JPH02194587A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPH02194587A
JPH02194587A JP1434289A JP1434289A JPH02194587A JP H02194587 A JPH02194587 A JP H02194587A JP 1434289 A JP1434289 A JP 1434289A JP 1434289 A JP1434289 A JP 1434289A JP H02194587 A JPH02194587 A JP H02194587A
Authority
JP
Japan
Prior art keywords
layer
type
film
active layer
quantum well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1434289A
Other languages
Japanese (ja)
Inventor
Noboru Hamao
浜尾 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1434289A priority Critical patent/JPH02194587A/en
Publication of JPH02194587A publication Critical patent/JPH02194587A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form an embedded structure without reducing light-emitting efficiency and obtain a semiconductor laser with a small contact resistance with an electrode by diffusion impurities into only the bottom part of a mesa stripe and putting a quantum well active layer of this region into disorder selectively. CONSTITUTION:An n-type clad layer 2, an n-type guide layer 3, an active layer 4, a P-type guide layer 5, a P-type clad layer 6, and a P-type cap layer 2 are subjected to crystal growth on an n-type GaAs substrate 1, a mask 8 is formed, and then a mesa stripe 9 is formed with it as a mask. Then, an Si film 10 is deposited and then a protection film 11 on diffusion is deposited. Then. the Si film 10 and the protection film 11 are eliminated, heat treatment is performed, and then Si diffusion is made. At this time, since the Si film 10 is located only at the bottom part of the mesa stripe 9, an Si diffusion region 12 is formed only at this location. thus putting quantum well of the active layer 4 of this region into disorder and forming an embedded structure.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光情報処理、光通信などの分野で用いられる高
性能半導体レーザの製造方法に関し、特に選択的に無秩
序化された量子井戸構造を有する半導体1/−ザの製造
方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a high-performance semiconductor laser used in fields such as optical information processing and optical communication, and particularly relates to a method for manufacturing a high-performance semiconductor laser used in fields such as optical information processing and optical communication. The present invention relates to a method of manufacturing a semiconductor 1/-.

(従来の技術) 従来から不純物を導入することにより量子井戸構造が無
秩序化することが知られているが、これを利用した量子
井戸構造を有する半導体レーザの製造方法の一例が第4
9回(昭和63年秋季)応用物理学会堂1イτf講演会
講演予稿集の第3分冊863頁5p−ZC−18に「G
a、As/AlGaAsイ氏閾イ直量子月−戸レーザj
と題して報告されている。この半導体!2・−・甲の製
、’3−7ノ法は、第2図に示すように、まずn型Ga
As基板1上にn型クラッド層2を約111mとn型ガ
イド層3を約1ooo人と厚さ約100人のGaAsか
らなる活性層4とP型ガイド層5を約1000人と厚さ
約1pmのP型クラッド層6と厚さ約1000人のGa
AsからなるP型キャップ層7とをそれぞれ順次形成す
る(第2図(a))。その後、ホトリソグラフィ技術に
よってホトレジストから成るマスク8を形成し、これを
マスクにしてメサストライプ9を形成する(第2図(b
))。次にSi膜を真空蒸着しく第2図(C))リフト
オフ法によってメサストライプ上のSi膜を除去した後
拡散の保護膜11としてSiN膜を全面に形成して85
0°Cで1時間程度熱処理をほどこすことによりSi拡
散を行ない(第2図(d))、メサストライプの底部の
量子井戸活性層のみを選択的に無秩序化し、P型及びn
型電極を形成する(第2図(e))製造方法となってい
る。
(Prior Art) It has been known that introducing impurities causes disorder in a quantum well structure.
In the third volume of the 9th (Autumn 1986) Applied Physics Hall 1 τf Lecture Proceedings, page 863, 5p-ZC-18, there is a ``G
a, As/AlGaAs threshold direct quantum laser j
It is reported under the title. This semiconductor! 2.--The '3-7 method for manufacturing A first involves the production of n-type Ga
On an As substrate 1, an n-type cladding layer 2 of about 111 m, an n-type guide layer 3 of about 100 m and an active layer 4 made of GaAs of about 100 m and a P-type guide layer 5 of about 100 m and a thickness of about 100 m are formed. P-type cladding layer 6 of 1 pm and Ga thickness of about 1000 nm
A P-type cap layer 7 made of As is sequentially formed (FIG. 2(a)). Thereafter, a mask 8 made of photoresist is formed using photolithography technology, and mesa stripes 9 are formed using this as a mask (see FIG. 2(b).
)). Next, a Si film was deposited under vacuum, and after removing the Si film on the mesa stripe by lift-off method (Fig. 2(C)), a SiN film was formed on the entire surface as a protective film 11 for diffusion.
By performing heat treatment at 0°C for about 1 hour, Si is diffused (Fig. 2 (d)), selectively disordering only the quantum well active layer at the bottom of the mesa stripe, and forming P-type and n-type
The manufacturing method involves forming a mold electrode (FIG. 2(e)).

