fitting portions 142 and 143 themselves, the inner diameter of the synthetic resin pipe C, the magnitude of the frictional force between the fitting portions 142 and 143, and the connection member 14 for socket molding. It is determined as appropriate depending on various conditions such as the molding accuracy itself.

また、上記嵌入部142.143は、それぞれ先端外周
縁部が面取り145,146されている。
Further, the outer circumferential edges of the tips of the fitting portions 142 and 143 are chamfered 145 and 146, respectively.

この面取り部145.146は、合成樹脂管Cと受口成
形用連結部材I4との位置決めを行い、嵌入部142.
143を合成樹脂管Cヘスムーズに嵌入させるためのも
のである。これら面取り部145.146の傾斜角度や
幅等は、嵌入部142゜143の窄め具合と同様、諸条
件に応じて適宜決定される。
The chamfered portions 145 and 146 position the synthetic resin pipe C and the connection member I4 for socket molding, and the fitting portions 142.
143 into the synthetic resin pipe C smoothly. The angle of inclination, width, etc. of these chamfered portions 145 and 146 are appropriately determined according to various conditions, as is the degree of narrowing of the fitting portions 142 and 143.

一方、前記挿口成形用連結部材15は、合成樹脂材から
成形された略円筒状のもので、第9図及び第10図に示
すように、一端側が一方の合成樹脂管Cの端部に嵌入さ
れる嵌入部151となされ、他端側が他方の合成樹脂管
Cの端部に嵌入される嵌入部152となされている。こ
れら嵌入部151.152は、同心状に形成されており
、各嵌入部151,152にそれぞれ合成樹脂管C1C
を接続した際、両方の管軸同士が一致するように図られ
ている。また、嵌入部151.152は、前記した受口
成形用連結部材14と同様、それぞれ先端に向かうにし
たがって漸次室められるとともに、先端外周縁部が面取
り153,154されている。さらに、このようになる
両眼入部151゜152の境界部分、つまり長手方向中
央部には、鍔部155が全周にわたって形成されている
。この鍔部155は、最終工程において樹脂複合原管E
を定尺の樹脂複合管Fに切断分離する際、切断刃が原管
E内部の合成樹脂管Cの管端に接触することがないよう
に、合成樹脂管C同士の間に間隙■(第15図参照)を
形成するためのものである。
On the other hand, the connection member 15 for molding the insertion port is a substantially cylindrical member molded from a synthetic resin material, and as shown in FIGS. 9 and 10, one end side is connected to the end of one synthetic resin pipe C. The other end is a fitting part 151 that is fitted into the other end of the synthetic resin pipe C. These fitting parts 151 and 152 are formed concentrically, and each fitting part 151 and 152 has a synthetic resin pipe C1C.
When connected, both tube axes are designed to match. In addition, the fitting portions 151 and 152 are gradually retracted toward the tips, and the outer peripheral edges of the tips are chamfered 153 and 154, similarly to the connection member 14 for socket molding described above. Further, a flange portion 155 is formed all around the boundary portion of the binocular entrance portions 151 and 152, that is, at the center portion in the longitudinal direction. This flange portion 155 is attached to the resin composite raw tube E in the final process.
When cutting and separating into resin composite tubes F of a fixed length, a gap ■ (no. (see Figure 15).

したがって、鍔部155の厚さは、切断刃の厚さよりも
厚くなされていることが必要である。また、合成樹脂管
C・・・を連結して芯管りを形成した際、鍔部155が
芯管りの外周面から突出することがないように、鍔部1
55の高さは、合成樹脂管Cの肉厚よりも小さい寸法に
設定されている。これは、第16図に示すように、鍔部
155が芯管りの外周面から突出していると、芯管りに
外層構成材料20を巻回する際、合成樹脂管Cの連結部
位で外層構成材料20が盛り上がって巻き乱れが生じた
り、また外層構成材料20と芯管りとの間に、空洞Tが
形成されたりして、不良品発生の原因となるからである
Therefore, the thickness of the flange portion 155 needs to be thicker than the thickness of the cutting blade. In addition, when the synthetic resin pipes C... are connected to form a core pipe, the collar part 155 is designed so that it does not protrude from the outer peripheral surface of the core pipe.
The height of the pipe 55 is set to be smaller than the wall thickness of the synthetic resin pipe C. As shown in FIG. 16, if the flange 155 protrudes from the outer circumferential surface of the core pipe, when the outer layer constituent material 20 is wound around the core pipe, the outer layer is This is because the constituent material 20 may bulge and cause irregular winding, or a cavity T may be formed between the outer layer constituent material 20 and the core tube, which may cause defective products.

なお、受口成形用連結部材14及び挿口成形用連結部材
15は、それぞれ嵌入部142,143゜151.15
2の外周面が平滑なものに限るものではない。挿口成形
用連結部材15を例にとると、例えば第11図及び第1
2図に示すように、嵌入部151.152外周面に複数
本の凹溝156・・・が軸芯に沿って形成されたもので
あってもよい。
Note that the connection member 14 for socket molding and the connection member 15 for socket molding have fitting portions 142, 143°151.15, respectively.
The outer circumferential surface of 2 is not limited to a smooth one. Taking the connection member 15 for molding the insert as an example, for example, FIGS. 11 and 1
As shown in FIG. 2, a plurality of grooves 156 may be formed on the outer circumferential surface of the fitting portions 151 and 152 along the axis.

この場合、凹溝156の形状は、断面V字状、断面U字
状、断面コ字状等、任意の形状とされる。
In this case, the shape of the groove 156 may be any shape, such as a V-shaped cross section, a U-shaped cross section, or a U-shaped cross section.

このように、嵌入部151,152の外周面に凹溝15
6・・・を形成しておくと、外周面が平滑なものよりも
、嵌入部151,152と合成樹脂管C内面との軸芯周
りの方向における摩擦力を大きくすることができるとと
もに、嵌入部151,152の成形精度をそれほど高く
する必要がないので成形上都合がよい。この挿口連結部
材15にあっても、前記したものと同様、嵌入部151
,152の先端外周縁部が面取り153,154されて
おり、また、嵌入部151,152の境界部分には鰐部
155が形成されている。
In this way, the grooves 15 are formed on the outer peripheral surfaces of the fitting parts 151 and 152.
6... can increase the frictional force in the direction around the axis between the fitting parts 151, 152 and the inner surface of the synthetic resin pipe C, compared to the case where the outer circumferential surface is smooth. This is convenient in terms of molding since it is not necessary to make the molding precision of the parts 151 and 152 so high. Also in this insertion port connection member 15, the insertion part 151 is similar to that described above.
, 152 are chamfered 153, 154, and a crocodile portion 155 is formed at the boundary between the fitting portions 151, 152.

次に、原管製管手段2について説明する。この原管製管
手段2は、上記した芯管製管手段1の次段に置かれてお
り、芯管製管手段lから管軸周りに回転しながら送り出
されてくる芯管りの外周面に、外層構成材料20を巻回
し積層して、樹脂複合原管Eを製するものである。この
ような機能をもつ原管製管手段2は、表面処理機21と
、外層構成材料巻回部22と、硬化炉26とから構成さ
れている。なお、図中の符号27は、芯管りを支持する
ためのローラを示している。
Next, the raw tube manufacturing means 2 will be explained. This raw tube manufacturing means 2 is placed next to the core tube manufacturing means 1 described above, and is provided on the outer peripheral surface of the core tube that is sent out from the core tube manufacturing means 1 while rotating around the tube axis. Then, the outer layer constituent material 20 is wound and laminated to produce a resin composite master pipe E. The raw tube manufacturing means 2 having such a function is composed of a surface treatment machine 21, an outer layer constituent material winding section 22, and a hardening furnace 26. In addition, the code|symbol 27 in a figure has shown the roller for supporting a core pipe.

表面処理機21は、芯管りと外層構成材料20との接着
性が高くなるよう、芯管りの外表面に、例えばサンディ
ング処理等を施すためのものである。この表面処理機2
1は、前記芯管製管手段1の送出機13の次に位置され
ている。なお、この表面処理機21は、必ずしも設ける
必要のないものである。
The surface treatment machine 21 is for performing, for example, a sanding process on the outer surface of the core tube so that the adhesiveness between the core tube and the outer layer constituent material 20 is increased. This surface treatment machine 2
1 is located next to the delivery machine 13 of the core tube manufacturing means 1. Note that this surface treatment machine 21 does not necessarily need to be provided.

外層構成材料巻回部22は、FRP等の外層構成材料2
0を芯管りの外周面に巻回するためのもので、上記表面
処理機21の次に設けられている。
The outer layer constituent material winding part 22 is an outer layer constituent material 2 such as FRP.
This is for winding the wire around the outer peripheral surface of the core pipe, and is provided next to the surface treatment machine 21.

この外層構成材料巻回部22は、充填材充填ユニット2
4と、FRP巻回ユニット25とで構成されている。充
填材充填ユニット24は、充填材241を芯管りの外周
面上に供給するための供給機242と、充填材241を
覆う不織布243を巻回するためのガイドローラ244
と、巻回された不織布243を押さえつけるための押え
ローラ245とを備えている。また、FRP巻回ユニッ
ト25は、帯状に編成されたガラス繊維251に熱硬化
性樹脂を含浸させるための含浸槽252と、熱硬化性樹
脂が含浸されたガラス繊維(FRP)253を芯管りに
巻回するためのガイドローラ254と、芯管りに巻回さ
れたFRP253を押えつけるための押えローラ255
とをそれぞれ備えている。また、上記不織布243及び
FRP253は、いずれも芯管りの外周面に一定の巻き
ピッチで螺旋状に巻回されるよう、芯管りの管軸に対し
一定の角度をもって供給される。この角度は、芯管りの
外径や、芯管りの回転速度及び移送速度等の諸条件に応
じて適宜決定される。また、芯管りは、回転しながら進
んでいくため、不織布243及びFRP253は芯管り
に自動的に巻回されていく。したがって、上記したいず
れのガイドローラ244,254も、通常、一箇所に固
定されたままとなっている。
This outer layer constituent material winding part 22 is a filler filling unit 2
4 and an FRP winding unit 25. The filler filling unit 24 includes a feeder 242 for feeding the filler 241 onto the outer peripheral surface of the core pipe, and a guide roller 244 for winding the nonwoven fabric 243 covering the filler 241.
and a pressing roller 245 for pressing down the wound nonwoven fabric 243. The FRP winding unit 25 also includes an impregnating tank 252 for impregnating glass fibers 251 knitted in a belt shape with a thermosetting resin, and a core tube in which glass fibers (FRP) 253 impregnated with a thermosetting resin are impregnated. A guide roller 254 for winding the FRP 253 around the core tube, and a presser roller 255 for pressing down the FRP 253 wound around the core tube.
They each have the following. Further, the nonwoven fabric 243 and the FRP 253 are both supplied at a constant angle to the tube axis of the core tube so that they are spirally wound around the outer peripheral surface of the core tube at a constant winding pitch. This angle is appropriately determined depending on various conditions such as the outer diameter of the core tube, the rotation speed and transfer speed of the core tube. Moreover, since the core tube advances while rotating, the nonwoven fabric 243 and FRP 253 are automatically wound around the core tube. Therefore, both of the guide rollers 244 and 254 described above usually remain fixed at one location.

なお、外層構成材料巻回部22の構成は、上記したもの
に限るものではなく、芯管りの外周面に形成する層の数
や外層構成材料の種類等に応じて適宜変更することがで
きる。また、上記した例では、ガラス繊維251に熱硬
化性樹脂を含浸させてから巻回を行っているが、ガラス
繊維251だけを芯管りにを回してから、これに熱硬化
性樹脂を塗布等して含浸させてもよい。
Note that the configuration of the outer layer constituent material winding portion 22 is not limited to that described above, and can be changed as appropriate depending on the number of layers formed on the outer peripheral surface of the core pipe, the type of outer layer constituent material, etc. . In addition, in the above example, the glass fiber 251 is impregnated with a thermosetting resin and then wound, but only the glass fiber 251 is wound around the core pipe and then the thermosetting resin is applied thereto. It may be impregnated by the same method.

硬化炉26は、上記した外層構成材料巻回部22で巻回
し積層された充填材24等の外層構成材料20を硬化さ
せるためのもので、前記FRP巻回ユニット25の後段
に配置されている。この硬化炉26は、外層構成材料2
0が巻回された芯管りを周囲から覆うことのできる、例
えば筒状に構成されている。
The curing furnace 26 is for curing the outer layer constituent material 20, such as the filler 24, which is wound and laminated in the outer layer constituent material winding section 22, and is arranged after the FRP winding unit 25. . This curing furnace 26 is used for the outer layer constituent material 2
It has a cylindrical shape, for example, that can cover the core tube around which the wire is wound.

次に、原管引取手段3について説明する。この原管引取
手段3は、上記した原管製管手段2の次段に設置されて
おり、原管製管手段2から回転しながら出てくる樹脂複
合原管Eを、その動きを妨げることなく該原管Eの進行
方向に沿って引き取るためのものである。このような機
能をもつ原管引取手段3は、前記した芯管製管手段1の
送出機13と同じ構成であり、また、その動作は該送出
機13と同期しているか、もしくは若干遅いものである
Next, the original pipe collection means 3 will be explained. This raw tube take-up means 3 is installed at the next stage of the raw tube manufacturing means 2 described above, and prevents the movement of the resin composite raw tube E that comes out of the raw tube manufacturing means 2 while rotating. This is for taking the original tube E along the direction of movement. The raw pipe take-up means 3 having such a function has the same configuration as the sending machine 13 of the core tube manufacturing means 1 described above, and its operation is synchronized with the sending machine 13 or slightly slower. It is.

上記原管引取手段3の次には、切断手段4が配置されて
いる。この切断手段4は、原管引取手段3により引き取
られてきた樹脂複合原管Eを、前記合成樹脂管C・・・
の連結部位で切断し、定尺の樹脂複合管F・・・に分離
するものである。このような働きをする切断手段4は、
樹脂複合原管Eの外層構成材料層のみを切断する切断刃
41を備え、樹脂複合原管Eの管軸方向に沿う一定の領
域を一定の周期をもって往復動できるように設けられて
いる。そして、この切断手段4は、適宜の制御装置(図
示せず)によって制御され、切断箇所である合成樹脂管
Cの連結部位が切断刃41の位置に(ると、原管Eの進
行方向と同方向に移動を開始して原管Eの進行速度と同
速度で移動しながら原管Eを切断し、切断後は直ちに初
期位置に復帰する。
A cutting means 4 is disposed next to the original pipe taking-off means 3. This cutting means 4 cuts the resin composite original tube E taken up by the original tube taking-up means 3 into the synthetic resin tube C...
The tube is cut at the connecting point and separated into regular length resin composite tubes F... The cutting means 4 that functions in this way is
It is provided with a cutting blade 41 that cuts only the outer layer constituent material layer of the resin composite original tube E, and is provided so that it can reciprocate in a certain area along the tube axis direction of the resin composite original tube E at a certain period. This cutting means 4 is controlled by an appropriate control device (not shown), and when the connecting part of the synthetic resin pipe C, which is the cutting part, is at the position of the cutting blade 41 (the cutting part is aligned with the traveling direction of the original pipe E) It starts moving in the same direction and cuts the original tube E while moving at the same speed as the traveling speed of the original tube E, and immediately returns to the initial position after cutting.

なお、図中の符号62は、上記切断手段4により切断分
離されてなる定尺の受口付樹脂複合管F・・・を受け、
これを所定箇所に移送するための管移送レールを示して
いる。
In addition, the reference numeral 62 in the figure receives a fixed length resin composite pipe F... with a socket, which is cut and separated by the cutting means 4,
A pipe transfer rail for transferring this to a predetermined location is shown.

次に、本発明に係る樹脂複合管の製造方法について、上
記した製造装置の動作とともに説明する。
Next, a method for manufacturing a resin composite pipe according to the present invention will be explained along with the operation of the manufacturing apparatus described above.

まず、合成樹脂管製管装置5の製管機51により、合成
樹脂管Bを連続的に製管し、これを自動裁断機52によ
り規定の寸法に順次裁断する。このようにしてできた定
尺の合成樹脂管C・・・の一端部(図では右端部)に、
受口成形用連結部材14及び挿口成形用連結部材15を
、ある一つの合成樹脂管Cには受口成形用連結部材14
、その次の合成樹脂管Cには挿口成形用連結部材15と
いう具合に、順次交互に挿着する。この作業は作業台6
3において行われる。このようにして一端部に受口成形
用連結部材14又は挿口成形用連結部材15が挿着され
た合成樹脂管Cは、管案内レール61に案内されて順次
芯管製管手段1の架台ll上に送られる。
First, the synthetic resin pipe B is continuously produced by the pipe making machine 51 of the synthetic resin pipe making apparatus 5, and is sequentially cut into prescribed dimensions by the automatic cutting machine 52. At one end (the right end in the figure) of the synthetic resin pipe C of a fixed length made in this way,
A connecting member 14 for socket molding and a connecting member 15 for socket molding are connected to a certain synthetic resin pipe C.
, and the next synthetic resin tube C is sequentially and alternately inserted with the connecting member 15 for molding the opening. This work is done on workbench 6.
3. The synthetic resin pipe C, in which the connecting member 14 for socket molding or the connecting member 15 for socket molding is inserted at one end in this way, is guided by the pipe guide rail 61 and is sequentially mounted on the mount of the core tube manufacturing means 1. sent on ll.

架台11上に合成樹脂管Cが送り込まれてくると、押出
装置12のシリンダ128が作動し、ロッド129を伸
出させる。これに伴って台車121が架台11に向かっ
て前進し、押出具125の押出板127が、架台11上
の合成樹脂管Cの後端に当接する。さらに、ロッド12
9が伸出して台車121が前進し続けると、合成樹脂管
Cは、押出板127に押されて架台11上を前進する。
When the synthetic resin pipe C is fed onto the pedestal 11, the cylinder 128 of the extrusion device 12 is activated to extend the rod 129. Along with this, the cart 121 moves forward toward the pedestal 11, and the extrusion plate 127 of the extrusion tool 125 comes into contact with the rear end of the synthetic resin pipe C on the pedestal 11. Furthermore, the rod 12
9 extends and the trolley 121 continues to move forward, the synthetic resin pipe C is pushed by the extrusion plate 127 and moves forward on the pedestal 11.