(発明が解決しようとする問題点) しかしながら上述した従来の半導体レーザの製造方法で
は拡散の保護膜を全面に形成しているため、高温熱処理
時にメサストライプ側部のGa原子が保護膜中に外部拡
散し、逆に保護膜から空孔などの結晶欠陥が量子井戸活
性層に導入され、レーザの発光効率が低下するという問
題点があった。
(Problems to be Solved by the Invention) However, in the conventional semiconductor laser manufacturing method described above, a diffusion protective film is formed over the entire surface. There is a problem in that the diffusion causes crystal defects such as vacancies to be introduced from the protective film into the quantum well active layer, reducing the luminous efficiency of the laser.

またメサストライプ上部でもGa原子の保護膜中への外
部拡散及びGaA、sキャップ層と保護膜との反応が高
温熱処理時に生じ、電極との接触抵抗が大きいという問
題点があった。またこれらの問題点を避けるため、保護
膜を全く用いずに、ヒ素原子の脱離をふせぐ程度のヒ素
圧力の下で熱処理を行うとSiが全く拡散せず、従って
埋め込み構造を形成出来ないという問題点があった。
Further, even in the upper part of the mesa stripe, external diffusion of Ga atoms into the protective film and reaction between the GaA, S cap layer and the protective film occur during high-temperature heat treatment, resulting in a problem of high contact resistance with the electrode. Furthermore, in order to avoid these problems, if heat treatment is performed under an arsenic pressure high enough to prevent the desorption of arsenic atoms without using any protective film, Si will not diffuse at all, and therefore a buried structure cannot be formed. There was a problem.

本発明の目的は、発光効率の低下をまねくことなく埋め
込み構造を形成することが可能であり、電極との接触抵
抗も小さい半導体レーザの製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor laser that can form a buried structure without reducing luminous efficiency and has low contact resistance with electrodes.

(問題を解決するための手段) 本発明は量子井戸活性層と量子井戸活性層が無秩序化さ
れである構造とを持つ埋め込み構造の半導体レーザの製
造方法において、第1導電型の半導体基板上に第1導電
型のクラッド層を形成する工程と、この第1導電型クラ
ッド層の上に少なくとも1つの量子井戸を含む量子井戸
活性層を形成する工程と、この量子井戸活性層の上に第
2導電型のクラッド層を形成する工程と、選択エツチン
グのためのストライプ用マスクを前記第2導電型クラッ
ド層の上に形成する工程と、このストライプ用マスクを
用いて前記第2導電型クラッド層の一部をエツチングす
る事によってメサストライプを形成する工程と、このエ
ツチング工程の後に第1導電型の不純物を蒸着する工程
と、この工程の後に保護膜を蒸着する工程と、この蒸着
工程の後に前記ストライプ用マスクのみを除去すること
によって前記ストライプ用マスク上の不純物と保護膜と
を除去する工程とこの後に熱処理をほどこすことによっ
て前記メサストライプの底部のみに前記不純物を拡散し
てこの領域の量子井戸活性層を選択的に無秩序化する工
程を含むことを特徴とする半導体レーザの製造方法であ
る。
(Means for Solving the Problem) The present invention provides a method for manufacturing a buried structure semiconductor laser having a quantum well active layer and a structure in which the quantum well active layer is disordered. a step of forming a cladding layer of a first conductivity type; a step of forming a quantum well active layer including at least one quantum well on the first conductivity type cladding layer; and a step of forming a quantum well active layer including at least one quantum well on the first conductivity type cladding layer; forming a conductive type cladding layer; forming a stripe mask for selective etching on the second conductivity type cladding layer; and etching the second conductivity type cladding layer using the stripe mask. A step of forming a mesa stripe by etching a part of the surface, a step of vapor-depositing an impurity of the first conductivity type after this etching step, a step of vapor-depositing a protective film after this step, and a step of vapor-depositing a protective film after this vapor-deposition step. A process of removing impurities and a protective film on the stripe mask by removing only the stripe mask, and then performing heat treatment to diffuse the impurities only to the bottom of the mesa stripe, thereby reducing the quantum density in this region. A method of manufacturing a semiconductor laser includes a step of selectively disordering a well active layer.

(作用) メサストライプ側面及び上部には保護膜がないので高温
熱処理時においてもこの部分でGa原子の外部拡散及び
空孔などの結晶欠陥の導入が起こらず、レーザの発光効
率の低下をまねくことがない。またストライプ底部の不
純物を蒸着した部分には保護膜があるので、従来どおり
安定な条件で不純物の拡散が起こり、埋め込み構造を形
成することが出来る。また、メサストライプ上部には高
温熱処理時に保護膜がないのでキャップ層との反応も起
こらず、電極との接触抵抗が低減できる。
(Function) Since there is no protective film on the sides and top of the mesa stripe, external diffusion of Ga atoms and introduction of crystal defects such as vacancies do not occur in these areas even during high-temperature heat treatment, leading to a decrease in laser light emission efficiency. There is no. Furthermore, since there is a protective film at the bottom of the stripe where the impurity is deposited, diffusion of the impurity occurs under stable conditions as before, and a buried structure can be formed. Further, since there is no protective film on the upper part of the mesa stripe during high-temperature heat treatment, no reaction with the cap layer occurs, and the contact resistance with the electrode can be reduced.

(実施例) 次に本発明の実施例について図面を参照して詳細に説明
する。第1図は本発明の一実施例の半導体レーザの製造
方法を示したものである。まず第1図(a)に示す様に
n型GaA、s基板上1にn型クラッド層2(n−Al
xcGal−xAs、 0.45≦Xe≦0.85.厚
さ0.8〜311m)、n型ガイド層3(n−AIXg
Gal−xgA、s Xg<Xc、厚さ500〜300
0人典型的には1000人)、活性層4(GaAs、厚
さ50〜200人)、P型ガイド層(p4N、xgGa
l−xgAs厚さ500〜3000人典型的には100
人)、P型クラッド層(p−AlxeGal−xeAs
、厚さ0.8〜3pyn)、P型キャップ層(p−Ga
As、厚さ1000〜5000人)を結晶成長する。次
に第1図(b)に示す様にホトリソグラフィ技術によっ
てホトレジストから成るマスク8を形成してこれをマス
クにしてメサストライプを形成する。メサストライプの
幅は1〜10pm典型的には2〜3pm、深さに関して
はメサストライプ底部から活性層4までの距離が100
0〜5000A程度になるのが好ましい。P型ガイド層
5のAI組成が0.35以下の場合にはHF系のエツチ
ング液を用いるとAI組成が高いP型クラッド層6のみ
をエツチングして、P型ガイド層5に達するとエツチン
グが自動的に停止させる事が出来るため利用すると便利
である。この場合には、HF系のエツチング液を用いる
前にあらかじめP型キャップ層7を別のエツチングで除
去しておく必要がある。
(Example) Next, an example of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a method for manufacturing a semiconductor laser according to an embodiment of the present invention. First, as shown in FIG. 1(a), an n-type cladding layer 2 (n-Al
xcGal-xAs, 0.45≦Xe≦0.85. thickness 0.8 to 311 m), n-type guide layer 3 (n-AIXg
Gal-xgA, s Xg<Xc, thickness 500-300
0 people (typically 1000 people), active layer 4 (GaAs, thickness 50-200 people), P-type guide layer (p4N, xgGa
l-xgAs thickness 500-3000 typically 100
), P-type cladding layer (p-AlxeGal-xeAs
, thickness 0.8-3 pyn), P-type cap layer (p-Ga
As (1000 to 5000 layers thick) is grown as a crystal. Next, as shown in FIG. 1(b), a mask 8 made of photoresist is formed by photolithography, and this is used as a mask to form mesa stripes. The width of the mesa stripe is 1-10 pm, typically 2-3 pm, and the depth is 100 pm from the bottom of the mesa stripe to the active layer 4.
It is preferable that the current is about 0 to 5000A. If the AI composition of the P-type guide layer 5 is 0.35 or less, if an HF-based etching solution is used, only the P-type cladding layer 6 with a high AI composition will be etched, and once the P-type guide layer 5 is reached, the etching will stop. It is convenient to use because it can be stopped automatically. In this case, it is necessary to remove the P-type cap layer 7 by separate etching before using the HF-based etching solution.