このとき、合成樹脂管Cは支持ローラ112・・・と擦
れ合うが、液管Cは案内ローラ113・・・によっても
支承されているので、スムーズに前進する。
At this time, the synthetic resin tube C rubs against the support rollers 112, but since the liquid tube C is also supported by the guide rollers 113, it moves forward smoothly.

このようにして、合成樹脂管Cは架台11から送出機1
3に向って押し出されてい(。この時点で、送出機13
は既に起動しており、やがて、送出機13に合成樹脂管
Cの前端部(この実施例の場合、受口成形用連結部材1
4又は挿口成形用連結部材15)が達し、該前端部の外
周面に送出機13の送出ローラ131・・・が当接する
と、回転している送出ローラ131・・・によって、合
成樹脂管Cは管軸用りに回転を開始する。これと同時に
、この合成樹脂管Cの後半部を支承している架台11の
案内ローラ113・・・が倒伏して合成樹脂管Cから離
れ、合成樹脂管Cの後半部は支持ローラ112・・・に
よってのみ支承されることとなる。これにより、合成樹
脂管Cは管軸用りにスムーズに回転する。また、合成樹
脂管Cの後端と当接している押出板127も合成樹脂管
Cとともに回転するので、合成樹脂管Cの回転運動は何
ら妨げられることはない。なお、架台11の案内ローラ
113・・・を倒伏させるのは、合成樹脂管Cが回転を
開始する直前であってもよい。
In this way, the synthetic resin pipe C is transferred from the pedestal 11 to the feeder 1.
3 (at this point, the feeder 13
has already started, and soon the front end of the synthetic resin pipe C (in the case of this embodiment, the connecting member 1 for socket molding) is sent to the feeder 13.
4 or the connecting member 15) for insertion molding reaches the outer circumferential surface of the front end portion and the feed roller 131 of the feeder 13 comes into contact with the synthetic resin pipe by the rotating feed roller 131... C starts rotating for the tube axis. At the same time, the guide rollers 113 of the frame 11 supporting the rear half of the synthetic resin pipe C fall down and separate from the synthetic resin pipe C, and the rear half of the synthetic resin pipe C is supported by the support rollers 112...・It will be supported only by. Thereby, the synthetic resin tube C rotates smoothly around the tube shaft. Moreover, since the extrusion plate 127 that is in contact with the rear end of the synthetic resin tube C also rotates together with the synthetic resin tube C, the rotational movement of the synthetic resin tube C is not hindered in any way. Note that the guide rollers 113 of the pedestal 11 may be laid down immediately before the synthetic resin pipe C starts rotating.

以上のようにして合成樹脂管Cが送出機13により送り
出されていくと、これ以上該合成樹脂管Cを後ろから押
し続ける必要がなくなるので、押出装置12のシリンダ
128のロッド129が縮退し、これに伴って台車12
1が後退して押出具125の押出板127が初期位置に
復帰する。そして、上記合成樹脂管Cが架台11上から
完全に離れると、管案内レール61の先端にあるストッ
パ(図示せず)が解除されて、次の合成樹脂管Cが架台
11上に送り込まれる。
As the synthetic resin tube C is fed out by the feeder 13 in the manner described above, it is no longer necessary to continue pushing the synthetic resin tube C from behind, so the rod 129 of the cylinder 128 of the extrusion device 12 retracts. Along with this, trolley 12
1 retreats, and the extrusion plate 127 of the extrusion tool 125 returns to its initial position. When the synthetic resin pipe C is completely separated from the pedestal 11, a stopper (not shown) at the tip of the tube guide rail 61 is released, and the next synthetic resin pipe C is fed onto the pedestal 11.

以上のようにして次の合成樹脂管Cが架台11上に送り
込まれると、直ちに押出装置12のシリンダ128が再
び作動して、前記したように、架台11上の合成樹脂管
Cを前方に押し出す。ここで、押出装置12による合成
樹脂管Cの押出速度は、送出機13による合成樹脂管C
の送出速度よりも少し早い速度に設定されており、送出
機12で送り出されていく前の合成樹脂管Cの後端が、
架台11と送出機13との間を移動している間に、架台
11上の合成樹脂管Cが前の合成樹脂管Cに追いつくこ
とができるように図っている。
When the next synthetic resin pipe C is fed onto the pedestal 11 as described above, the cylinder 128 of the extrusion device 12 is immediately activated again to push out the synthetic resin pipe C on the pedestal 11 forward as described above. . Here, the extrusion speed of the synthetic resin pipe C by the extrusion device 12 is as follows:
The rear end of the synthetic resin pipe C before being sent out by the sending machine 12 is set at a speed slightly faster than the sending speed of
While moving between the pedestal 11 and the feeder 13, the synthetic resin pipe C on the pedestal 11 is designed to be able to catch up with the previous synthetic resin pipe C.

架台11上の合成樹脂管Cが押出装置12により押し出
されると、この管Cの前端部に挿着されている受口成形
用連結部材14の他方の嵌入部143が、その面取り部
146に案内されるようにして前方をいく合成樹脂管C
の後端部に軽く嵌まり込む。そして、押出装置12が架
台11上の合成樹脂管Cを押し出し続けるのにしたがっ
て、受口成形用連結部材14の嵌入部142が、前の合
成樹脂管C内に深く入り込んでいき、嵌入部142と液
管Cの内面との摩擦力が次第に大きくなっていく。これ
に伴って、前の合成樹脂管Cの回転運動がこの受口成形
用連結部材14を介して架台11上の合成樹脂管Cに伝
達され、架台11上の合成樹脂管Cも回転し始める。そ
れと同時に、架台11の案内ローラ113・・・が、前
記と同様に、倒伏して合成樹脂管Cから離れる。さらに
、押出装置12が、架台ll上で回転している合成樹脂
管Cを押し続けると、受口成形用連結部材14の嵌入部
142が、前の合成樹脂管Cの後端部に完全に嵌まり込
む。これで、再合成樹脂管C2Cの管軸同士が一致する
とともに、前の合成樹脂管Cの管端が、受口、成形用連
結部材14の受口成形部141の端面に当接して、2本
の合成樹脂管C1Cの連結が完了する。この後、受口成
形用連結部材14の嵌入部142,143が各合成樹脂
管C2Cから不測に抜は外れることがないように、押出
装置12は、架台11上の合成樹脂管Cを、その前端部
が送出機13に達するまで押し続ける。
When the synthetic resin pipe C on the pedestal 11 is extruded by the extrusion device 12, the other fitting part 143 of the socket molding connecting member 14 inserted into the front end of the pipe C is guided to the chamfered part 146. Synthetic resin pipe C moving forward as if
Fits easily into the rear end of the Then, as the extrusion device 12 continues to extrude the synthetic resin pipe C on the pedestal 11, the fitting part 142 of the connecting member 14 for socket molding goes deeper into the previous synthetic resin pipe C, and the fitting part 142 The frictional force between the liquid pipe C and the inner surface of the liquid pipe C gradually increases. Along with this, the rotational movement of the previous synthetic resin pipe C is transmitted to the synthetic resin pipe C on the pedestal 11 via this socket molding connecting member 14, and the synthetic resin pipe C on the pedestal 11 also begins to rotate. . At the same time, the guide rollers 113 of the pedestal 11 fall down and separate from the synthetic resin pipe C, as described above. Furthermore, when the extrusion device 12 continues to push the synthetic resin pipe C rotating on the pedestal 11, the fitting part 142 of the connection member 14 for socket molding is completely inserted into the rear end of the previous synthetic resin pipe C. Get stuck in. Now, the pipe axes of the resynthetic resin pipes C2C are aligned, and the pipe ends of the previous synthetic resin pipes C are in contact with the end surface of the socket molding part 141 of the socket and molding connecting member 14, and the two The connection of the synthetic resin pipe C1C is completed. Thereafter, the extrusion device 12 moves the synthetic resin pipes C on the pedestal 11 so that the fitting parts 142 and 143 of the connecting member 14 for socket molding do not come off unexpectedly from each synthetic resin pipe C2C. Keep pushing until the front end reaches the feeder 13.

架台11上の合成樹脂管Cが送出機13に達したならば
、押出装置12は押出板127を元の位置に復帰させる
。そして、合成樹脂管Cが架台11上から離れたら、再
び管案内レール61のストッパが解除されて、今度は挿
口成形用連結部材15が前端部に挿着された合成樹脂管
Cが架台11上に送り込まれる。この挿口成形用連結部
材15と前方をいく合成樹脂管Cとの接続過程は、上記
した受口成形用連結部材14の場合と同様に行われ、以
下、次々と合成樹脂管C・・・が、受口成形用連結部材
14・・・及び挿口成形用連結部材15・・・を交互に
介して連結されていき、これに”よって芯管りが連続的
に製管されてい(。
When the synthetic resin pipe C on the pedestal 11 reaches the delivery device 13, the extrusion device 12 returns the extrusion plate 127 to its original position. When the synthetic resin pipe C leaves the pedestal 11, the stopper of the pipe guide rail 61 is released again, and this time the synthetic resin pipe C, with the connecting member 15 for insertion molding inserted into the front end, is placed on the pedestal 11. sent to the top. The connection process between the connecting member 15 for socket molding and the synthetic resin pipe C passing forward is performed in the same manner as in the case of the connecting member 14 for socket molding described above, and the synthetic resin pipes C... are connected alternately through the connection members 14 for socket forming and the connection members 15 for inlet forming, and as a result, the core pipe is continuously manufactured.