又、エツチング方法としてリアクティブイオンビームエ
ツチング(RIBE)法等のドライエツチングを用いて
も良い。この場合にはエツチング深さが精密に制御出来
るため、狙ったところにエツチングを止める事が出来て
又サイドエツチングも少ないため狭いストライプ幅(〜
lpm)形成する事が容易である。
Further, dry etching such as reactive ion beam etching (RIBE) may be used as the etching method. In this case, since the etching depth can be precisely controlled, the etching can be stopped at the targeted location, and there is less side etching, so the stripe width is narrow (~
lpm) is easy to form.

次に第1”a (c)に示す様にSi膜10(厚さ〜5
00A)を形成する。この形成方法として真空蒸着法が
好ましい。なぜなら図に示す様にSi膜10が断切れを
伴って形成されるためである。スパッタ蒸着法の様に側
面のまわり込みが大きい方法によると、図に示した様な
l断切れは生じずに側面にSiが蒸着されてこの部分に
8iが拡散するためにメサストライプ9の上にP型電極
14を形成した際に活性層4からなるpn接合が短絡さ
れる可能性があり好ましくない。この工程に引き続いて
拡散時の保護膜11(例えば5i02膜厚さ500〜3
000A)を形成する。この形成方法としても真空蒸着
法が好ましい。なぜなら第1図(C)に示す様に保護膜
11が断切れを伴って形成されるためメサストライプの
側面には形成されないからである。
Next, as shown in 1.a (c), the Si film 10 (thickness ~5
00A). A vacuum evaporation method is preferable as this forming method. This is because the Si film 10 is formed with discontinuities as shown in the figure. When using a method such as sputter deposition that involves a large amount of wrapping around the side surfaces, Si is vapor deposited on the side surfaces without causing the L break shown in the figure, and 8i is diffused into this area, so that the upper part of the mesa stripe 9 is When the P-type electrode 14 is formed, the pn junction made of the active layer 4 may be short-circuited, which is not preferable. Following this step, a protective film 11 for diffusion (for example, a 5i02 film with a thickness of 500 to 3
000A). A vacuum evaporation method is also preferable as this forming method. This is because the protective film 11 is formed with discontinuities as shown in FIG. 1(C) and is therefore not formed on the side surfaces of the mesa stripes.