以上のようにして芯管製管手段1により製管された芯管
りは、原管製管手段2へ送り出されていく。原管製管手
段2では、まず、表面処理機21によって、芯管りの外
表面に、例えばサンディング処理等の表面処理が施され
る。
The core tube manufactured by the core tube manufacturing means 1 as described above is sent to the raw tube manufacturing means 2. In the raw pipe manufacturing means 2, the surface treatment machine 21 first performs a surface treatment such as sanding on the outer surface of the core pipe.

なお、芯管りは、受口成形用連結部材14・・・の受口
成形部141・・・に形成された凹溝144・・・と、
挿口成形用連結部材15・・・の鍔部155・・・によ
って合成樹脂管C・・・の連結部位に形成された間隙V
・・・とを有しているので、これら凹溝144・・・と
間隙■・・・とを、表面処理が施される前又は施された
後に、第13図及び第15図に示すように、適宜の充填
剤7で埋めて芯管りの表面を平滑にしておくとよい、こ
のようにすることによって、後に行われる外層構成材料
20の巻回時に、外層構成材料20の縁が、上記凹溝1
44や間隙■に引っ掛かったりして巻き乱れが生じるの
を防ぐことができる。また、最終工程での切断時に、切
断刃41が上記充填剤7の抵抗を受けて受口成形用連結
部材14及び挿口成形用連結部材15に達しにくくなり
、これら連結部材14.15が切断刃41によって傷つ
くのを防ぐこともできる。
In addition, the core pipe includes a concave groove 144 formed in the socket molding part 141 of the socket molding connecting member 14 .
A gap V formed at the connecting portion of the synthetic resin pipe C by the collar portion 155 of the connecting member 15 for insertion molding.
. . , these grooves 144 . . . and gaps 1. It is better to smooth the surface of the core pipe by filling it with an appropriate filler 7.By doing this, when the outer layer forming material 20 is wound later, the edge of the outer layer forming material 20 will be smooth. Above groove 1
It is possible to prevent the winding from becoming disordered due to the winding being caught in the 44 or the gap (3). Furthermore, during cutting in the final process, the cutting blade 41 receives resistance from the filler 7 and becomes difficult to reach the connection member 14 for socket molding and the connection member 15 for socket molding, and these connection members 14 and 15 are cut. It is also possible to prevent damage caused by the blade 41.

表面処理が施された芯管りは、外層構成材料巻回部20
に送られ、ここで外周面に外層構成材料層が形成される
。本実施例では、前述したように、外層構成材料巻回部
22に、充填材充填ユニット24と、FRP巻回ユニッ
ト25とが設けられているので、芯管りの外周面には、
充填材241とFRP253の二層が形成される。そし
て、これら充填材241、不織布243及びFRP25
3は、芯管りが常に一定の速度で回転しながら前進して
いるため、芯管りに終始一定のピッチで螺旋状に巻回さ
れ、芯管りの外周面には、一定の厚みをもった外層構成
材料層が連続的に形成されることになる。
The surface-treated core tube is wrapped around the outer layer constituent material winding part 20.
Here, an outer layer constituent material layer is formed on the outer peripheral surface. In this embodiment, as described above, since the outer layer constituent material winding section 22 is provided with the filler filling unit 24 and the FRP winding unit 25, the outer circumferential surface of the core tube is
Two layers of filler 241 and FRP 253 are formed. These filler 241, nonwoven fabric 243, and FRP 25
3, because the core tube is always moving forward while rotating at a constant speed, the core tube is wound spirally at a constant pitch from beginning to end, and the outer peripheral surface of the core tube has a constant thickness. The outer layer constituting material layer is continuously formed.

このようにして、外層構成材料層が形成された後、芯管
りは、硬化炉26内を回転しながら進み、その間に上記
外層構成材料層が硬化して、樹脂複合原管Eとなる。
After the outer layer constituent material layer is formed in this way, the core tube advances while rotating inside the curing furnace 26, during which the outer layer constituent material layer is cured and becomes the resin composite master tube E.

上記のようにしてできた樹脂複合原管Eは、原管引取手
段3によって回転されながら引き取られ、次の切断手段
4へと送られていく。
The resin composite raw tube E produced as described above is taken up while being rotated by the raw tube take-up means 3 and sent to the next cutting means 4.

切断手段4は、上記原管引取手段3から送り出されてく
る樹脂複合原管Eを所定の位置で待ち受け、切断箇所で
ある合成樹脂管C・・・の連結部位が切断刃41の位置
にくると同時に、原管Eの進行方向と同方向に移動を開
始する。この移動を開始するタイミングは、合成樹脂管
Cの長さ及び原管Eの進行速度が一定であるから、それ
らの値に基づいて容易に決めることができる。そして、
切断手段4は、樹脂複合原管Eの進行速度と同速度で移
動しながら、原管Eを上記連結部位で切断する。
The cutting means 4 waits at a predetermined position for the resin composite raw tube E sent out from the raw tube withdrawal means 3, and the connecting portion of the synthetic resin tube C..., which is the cutting point, comes to the position of the cutting blade 41. At the same time, it starts moving in the same direction as the traveling direction of the original tube E. Since the length of the synthetic resin pipe C and the advancing speed of the raw pipe E are constant, the timing to start this movement can be easily determined based on these values. and,
The cutting means 4 moves at the same speed as the traveling speed of the resin composite original tube E and cuts the original tube E at the above-mentioned connection site.

切断を完了したならば、切断手段4は元の位置に戻り、
次の切断に備える。ここで、この切断手段4は、樹脂複
合原管Eの外層構成材料層のみを切断し、原管E内部の
受口成形用連結部材14及び挿口成形用連結部材15ま
では切断しないので、この切断により得られる樹脂複合
管Fは、原管Eの前端部に受口成形用連結部材14もし
くは挿口成形用連結部材15を介して繋がった状態にあ
る。
When the cutting is completed, the cutting means 4 returns to its original position,
Prepare for the next cut. Here, this cutting means 4 cuts only the outer layer constituent material layer of the resin composite master tube E, and does not cut the connecting member 14 for socket molding and the connecting member 15 for socket molding inside the master tube E, so The resin composite tube F obtained by this cutting is connected to the front end of the original tube E via the connecting member 14 for socket molding or the connecting member 15 for socket molding.

そこで、上記切断が完了するたびに、樹脂複合管Fを引
っ張って樹脂複合原管Eから分離するとともに、原管E
の先端又は樹脂複合管Fの後端に残った受口成形用連結
部材14もしくは挿口成形用連結部材15を取り外す。
Therefore, each time the above-mentioned cutting is completed, the resin composite tube F is pulled and separated from the resin composite tube E, and the resin composite tube F is separated from the resin composite tube E.
The connection member 14 for socket molding or the connection member 15 for socket molding remaining at the tip of the resin composite tube F or the rear end of the resin composite tube F is removed.

分離した樹脂複合管Fは管移送レール62により所定の
場所に運び、取り外した受口成形用連結部材14及び挿
口成形用連結部材15は、最初のところに戻して繰り返
し使用する。
The separated resin composite pipe F is carried to a predetermined location by the pipe transfer rail 62, and the removed connection member 14 for socket molding and connection member 15 for insertion molding are returned to their initial positions and used repeatedly.

以上のようにして、外層構成材料層の厚みが全長にわた
って均一な定尺の受口付樹脂複合管が連続的に製造され
るのである。
In the manner described above, a resin composite pipe with a socket of a fixed length in which the thickness of the outer layer-constituting material layer is uniform over the entire length is continuously manufactured.

なお、上記した実施例では、受口成形用連結部材14と
挿口成形用連結部材15とを交互に用いているので、製
造される受口付樹脂複合管は、−端に受口部を有するも
のとなるが、両端に受口部を有する受口付樹脂複合管を
製造する場合は、挿口成形用連結部材15を一切使用せ
ず、受口成形用連結部材14のみを用いればよい。
In addition, in the above-mentioned example, since the connection member 14 for socket molding and the connection member 15 for socket molding are used alternately, the resin composite pipe with a socket to be manufactured has a socket part at the negative end. However, when manufacturing a resin composite pipe with sockets having sockets at both ends, it is sufficient to use only the socket-molding connecting member 14 without using the socket-molding connecting member 15 at all. .

第14図は上記方法により製造された受口付樹脂複合管
同士の接続状態を示す断面図であり、受口部9と挿口部
8とは、外層構成材料層20同士が接着されて接続され
ている。
FIG. 14 is a sectional view showing the state of connection between the resin composite pipes with sockets manufactured by the above method, and the socket part 9 and the insertion part 8 are connected by bonding the outer layer constituent material layers 20 together. has been done.

次に、本発明の請求項3に係る受口付樹脂複合管の製造
方法の一実施例について説明する。
Next, an embodiment of the method for manufacturing a resin composite pipe with a socket according to claim 3 of the present invention will be described.

なお、この製造方法は、上記した請求項2に係る製造方
法と、使用する受口成形用連結部材及び挿口成形用連結
部材が異なるだけであるので、その相違点を中心に詳述
し、それ以外の点については省略する。また、上記実施
例で示したものと同一の構成要素には同一の符号を付し
ている。
Note that this manufacturing method differs from the manufacturing method according to claim 2 described above only in the connecting member for socket molding and the connecting member for socket molding that are used, so the differences will be mainly described in detail. Other points will be omitted. Further, the same components as those shown in the above embodiments are given the same reference numerals.

まず、受口成形用連結部材16の構成から説明する。First, the structure of the connection member 16 for socket molding will be explained.

この受口成形用連結部材16は、合成樹脂管Cの管端面
と当接して該管端間の直前に間隙Sを確保するための微
小ストッパ167・・・、168・・・が設けられてい
る点を除いて、前記実施例で説明した受口成形用連結部
材14と同じ構成である。すなわち、第17図及び第1
8図に示すように、合成樹脂材から略円筒状に成形され
、軸方向中央部に受口成形部161が形成されるととも
に、この受口成形部161の両端に、一方の合成樹脂管
Cの端部に嵌入される嵌入部162と、他方の合成樹脂
管Cの端部に嵌入される嵌入部163とがそれぞれ形成
されている。また、上記受口成形部161の中央部には
、全周にわたって凹溝164が形成されている。そして
、嵌入部162,163の基端部周面に前記微小ストッ
パ167・・・、168・・・が設けられている。これ
ら微小ストッパ167・・・、168・・・は、軸芯方
向に沿う長さが、合成樹脂管Cの管端面と受口成形部1
.61の各端面との間に所定寸法の間隙S、S、を確保
することのできる寸法、換言すれば、合成樹脂管Cの管
端間を被覆する外層構成材料の厚さに相当する寸法とさ
れる。また、その高さは、合成樹脂管Cの管端面が受口
成形部161の各端面と当接するのを充分に阻止し、且
つ、合成樹脂管Cの管端面が外層構成材料20で被覆さ
れるのを妨げない程度の高さとされる。このようになる
微小ストッパ167・・・ 168・・・は、複数箇所
(図示例では4箇所)にわたって等間隔に設けられるが
、上記した間隙S、Sを充分に確保することができるの
であれば、1箇所でもよい。なお、その設ける数が少な
ければ少ないほど、合成樹脂管Cの管端面が外層構成材
料20で被覆されるのを妨げるおそれが少なくなる。
This connection member 16 for socket molding is provided with minute stoppers 167..., 168... for abutting against the end surfaces of the synthetic resin pipes C and securing a gap S immediately before the ends of the pipes. The structure is the same as that of the connecting member 14 for socket molding described in the previous embodiment, except for the following points. That is, FIG. 17 and 1
As shown in FIG. 8, it is molded into a substantially cylindrical shape from a synthetic resin material, and a socket molded part 161 is formed in the central part in the axial direction, and one synthetic resin pipe C is formed at both ends of this socket molded part 161. A fitting part 162 to be fitted into the end of the other synthetic resin pipe C, and a fitting part 163 to be fitted to the end of the other synthetic resin pipe C are formed, respectively. Further, a groove 164 is formed in the center of the socket molding part 161 over the entire circumference. The minute stoppers 167 . . . , 168 . These minute stoppers 167..., 168...
.. 61, in other words, a dimension corresponding to the thickness of the outer layer constituent material covering between the ends of the synthetic resin pipe C. be done. In addition, the height sufficiently prevents the end surfaces of the synthetic resin pipe C from coming into contact with the respective end surfaces of the socket molded part 161, and prevents the end surfaces of the synthetic resin pipe C from being covered with the outer layer constituent material 20. The height is set to a level that does not interfere with the Such minute stoppers 167... 168... are provided at equal intervals over a plurality of locations (four locations in the illustrated example), but if the above-mentioned gaps S, S can be sufficiently secured. , one location is sufficient. Incidentally, the smaller the number of the tubes provided, the less the risk of preventing the tube end surface of the synthetic resin tube C from being covered with the outer layer constituent material 20.

次に、挿口成形用連結部材17について説明する。Next, the connection member 17 for molding the socket will be explained.

この挿口成形用連結部材17は、前記した鍔部155が
なく、代わりに両嵌入部171,172の境界部分に凹
溝175が全周にわたって形成されている点、及び合成
樹脂管Cの管端面と当接して該管端面の直前に間隙Wを
確保するための微小ストッパ176・・・、177・・
・が設けられている点を除いて、前記実施例で説明した
挿口成形用連結部材15と同じ構成である。すなわち、
第20図及び第21図に示すように、合成樹脂材により
略円筒状に成形され、一端側が一方の合成樹脂管Cの端
部に嵌入される嵌入部171となされ、他端側が他方の
合成樹脂管Cの端部に嵌入される嵌入部172となされ
るとともに、これら嵌入部171.172の境界部分に
凹溝175が全周にわたって形成されたものである。こ
の凹溝175は、最終工程において樹脂複合原管Eを定
尺の受口付樹脂複合管Fに切断分離する際、切断刃41
の接触を回避して、連結部材17自体が損傷することが
ないようにするためのものである。したがって、この凹
溝175の幅は、切断刃41の厚さよりも厚くなされて
いることが必要である。また、この凹溝175の深さは
、切断刃41の接触を回避することのできる深さとされ
ていることが必要である。
This connecting member 17 for insertion molding does not have the above-mentioned flange 155, but instead has a concave groove 175 formed all around the boundary between the two fitting parts 171 and 172, and the synthetic resin pipe C. Minute stoppers 176..., 177... for abutting against the end face and securing a gap W just before the pipe end face.
It has the same structure as the connection member 15 for insert molding described in the previous embodiment, except that * is provided. That is,
As shown in FIGS. 20 and 21, it is formed into a substantially cylindrical shape from a synthetic resin material, and one end is a fitting part 171 that is fitted into the end of one synthetic resin pipe C, and the other end is a fitting part 171 that is fitted into the end of one synthetic resin pipe C. A fitting part 172 is fitted into the end of the resin pipe C, and a groove 175 is formed along the entire circumference at the boundary between these fitting parts 171 and 172. This groove 175 is formed by the cutting blade 41 when cutting and separating the resin composite original tube E into a fixed length resin composite tube F with a socket in the final process.
This is to prevent the connecting member 17 itself from being damaged. Therefore, the width of the groove 175 needs to be thicker than the thickness of the cutting blade 41. Further, the depth of this groove 175 needs to be such that contact with the cutting blade 41 can be avoided.

次に、以上説明した受口成形用連結部材16及び挿口成
形用連結部材17を用いた場合の製造方法について説明
する。
Next, a manufacturing method using the connection member 16 for socket molding and the connection member 17 for socket molding described above will be described.

まず、合成樹脂管製管装置5の製管機51により、合成
樹脂管Bを連続的に製管し、これを自動裁断機52によ
り規定の寸法に順次裁断する。このようにしてできた定
尺の合成樹脂管C・・・の一端部(図では右端部)に、
受口成形用連結部材16及び挿口成形用連結部材17を
、ある一つの合成樹脂管Cには受口成形用連結部材16
、その次の合成樹脂管Cには挿口成形用連結部材17と
いう具合に、順次交互に挿着する。このようにして・−
端部に受口成形用連結部材16又は挿口成形用連結部材
17が挿着された合成樹脂管Cは、管案内レール61に
案内されて順次芯管製管手段1の架台11上に送られる
First, the synthetic resin pipe B is continuously produced by the pipe making machine 51 of the synthetic resin pipe making apparatus 5, and is sequentially cut into prescribed dimensions by the automatic cutting machine 52. At one end (the right end in the figure) of the synthetic resin pipe C of a fixed length made in this way,
A connecting member 16 for socket molding and a connecting member 17 for socket molding are connected to a certain synthetic resin pipe C.
, and the next synthetic resin tube C is sequentially and alternately inserted with the connecting member 17 for molding the insertion opening. In this way...
The synthetic resin pipe C, in which the connecting member 16 for socket molding or the connecting member 17 for spout molding is inserted at the end thereof, is guided by the pipe guide rail 61 and sequentially sent onto the frame 11 of the core tube manufacturing means 1. It will be done.

架台Il上に合成樹脂管Cが送り込まれてくると、前記
した実施例の場合と同様、押出装置12が合成樹脂管C
を送出機13に向って押し出す。
When the synthetic resin pipe C is fed onto the frame Il, the extrusion device 12 moves the synthetic resin pipe C as in the case of the above-mentioned embodiment.
is pushed out toward the sending machine 13.

なお、この合成樹脂管Cの前端部には、受口成形用連結
部材17が挿着されている。
A connecting member 17 for socket molding is inserted into the front end of the synthetic resin pipe C.

架台11から押出装置12によって押し出されてきた合
成樹脂管Cは、送出機13により管軸周りに回転されな
がら前方に送り出されていく。合成樹脂管Cが送出機1
3により送り出されていくと、これ以上該合成樹脂管C
を後ろから押し続ける必要がなくなるので、押出装置1
2の押出具125が初期位置に復帰する。そして、上記
合成樹脂管Cが架台11上から完全に離れると、管案内
レール61の先端にあるストッパが解除されて、今度は
前端部に挿口成形用連結部材17が挿着された合成樹脂
管Cが架台ll上に送り込まれる。
The synthetic resin pipe C extruded from the pedestal 11 by the extrusion device 12 is sent forward by the delivery device 13 while being rotated around the tube axis. Synthetic resin pipe C is the feeder 1
3, the synthetic resin pipe C
There is no need to keep pushing the extruder 1 from behind.
The second extrusion tool 125 returns to the initial position. When the synthetic resin pipe C is completely separated from the pedestal 11, the stopper at the tip of the pipe guide rail 61 is released, and the synthetic resin pipe C with the connecting member 17 for molding inserted into the front end of the synthetic resin pipe C is released. Pipe C is fed onto pedestal ll.