次に第1図(d)に示す様にリフトオフによってメサス
トライプ9の上のSi膜10及び保護膜11を除去する
。マスクがポジ型レジストの場合にはアセトン等の有機
溶剤を用いて容易にリフトオフが出来る。次に850°
Cで1時間程度熱処理をほどこすことによりSi拡散を
行う。拡散は例えばGaAs粉末あるいはAs粉末とと
もにサンプルを真空封入し、ヒ素のGaAsに対する平
衡蒸気圧以上のヒ素圧下で行えばヒ素原子の脱離をふせ
ぐことか出来る。
Next, as shown in FIG. 1(d), the Si film 10 and protective film 11 on the mesa stripe 9 are removed by lift-off. If the mask is a positive resist, lift-off can be easily performed using an organic solvent such as acetone. then 850°
Si is diffused by heat treatment with C for about 1 hour. Desorption of arsenic atoms can be prevented by vacuum-sealing the sample together with, for example, GaAs powder or As powder, and performing the diffusion under an arsenic pressure higher than the equilibrium vapor pressure of arsenic with respect to GaAs.

このときメサストライプ9の底部のみにSi膜10があ
るため、ここのみにSi拡散領域12が形成され、この
領域の活性層4の量子井戸が無秩序化し、埋め込み構造
が形成される。また、メサストライプ9の側面、及び上
部には保護膜がないので、Ga原子の外部拡散や空孔な
どの結晶欠陥の導入はおこらず、またP型キャップ層7
と保護膜との反応もおこりえない。従って、活性層4の
発光特性の劣化をまねくことなく良好な埋め込み構造が
形成出来、またP側オーミック電極の形成も容易になる
At this time, since the Si film 10 is present only at the bottom of the mesa stripe 9, the Si diffusion region 12 is formed only there, and the quantum wells of the active layer 4 in this region become disordered, forming a buried structure. Furthermore, since there is no protective film on the side surfaces and the top of the mesa stripe 9, external diffusion of Ga atoms and introduction of crystal defects such as vacancies do not occur, and the P-type cap layer 7
No reaction occurs between the film and the protective film. Therefore, a good buried structure can be formed without deteriorating the light emitting characteristics of the active layer 4, and the P-side ohmic electrode can also be formed easily.

次に第1図(e)に示すようにSi膜10および保護膜
11をドライエツチング等で除去した後に絶、縁膜13
を形成する。次にメサストライプ9の上部の絶縁膜13
のみを除去する。これは通常のホトリソグラフィ技(]
:fによってバターニングする。次にP型室(〉14お
よびn型電極15を形成して完成する。
Next, as shown in FIG. 1(e), after removing the Si film 10 and the protective film 11 by dry etching or the like, the insulation film 13 is removed.
form. Next, the insulating film 13 above the mesa stripe 9
Remove only. This is a normal photolithography technique (]
: Buttering by f. Next, a P-type chamber (>14) and an n-type electrode 15 are formed to complete the process.

以上述べた実施例では活性層を単層構造としたがこれに
限らず多重量子井戸構造等の多層構造どしても良い。又
、本実施例では材料系として、AlGaAs/GaAs
系を用いたがこれに限らずInGaAsP/InP系、
InAlGaAs/InP系等の材料においても適用可
能である事は言うまでも無い。又、以上述べた実施例で
は拡散する元素とし7てSiを用いたがこれに限らすZ
n、 Mg、 Ga等の不純物が利用可能である。ただ
しZn、Mg等のP型不純物ではP型基板上にレーザ構
造を形成する必要がある。又Gaが最近本発明人らによ
ってAlGaAs中に導入するとn型不純物としてふる
まう事がわかっているためn型半導体基板上のレーザ構
造に適用出来ると考えられる。
In the embodiments described above, the active layer has a single layer structure, but the active layer is not limited to this, and may have a multilayer structure such as a multiple quantum well structure. In addition, in this example, AlGaAs/GaAs is used as the material system.
InGaAsP/InP system, but is not limited to this.
Needless to say, it is also applicable to materials such as InAlGaAs/InP. In addition, in the embodiments described above, Si was used as the diffusing element 7, but it is not limited to this.
Impurities such as n, Mg, and Ga can be used. However, when using P-type impurities such as Zn and Mg, it is necessary to form a laser structure on a P-type substrate. Furthermore, the present inventors have recently found that when Ga is introduced into AlGaAs, it behaves as an n-type impurity, so it is thought that it can be applied to a laser structure on an n-type semiconductor substrate.