続いて、押出装置12が架台11上の合成樹脂管Cを押
し出し、その先端に挿着された挿口成形用連結部材17
を、送出機13により送り出されていく合成樹脂管Cの
後端に嵌入させ、合成樹脂管C9C同士を連結させる。
Subsequently, the extrusion device 12 extrudes the synthetic resin pipe C on the pedestal 11, and the connecting member 17 for molding the insertion opening is inserted into the tip of the synthetic resin pipe C.
is inserted into the rear end of the synthetic resin pipe C being sent out by the sending device 13, and the synthetic resin pipes C9C are connected to each other.

以下、同様に、前端部に受口成形用連結部材16が挿着
された合成樹脂管Cと、前端部に挿口成形用連結部材1
7が挿着された合成樹脂管Cとが次々と交互に連結され
ていき、これによって芯管りが連続的に製管されていく
Similarly, a synthetic resin pipe C having a socket-molding connecting member 16 inserted into the front end, and a socket-molding connecting member 1 inserted into the front end.
The synthetic resin tubes C into which the tubes 7 are inserted are connected one after another in an alternating manner, and thereby the core tube is continuously manufactured.

なお、芯管りは、受口成形用連結部材16・・・の受口
成形部161・・・に形成された凹溝164・・・と、
挿口成形用連結部材17・・・の凹溝175・・・とを
有しているので、これら凹溝164.175を、表面処
理が施される前又は施された後に、第19図及び第22
図に示すように、適宜の充填剤7で埋めて芯管りの表面
を平滑にしておくとよい。このようにすることによって
、後に行われる外層構成材料20の巻回時に、外層構成
材料20の縁が、上記凹溝164.175に引っ掛かっ
たりして巻き乱れが生じるのを防ぐことができる。また
、最終工程での切断時に、切断刃41が上記充填剤7の
抵抗を受けて受口成形用連結部材16及び挿口成形用連
結部材17に達しにくくなり、これら連結部材14.1
5が切断刃41によって傷つくのを防ぐこともできる。
In addition, the core pipe includes a concave groove 164 formed in the socket forming part 161 of the socket forming connecting member 16...
Since the connecting member 17 for insertion molding has the concave grooves 175..., these concave grooves 164 and 175 can be formed as shown in FIGS. 19 and 17 before or after the surface treatment. 22nd
As shown in the figure, it is preferable to smooth the surface of the core pipe by filling it with an appropriate filler 7. By doing so, it is possible to prevent the edges of the outer layer forming material 20 from getting caught in the grooves 164 and 175 and causing irregular winding when the outer layer forming material 20 is wound later. Furthermore, during cutting in the final process, the cutting blade 41 receives resistance from the filler 7 and becomes difficult to reach the connecting member 16 for socket molding and the connecting member 17 for socket molding, and these connecting members 14.1
5 can also be prevented from being damaged by the cutting blade 41.

以上のようにして芯管製管手段lにより製管された芯管
りは、原管製管手段2へ送り出され、前記実施例と同様
、外周面に外層構成材料層が形成されて樹脂複合原管E
とされる。ここで、外層構成材料20は、各連結部材1
6.17の微小ストッパ167、i68,176.17
7によって合成樹脂管Cの管端面の直前に確保された間
隙S。
The core tube manufactured by the core tube manufacturing means 1 as described above is sent to the raw tube manufacturing means 2, and as in the above embodiment, an outer layer constituent material layer is formed on the outer peripheral surface and a resin composite is formed. Original tube E
It is said that Here, the outer layer constituent material 20 is
6.17 minute stopper 167, i68, 176.17
7, a gap S is secured immediately in front of the end surface of the synthetic resin pipe C.

W内にも入り込む。これによって、合成樹脂管C・・・
の管端面が外層構成材料20によって被覆される。
It also goes into W. As a result, synthetic resin pipe C...
The end surface of the tube is covered with the outer layer constituent material 20.

原管製管手段2から出てきた樹脂複合原管Eは、原管引
取手段3によって回転されながら引き取られ、次の切断
手段4へと送られていく。
The resin composite raw tube E coming out of the raw tube manufacturing means 2 is rotated and taken over by the raw tube taking-off means 3 and sent to the next cutting means 4.

切断手段4は、上記原管引取手段3から送り出されてく
る樹脂複合原管Eを所定の位置で待ち受け、切断箇所で
ある合成樹脂管C・・・の連結部位が切断刃41の位置
にくると同時に、原管Eの進行方向と同方向に移動を開
始する。そして、切断手段4は、樹脂複合原管Eの進行
速度と同速度で移動しながら、原管Eを上記連結部位で
切断する。
The cutting means 4 waits at a predetermined position for the resin composite raw tube E sent out from the raw tube withdrawal means 3, and the connecting portion of the synthetic resin tube C..., which is the cutting point, comes to the position of the cutting blade 41. At the same time, it starts moving in the same direction as the traveling direction of the original tube E. Then, the cutting means 4 cuts the raw resin tube E at the connecting portion while moving at the same speed as the traveling speed of the resin composite raw tube E.

切断を完了したならば、切断手段4は元の位置に戻り、
次の切断に備える。ここで、この切断手段4は、樹脂複
合原管Eの外WJ構成材料層のみを切断し、原管E内部
の受口成形用連結部材16及び挿口成形用連結部材17
までは切断しないので、この切断により得られる樹脂複
合管Fは、原管Eの前端部に受口成形用連結部材1qも
しくは挿口成形用連結部材17を介して繋がった状態に
ある。
When the cutting is completed, the cutting means 4 returns to its original position,
Prepare for the next cut. Here, this cutting means 4 cuts only the outer WJ constituent material layer of the resin composite master tube E, and cuts the connecting member 16 for socket molding and the connecting member 17 for socket molding inside the master tube E.
Since the resin composite tube F obtained by this cutting is not cut until then, the resin composite tube F obtained by this cutting is connected to the front end of the original tube E via the connecting member 1q for socket molding or the connecting member 17 for socket molding.

そこで、上記切断が完了するたびに、樹脂複合管Fを引
っ張って樹脂複合原管Eから・分離するとともに、原管
Eの先端又は樹脂複合管Fの後端に残った受口成形用連
結部材16もしくは挿口成形用連結部材17を取り外す
。分離した樹脂複合管Fは管移送レール62により所定
の場所に運び、取り外した受口成形用連結部材16及び
挿口成形用連結部材17は、前記作業台63のところに
戻して繰り返し使用する。
Therefore, each time the above-mentioned cutting is completed, the resin composite tube F is pulled and separated from the resin composite tube E, and the connecting member for socket forming that remains at the tip of the source tube E or the rear end of the resin composite tube F. 16 or the connection member 17 for molding the insertion hole is removed. The separated resin composite pipe F is carried to a predetermined location by the pipe transfer rail 62, and the removed connection member 16 for socket molding and connection member 17 for insertion molding are returned to the workbench 63 and used repeatedly.

以上のようにして製造される受口付樹脂複合管は、定尺
で、且つ、外層構成材料層の厚みが全長にわたって均一
であり、しかも、受口部9内に臨む合成樹脂管Cの管端
面91が外層構成材料20で被覆されるとともに、挿口
部8における合成樹脂Cの管端面81が外層構成材料2
0で被覆されたものである。
The resin composite pipe with a socket manufactured in the above manner has a regular length, the thickness of the outer layer is uniform over the entire length, and the synthetic resin pipe C facing into the socket 9 has a uniform thickness. The end face 91 is covered with the outer layer constituent material 20, and the end face 81 of the synthetic resin C tube in the insertion port 8 is covered with the outer layer constituent material 2.
It is coated with 0.

なお、上記した実施例では、受口成形用連結部材16と
挿口成形用連結部材17とを交互に用いているので、製
造される受口付樹脂複合管は、−端に受口部を有するも
のとなるが、両端に受口部を有する受口付樹脂複合管を
製造する場合は、挿口成形用連結部材17を一切使用せ
ず、受口成形用連結部材16のみを用いればよい。
In addition, in the above-mentioned embodiment, since the connection member 16 for socket molding and the connection member 17 for socket molding are used alternately, the resin composite pipe with a socket to be manufactured has a socket at the negative end. However, when manufacturing a resin composite pipe with sockets having sockets at both ends, it is sufficient to use only the socket-molding connecting member 16 without using the socket-molding connecting member 17 at all. .

また、上記いずれの製造方法にあっても、受口成形用連
結部材14.16及び挿口成形用連結部材15.17を
、架台11の手前で予め合成樹脂管Cの前端部に挿着し
ているが、架台11と送出機13との間にこれら連結部
材14〜17を送給し、押出装置12の押出動作により
、前後に位置する合成樹脂管C2C間に介装させるよう
にしてもよい。さらに、上記連結部材14〜17の挿着
作業は、人手によってもよいが、適宜の装置を用いて自
動化すると効率的である。
In addition, in any of the above manufacturing methods, the connection member 14.16 for socket molding and the connection member 15.17 for inlet molding are inserted into the front end of the synthetic resin pipe C in advance before the mount 11. However, it is also possible to feed these connecting members 14 to 17 between the pedestal 11 and the feeder 13, and insert them between the synthetic resin pipes C2C located in front and rear by the extrusion operation of the extrusion device 12. good. Further, although the work of inserting the connecting members 14 to 17 may be done manually, it is more efficient to automate the work using an appropriate device.

(発明の効果) 以上説明したように、本発明に係る樹脂複合管における
受け挿し接続構造は、接続強度及び水密性に非常に優れ
たものである。したがって、例えば地中等、厳しい環境
にも充分耐えることができる。
(Effects of the Invention) As explained above, the insertion and connection structure for the resin composite pipe according to the present invention has excellent connection strength and watertightness. Therefore, it can withstand harsh environments such as underground.

また、本発明に係る受口付樹脂複合管の製造方法によれ
ば、FRP等の外層構成材料層の厚みが管の全長にわた
って均一で、且つ、定尺の受口付樹脂複合管を、効率よ
く連続的に製造することができる。したがって、従来の
製造方法に比べて、生産性を飛躍的に向上させることが
できる。
Further, according to the method for manufacturing a resin composite pipe with a socket according to the present invention, the thickness of the outer layer constituent material layer such as FRP is uniform over the entire length of the pipe, and the resin composite pipe with a socket of a fixed length can be manufactured efficiently. Can be easily manufactured continuously. Therefore, productivity can be dramatically improved compared to conventional manufacturing methods.

さらに、請求項3に係る製造方法によれば、定尺で、且
つ、外層構成材料層の厚みが全長にわたって均一であり
、しかも、受口部内に臨む合成樹脂管の管端面が外層構
成材料で被覆されるとともに、挿口部における合成樹脂
の管端面が外層構成材料で被覆された受口付樹脂複合管
を、効率よく連続的に製造することができる。そして、
上記した接続構造の実施に寄与することができる。
Furthermore, according to the manufacturing method according to claim 3, the length of the synthetic resin pipe is uniform, and the thickness of the outer layer material layer is uniform over the entire length, and the end surface of the synthetic resin pipe facing into the socket is made of the outer layer material layer. It is possible to efficiently and continuously manufacture a resin composite tube with a socket, in which the end surface of the synthetic resin tube at the insertion port is coated with the outer layer constituent material. and,
It can contribute to implementation of the connection structure described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る樹脂複合管における受け挿し接続
構造の一実施例を示す断面図、第2図乃至第15図は本
発明の請求項2に係る受口付樹脂複合管の製造方法の実
施例を示し、第2図は製造工程及び製造装置を示す概略
図、第3図は芯管製管手段の押出装置及び架台を示す部
分省略正面図、第4図は同右側面図、第5図は芯管製管
手段の送出機の構成を示す概略正面図、第6図は同左側
面図、第7図は受口成形用連結部材の一実施例を示す斜
視図、第8図は第7図におけるI−1線断面図、第9図
は挿口成形用連結部材の一実施例を示す斜視図、第10
図は第9図における■−■線断面図、第11図は挿口成
形用連結部材の他の実施例を示す斜視図、第12図は第
11図における■−■線断面図、第13図は樹脂複合原
管における合成樹脂管の連結部位及び受口成形用連結部
材の使用状態を示す断面図、第14図は本発明方法によ
り製造された受口付樹脂複合管の接続状態を示す断面図
、第15図は樹脂複合原管における合成樹脂管の連結部
位及び挿口成形用連結部材の使用状態を示す断面図、第
16図は挿口成形用連結部材の鍔部の作用を説明するた
めの断面図、第17図乃至第22図は本発明の請求項3
に係る受口付樹脂複合管の製造方法の実施例を示し、第
17図は微小ストッパを有する受口成形用連結部材の一
実施例を示す斜視図、第18図は第17図におけるIV
−IV線断面図、第19図は樹脂複合原管における合成
樹脂管の連結部位及び受口成形用連結部材の使用状態を
示す断面図、第20図は微小ストッパを有する挿口成形
用連結部材を示す斜視図、第21図は第20図における
V−V線断面図、第22図は樹脂複合原管における合成
樹脂管の連結部位及び挿口成形用連結部材の使用状態を
示す断面図、第23図は従来の樹脂複合管の製造方法を
説明するための正面図である。 1・・・芯管製管手段 11・・・架台    12・・・押出装置13・・・
送出機 14.16・・・受口成形用連結部材 141.161・・・受口成形部 142.143・・・嵌入部 162.163・・・嵌入部 144.164・・・凹溝 145.146・・・面取り部 165.166・・・面取り部 167.168・・・微小ストッパ 15.17・・・挿口成形用連結部材 151.152・・・嵌入部 171.172・・・嵌入部 153.154・・・面取り部 173.174・・・面取り部 155・・・鰐部 175・・・凹溝 2・・・原管製管手段 22・・・外層構成材料巻回部 26・・・硬化炉 3・・・原管引取手段 4・・・切断手段 41・・・切断刃 5・・・合成樹脂管製管装置 51・・・製管機 61・・・管案内レール 62・・・管移送レール 63・・・作業台 7・・・充填材 8・・・挿口部 81・・・端面 9・・・受口部 9I・・・端面 A・・・帯状体 C・・・定尺の合成樹脂管 E・・・樹脂複合原管 F・・・受口付樹脂複合管 Fl・・・受口付樹脂複合管 F2・・・樹脂複合管 52・・・自動裁断機 B・・・合成樹脂管 D・・・芯管 第1図 特許出願人 積水化学工業株式会社 代表者 廣1) 馨 35図 窩6 図 第110 第12図 兎 票7 図 第9の 第1010 第150 @160 第17[ 第18= 劉 第19図 第22図 175  T77 820図 第210 第230
FIG. 1 is a sectional view showing an embodiment of a socket-insertion connection structure for a resin composite pipe according to the present invention, and FIGS. 2 to 15 are a method for manufacturing a resin composite pipe with a socket according to claim 2 of the present invention. 2 is a schematic diagram showing the manufacturing process and manufacturing equipment, FIG. 3 is a partially omitted front view showing the extrusion device and pedestal of the core tube manufacturing means, and FIG. 4 is a right side view of the same. Fig. 5 is a schematic front view showing the configuration of the delivery machine of the core tube manufacturing means, Fig. 6 is a left side view of the same, Fig. 7 is a perspective view showing an embodiment of the connecting member for socket forming, and Fig. 8 9 is a sectional view taken along the line I-1 in FIG. 7, FIG.
The figures are a sectional view taken along the line ■-■ in FIG. 9, FIG. 11 is a perspective view showing another embodiment of the connecting member for insert molding, FIG. 12 is a sectional view taken along the line ■-■ in FIG. 11, and FIG. The figure is a cross-sectional view showing the connection part of the synthetic resin pipe in the resin composite original pipe and the state of use of the connection member for socket molding, and Figure 14 shows the connection state of the resin composite pipe with a socket manufactured by the method of the present invention. A sectional view, FIG. 15 is a sectional view showing the connecting part of the synthetic resin pipe in the resin composite master tube and the state of use of the connecting member for insert molding, and FIG. 16 explains the function of the flange of the connecting member for insert molding. The sectional views shown in FIGS. 17 to 22 correspond to claim 3 of the present invention.
FIG. 17 is a perspective view showing an example of a connection member for socket molding having a minute stopper, and FIG. 18 is an IV in FIG. 17.
-IV line sectional view, Fig. 19 is a sectional view showing the connecting portion of the synthetic resin pipe in the resin composite master pipe and the usage state of the connecting member for socket molding, and Fig. 20 is the connecting member for socket molding having a minute stopper. FIG. 21 is a cross-sectional view taken along the line V-V in FIG. 20, FIG. 22 is a cross-sectional view showing the connecting portion of the synthetic resin pipe in the resin composite master tube and the state of use of the connecting member for insertion molding, FIG. 23 is a front view for explaining a conventional method for manufacturing a resin composite pipe. 1... Core tube manufacturing means 11... Frame 12... Extrusion device 13...
Sending machine 14.16... Connecting member for socket molding 141.161... Socket forming part 142.143... Fitting part 162.163... Fitting part 144.164... Concave groove 145. 146... Chamfered part 165.166... Chamfered part 167.168... Minute stopper 15.17... Connecting member for insertion molding 151.152... Fitting part 171.172... Fitting part 153.154... Chamfered portion 173.174... Chamfered portion 155... Crocodile portion 175... Concave groove 2... Original tube manufacturing means 22... Outer layer constituent material winding portion 26... Curing furnace 3...Original tube take-up means 4...Cutting means 41...Cutting blade 5...Synthetic resin pipe making device 51...Pipe making machine 61...Tube guide rail 62... Pipe transfer rail 63...Workbench 7...Filling material 8...Inlet part 81...End face 9...Socket part 9I...End face A...Band-shaped body C...Standard Length synthetic resin pipe E...Resin composite original pipe F...Resin composite pipe with socket Fl...Resin composite pipe with socket F2...Resin composite pipe 52...Automatic cutting machine B...・Synthetic resin pipe D...Core tube Figure 1 Patent applicant Hiroshi Sekisui Chemical Co., Ltd. Representative Hiroshi 1) Figure 35 Figure 6 Figure 110 Figure 12 Rabbit slip 7 Figure 9 No. 1010 No. 150 @160 17th [ 18th = Liu Fig. 19 Fig. 22 Fig. 175 T77 820 Fig. 210 No. 230