また上記実施例において、拡散時の保護膜は5i02膜
としたがこれにかぎらず、真空蒸着可能な他の保護膜、
例えばAl2O3膜であっても本発明は適用できる。ま
た上記実施例において拡散は真空封大で行うとしたがこ
れにかぎらず、例えば水素雰囲気中の開管法でfa、c
e to face法(つ、:1−、”とGaAs基板
を対向かぜAs原子の脱離を防ぐ方法)で行う場合、ま
たアルシンを含んだガス雰囲気中で行う場合でも本発明
は適用できる。
Furthermore, in the above embodiments, the protective film during diffusion was the 5i02 film, but it is not limited to this, and other protective films that can be vacuum evaporated,
For example, the present invention can be applied to an Al2O3 film. Further, in the above embodiments, diffusion is performed in a vacuum-sealed container, but the method is not limited to this. For example, an open tube method in a hydrogen atmosphere can be used to
The present invention can be applied even when carrying out the process using the e to face method (a method in which GaAs substrates are placed facing each other to prevent As atoms from being desorbed) or in a gas atmosphere containing arsine.

また上記実施例においては、Si膜10および保護膜1
1を除去した後に絶縁膜13を形成するとしたが、これ
にかぎらずSi膜10および保護膜11を除去せずその
上から絶縁膜13を形成する場合にも本発明は適用でき
る。
Further, in the above embodiment, the Si film 10 and the protective film 1
Although the insulating film 13 is formed after removing the Si film 10 and the protective film 11, the present invention is applicable to the case where the insulating film 13 is formed thereon without removing the Si film 10 and the protective film 11.

(発明の効果) 以上説明したように、本発明によれば、発光効率の低下
をまねくことなく埋め込み構造を形成することが可能で
あり、電極との接触抵抗も小さい半導体レーザが得られ
る。
(Effects of the Invention) As described above, according to the present invention, it is possible to form a buried structure without reducing luminous efficiency, and a semiconductor laser having low contact resistance with an electrode can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(e)は本発明の一実施例による半導体
レーザ製造方法を説明するための工程図、第2図(a)
〜(e)は従来の製造方法による工程図である。 図中、1はn型GaAs基板、2はn型クラッド層、3
はn型ガイド層、4は活性層、5はP型ガイド層、6は
P型りラッド層、7はP型キャップ層、8はマスク、9
はメサストライプ、10はSi膜、11は保護膜、12
はSi拡散領域、13は絶縁膜、1.4はP梨型極、1
5はn型電極である。
FIGS. 1(a) to (e) are process diagrams for explaining a semiconductor laser manufacturing method according to an embodiment of the present invention, and FIG. 2(a) is
-(e) are process diagrams according to a conventional manufacturing method. In the figure, 1 is an n-type GaAs substrate, 2 is an n-type cladding layer, and 3 is an n-type GaAs substrate.
is an n-type guide layer, 4 is an active layer, 5 is a p-type guide layer, 6 is a p-type rad layer, 7 is a p-type cap layer, 8 is a mask, 9
is a mesa stripe, 10 is a Si film, 11 is a protective film, 12
is a Si diffusion region, 13 is an insulating film, 1.4 is a P pear-shaped pole, 1
5 is an n-type electrode.

Claims (1)