Claims (1)

【特許請求の範囲】 1)芯材となる合成樹脂管の外周面に外層構成材料層が
形成されるとともに少なくとも一端に受口部を有する受
口付樹脂複合管と、芯材となる合成樹脂管の外周面に外
層構成材料層が形成されるとともに少なくとも一端に挿
口部を有する樹脂複合管との受け挿し接合において、 前記受口付樹脂複合管は、受口部が外層構 成材料で形成されるとともに、該受口部内に臨む前記芯
材の管端面が外層構成材料で被覆されてなり、一方、前
記樹脂複合管は、挿口部における芯材の管端面が外層構
成材料で被覆されてなり、このようになる樹脂複合管の
挿口部が、前記受口付樹脂複合管の受口部内に挿入され
、前記各芯材の管端面をそれぞれ被覆している外層構成
材料同士が衝合されるとともに、これら外層構成材料同
士、及び前記受口部内周面と挿口部外周面とが接着剤に
より固着されたことを特徴とする樹脂複合管における受
け挿し接続構造。 2)定尺の合成樹脂管をその管軸周りに回転させながら
管軸に沿って前進させるとともに、この合成樹脂管の回
転運動及び前進運動を伝達することができ、且つ、軸方
向中央部に受口成形部を有する受口成形用連結部材を介
して前記合成樹脂管の後端部に該管と同じ定尺の合成樹
脂管を連結し、次に、この連結した合成樹脂管の後端部
に、該管の回転運動及び前進運動を伝達することのでき
る挿口成形用連結部材を介して、もしくは再び前記受口
成形用連結部材を介して該管と同じ定尺の合成樹脂管を
連結し、以下同様に、定尺の合成樹脂管同士の間に前記
受口成形用連結部材と前記挿口成形用連結部材とを交互
に介装して、もしくは前記受口成形用連結部材のみを介
装して前記合成樹脂管の連結を順次行い、複数の合成樹
脂管が連結一体化されてなる芯管を形成する工程と、 管軸周りに回転しながら管軸に沿って前進 する前記芯管の外周面に外層構成材料を巻回し積層して
樹脂複合原管を形成する工程と、前記外層構成材料の硬
化後、前記樹脂複合 原管を前記各合成樹脂管の連結部位で順次切断して定尺
の樹脂複合管に分離する工程とを含むことを特徴とする
樹脂複合管の製造方法。 3)芯管を形成する工程において、合成樹脂管の管端面
と当接して該管端面の直前に間隙を確保するための微小
ストッパが設けられた受口成形用連結部材及び挿口成形
用連結部材を用いるとともに、樹脂複合原管を形成する
工程において、前記間隙にも外層構成材料を入り込ませ
、各合成樹脂管の管端面を該外層構成材料で被覆するこ
とを特徴とする請求項2に記載の樹脂複合管の製造方法
[Scope of Claims] 1) A resin composite pipe with a socket, in which an outer constituent material layer is formed on the outer peripheral surface of a synthetic resin pipe serving as a core material, and a socket portion is provided at at least one end, and a synthetic resin pipe serving as a core material. In receiving and joining a resin composite pipe with an outer layer constituent material layer formed on the outer peripheral surface of the pipe and having a socket at at least one end, the socket part of the resin composite pipe has a socket made of the outer layer constituent material. At the same time, the tube end surface of the core material facing into the socket part is coated with an outer layer constituent material, while the tube end surface of the core material in the socket part is coated with an outer layer constituent material. The insertion part of the resin composite pipe thus constructed is inserted into the socket part of the resin composite pipe with a socket, and the outer layer constituent materials covering the pipe end surfaces of each core material collide with each other. What is claimed is: 1. A socket-insertion connection structure for a resin composite pipe, characterized in that these outer layer constituent materials and the inner circumferential surface of the socket part and the outer circumferential surface of the socket part are fixed with an adhesive. 2) A synthetic resin pipe of a fixed length can be rotated around its pipe axis and moved forward along the pipe axis, and the rotational movement and forward movement of this synthetic resin pipe can be transmitted, and the axially central part A synthetic resin pipe of the same standard length as the pipe is connected to the rear end of the synthetic resin pipe through a socket molding connecting member having a socket molding part, and then the rear end of the connected synthetic resin pipe is A synthetic resin pipe of the same standard length as the pipe is connected to the section through a connecting member for molding the socket, which can transmit the rotational motion and forward motion of the pipe, or again through the connecting member for molding the socket. Similarly, the connecting member for socket molding and the connecting member for insert molding are interposed alternately between synthetic resin pipes of a fixed length, or only the connecting member for socket molding is inserted. a step of sequentially connecting the synthetic resin pipes by interposing the synthetic resin pipes to form a core pipe in which a plurality of synthetic resin pipes are connected and integrated; and a step of moving the synthetic resin pipes forward along the pipe axis while rotating around the pipe axis. A step of winding and laminating an outer layer constituent material around the outer circumferential surface of the core tube to form a resin composite master pipe, and after curing the outer layer constituent material, sequentially cutting the resin composite master pipe at the connecting portions of each of the synthetic resin pipes. A method for producing a resin composite tube, comprising the step of separating the resin composite tubes into regular length resin composite tubes. 3) In the process of forming a core tube, a connection member for socket molding and a connection for socket molding that are provided with a minute stopper that comes into contact with the pipe end surface of the synthetic resin pipe to secure a gap immediately before the pipe end surface. In addition to using the member, in the step of forming the resin composite master pipe, an outer layer constituent material is also introduced into the gap, and the tube end surface of each synthetic resin pipe is covered with the outer layer constituent material. The method for manufacturing the resin composite pipe described.
JP1016043A 1989-01-24 1989-01-24 Method for manufacturing resin composite pipe with socket Expired - Lifetime JPH0759385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1016043A JPH0759385B2 (en) 1989-01-24 1989-01-24 Method for manufacturing resin composite pipe with socket

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1016043A JPH0759385B2 (en) 1989-01-24 1989-01-24 Method for manufacturing resin composite pipe with socket

Publications (2)

Publication Number Publication Date
JPH02194934A true JPH02194934A (en) 1990-08-01
JPH0759385B2 JPH0759385B2 (en) 1995-06-28

Family

ID=11905544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1016043A Expired - Lifetime JPH0759385B2 (en) 1989-01-24 1989-01-24 Method for manufacturing resin composite pipe with socket

Country Status (1)

Country Link
JP (1) JPH0759385B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105090192B (en) * 2014-05-14 2018-07-13 中国石油天然气集团公司 Non-threaded connection structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207061A (en) * 1981-06-15 1982-12-18 Aron Kasei Kk Composite pipe and its manufacture
JPS60133288U (en) * 1984-02-17 1985-09-05 日立造船株式会社 Composite pipe connection structure
JPS63164326U (en) * 1986-11-20 1988-10-26

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207061A (en) * 1981-06-15 1982-12-18 Aron Kasei Kk Composite pipe and its manufacture
JPS60133288U (en) * 1984-02-17 1985-09-05 日立造船株式会社 Composite pipe connection structure
JPS63164326U (en) * 1986-11-20 1988-10-26

Also Published As

Publication number Publication date
JPH0759385B2 (en) 1995-06-28

Similar Documents

Publication Publication Date Title
US5261980A (en) Filament-wound tubular element manufacturing method
US4200605A (en) Production of reinforced plastic pipes
EP0744275A2 (en) Method of making a paint roller
CN1039394C (en) Wrapping pipe for a bundle of hollow fibers method and device for production thereof
KR100991314B1 (en) Device and method for the continuous production of tubular structures that are reinforced with a strengthening support
WO2001096223A1 (en) Method of placing fibers into channels of a mold and fiber placement head for accomplishing same
AU2000265409A1 (en) Method of placing fibers into channels of a mold and fiber placement head for accomplishing same
US4867824A (en) Manufacture of filamentary composites
JPH02194934A (en) Socket and spigot joint structure in resin composite pipe and manufacture of socketed resin composite pipe
JPH02194938A (en) Manufacture of resin composite pipe and connecting member used therein
US4462782A (en) Injection sleeve molding machine
JPS5964328A (en) Hollow composite pipe for transmitting torque and pipe manu-facturing process and its manufacturing device
JPH03234525A (en) Manufacture of resin composite pipe with port
JPH03166926A (en) Manufacture of resin composite pipe with ts socket
JPH03110132A (en) Manufacture of resin composite pipe
JPH03166925A (en) Manufacture of resin composite pipe with ts socket
JPH02158322A (en) Method and apparatus for manufacture of resin composite tube and coupling member used therefor
EP0211535B1 (en) Manufacture of filamentary composites
CN215347464U (en) Roller brush hair cover hot melt adhesive coiler
JP2872312B2 (en) Method of forming joint part of corrugated pipe
JP3217075B2 (en) Pipe laying method
JPS63149135A (en) Manufacture of bellows cylinder made of fiber-reinforced plastics
JP3217076B2 (en) Lining method of inner circumferential surface of pipeline
JPS5812849B2 (en) Method for manufacturing glass fiber reinforced plastic pipe having a pipe socket
US4941934A (en) Method of making protective caps for threaded pipe ends or pipe sockets and protective cap made by said method