【特許請求の範囲】[Claims] 量子井戸活性層と量子井戸活性層が無秩序化されてある
構造とを持つ埋め込み構造の半導体レーザの製造方法に
おいて、第1導電型の半導体基板上に第1導電型のクラ
ッド層を形成する工程と、この第1導電型クラッド層の
上に少なくとも1つの量子井戸を含む量子井戸活性層を
形成する工程と、この量子井戸活性層の上に第2導電型
のクラッド層を形成する工程と、前記第2導電型クラッ
ド層の所定の部分にストライプ用マスクを形成する工程
と、このストライプ用マスクを用いて前記第2導電型ク
ラッド層の一部をエッチングする事によってメサストラ
イプを形成する工程と、第1導電型の不純物を蒸着する
工程と、この工程の後に保護膜を蒸着する工程と、前記
ストライプ用マスクを除去することによって前記ストラ
イプ用マスク上に蒸着された不純物と保護膜とを除去す
る工程と続いて熱処理をほどこすことによって前記メサ
ストライプの底部のみに前記不純物を拡散してこの領域
の量子井戸活性層を選択的に無秩序化する工程とを備え
てなることを特徴とする半導体レーザの製造方法。
A method for manufacturing a semiconductor laser with a buried structure having a quantum well active layer and a structure in which the quantum well active layer is disordered, comprising: forming a cladding layer of a first conductivity type on a semiconductor substrate of a first conductivity type; , forming a quantum well active layer including at least one quantum well on the first conductivity type cladding layer; forming a second conductivity type cladding layer on the quantum well active layer; forming a stripe mask in a predetermined portion of the second conductivity type cladding layer; forming a mesa stripe by etching a part of the second conductivity type cladding layer using the stripe mask; a step of depositing an impurity of a first conductivity type; a step of depositing a protective film after this step; and removing the impurity and the protective film deposited on the stripe mask by removing the stripe mask. and a subsequent step of diffusing the impurity only to the bottom of the mesa stripe to selectively disorder the quantum well active layer in this region by applying heat treatment. manufacturing method.
JP1434289A 1989-01-23 1989-01-23 Manufacture of semiconductor laser Pending JPH02194587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1434289A JPH02194587A (en) 1989-01-23 1989-01-23 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1434289A JPH02194587A (en) 1989-01-23 1989-01-23 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPH02194587A true JPH02194587A (en) 1990-08-01

Family

ID=11858396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1434289A Pending JPH02194587A (en) 1989-01-23 1989-01-23 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPH02194587A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475330A2 (en) * 1990-09-12 1992-03-18 Hughes Aircraft Company Ridge-waveguide buried heterostructure laser and method of fabrication

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475330A2 (en) * 1990-09-12 1992-03-18 Hughes Aircraft Company Ridge-waveguide buried heterostructure laser and method of fabrication
EP0475330A3 (en) * 1990-09-12 1992-04-29 Hughes Aircraft Company Ridge-waveguide buried heterostructure laser and method of fabrication

Similar Documents

Publication Publication Date Title
US5108948A (en) Method of producing a semiconductor device having a disordered superlattice using an epitaxial solid diffusion source
US6562649B2 (en) Compound semiconductor light emitting device and process for producing the same
JPH02194587A (en) Manufacture of semiconductor laser
JPH0775265B2 (en) Semiconductor laser and manufacturing method thereof
US6795480B1 (en) Semiconductor laser device
US5031185A (en) Semiconductor device having a disordered superlattice
JP2812024B2 (en) Manufacturing method of surface emitting element
JPH10135567A (en) Semiconductor laser element
JP2595774B2 (en) Manufacturing method of surface emitting semiconductor laser
JPH09205250A (en) Lateral current injection type surface emitting semiconductor laser device and its manufacture
KR970001896B1 (en) Semiconductor laser diode of form and method for manufacturing the same
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JP3143105B2 (en) Method for manufacturing semiconductor laser device
JP3358197B2 (en) Semiconductor laser
JPH03256388A (en) Manufacture of semiconductor laser
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
JPH05160506A (en) Semiconductor laser and its manufacture
JPH0277184A (en) Manufacture of semiconductor laser
JP2599391B2 (en) Semiconductor light emitting device manufacturing method and semiconductor light emitting device
JPH11354880A (en) Semiconductor laser element and its manufacturing method
JPH05275802A (en) Manufacture of semiconductor laser
JPH04159788A (en) Manufacture of semiconductor element
JPS61236185A (en) Preparation of semiconductor laser element
JP3468236B2 (en) Semiconductor laser
JPH0396290A (en) Manufacturing method for semiconductor laser