JPH0219447A - Ferritic stainless steel - Google Patents

Ferritic stainless steel

Info

Publication number
JPH0219447A
JPH0219447A JP16601688A JP16601688A JPH0219447A JP H0219447 A JPH0219447 A JP H0219447A JP 16601688 A JP16601688 A JP 16601688A JP 16601688 A JP16601688 A JP 16601688A JP H0219447 A JPH0219447 A JP H0219447A
Authority
JP
Japan
Prior art keywords
stainless steel
ferritic stainless
corrosion
less
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16601688A
Other languages
Japanese (ja)
Inventor
Masayuki Hashimoto
橋元 昌幸
Matsuo Miyazaki
宮崎 松生
Masaru Yamamoto
優 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16601688A priority Critical patent/JPH0219447A/en
Publication of JPH0219447A publication Critical patent/JPH0219447A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys

Abstract

PURPOSE:To form a protective film having superior characteristic dense adhesive strength and to improve corrosion resistance by incorporating specific trace amounts of Cu to a ferritic stainless steel. CONSTITUTION:As a material for heat-transfer tube for heat exchanger in the nuclear power plant, a ferritic stainless steel having a composition containing, by weight, 0.002-0.03% C, <1.0% Si, <1.0% Mn, 16.0-20.05 Cr, <0.5% Mo, <0.6% Ni, <0.030% N, <0.05% Co, 0.01-0.5% Cu, and Ti or Nb by 6X(C+N) to 0.75% is used. Since C and N are fixed by the action of Ti or Nb and the precipitation of metal carbide or nitride in the grain boundaries and its attendant occurrence of intergranular corrosion can be prevented and, further, a dense protective film is formed by the addition of Cu to prevent the corrosion of heat-transfer tube, the safety and reliability of the nuclear power plant can be improved over a long period.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は1例えば原子力発電プラントの熱交換器用伝熱
管に使用され、耐食性に富むフェライト系ステンレス鋼
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to the improvement of ferritic stainless steel, which is used in heat exchanger tubes for heat exchangers in nuclear power plants, for example, and is highly corrosion resistant.

(従来の技術) 例えば、原子力発電プラントに使用される給水加熱器、
湿分分離加熱器等の熱交換器には、耐食性にすぐれたオ
ーステナイト系ステンレス鋼製の伝熱管が従来から使用
されている。このオーステナイト系ステンレス鋼は、耐
食性に富むだけに超大形の熱交換器には好まれて多く採
用されている。
(Prior art) For example, feed water heaters used in nuclear power plants,
Heat exchanger tubes made of austenitic stainless steel, which have excellent corrosion resistance, have traditionally been used in heat exchangers such as moisture separation heaters. This austenitic stainless steel is highly resistant to corrosion, so it is preferred and often used in ultra-large heat exchangers.

しかし、オーステナイト系ステンレス鋼は。However, austenitic stainless steel.

(1−イオンを含む環境では粒内型の応力腐食割れを生
じる危険性が高く、復水器の海水リーク時Ca−イオン
による応力腐食割れ発生の可能性がある。また、合金成
分中のNiおよび主としてNiと共存している微量のC
Oが溶出し、原子炉内に持ち込まれ、それぞれCo”及
びC01l′に変化する。これらの半減期は長く、放射
線量を増大させる等の問題があり、耐応力腐食割れ性に
すぐれ、耐食性を有し、Ni、Co含有量の少ない伝熱
管材料が要求されてきた。
(In an environment containing 1-ions, there is a high risk of intragranular stress corrosion cracking, and stress corrosion cracking may occur due to Ca- ions when seawater leaks from the condenser. Also, Ni in the alloy component and a trace amount of C coexisting mainly with Ni.
O is eluted and carried into the reactor, where it changes into Co'' and C01l' respectively.These have long half-lives and have problems such as increasing radiation dose, but they have excellent stress corrosion cracking resistance and corrosion resistance. There has been a demand for heat exchanger tube materials with low Ni and Co contents.

(発明が解決しようとする課題) この要求に対し、最近ではフェライト系ステンレス鋼が
伝熱管材料として有望であることが判明し、実用化へ向
けての検討が進んできた。フェライト系ステンレス鋼は
、オーステナイト系ステンレス鋼と比較して、熱伝導率
が高く、耐応力腐食割れ性に優れ、Ni、Co含有量も
極めて少ないので、伝熱管材料として有望な材料である
。しかし耐食性はオーステナイト系ステンレス鋼よりも
劣り、主成分のFeを主体としたクラッドが増大すると
いう問題を有している。Feは、CoCoより半減期は
短いが、Fe5gを生成し放射線量の増大をもたらす要
因となるので、極力低く押えなければならず、その解決
策が模索されているのが現状であった。
(Problems to be Solved by the Invention) In response to this requirement, ferritic stainless steel has recently been found to be promising as a material for heat transfer tubes, and studies have been progressing toward its practical application. Ferritic stainless steel has higher thermal conductivity and better stress corrosion cracking resistance than austenitic stainless steel, and has extremely low Ni and Co contents, so it is a promising material for heat exchanger tubes. However, the corrosion resistance is inferior to that of austenitic stainless steel, and there is a problem in that the cladding, which is mainly composed of Fe, increases. Although Fe has a shorter half-life than CoCo, it is a factor that generates Fe5g and increases the radiation dose, so it must be kept as low as possible, and a solution to this problem is currently being sought.

本発明は5以上のような従来材質の欠点を改良するため
になされたもので、原子カプラントの高温純水環境中で
すぐれた耐食性を有するフェライト系ステンレス鋼を提
供することを目的とするものである。
The present invention was made to improve the above-mentioned drawbacks of conventional materials, and its purpose is to provide a ferritic stainless steel that has excellent corrosion resistance in the high-temperature pure water environment of an atomic couplant. be.

〔発明の構成〕[Structure of the invention]

(W題を解決するための手段) 本発明者等は、炭素鋼に合金成分を微量添加することに
より耐食性は大幅に向上することに着目し、微量の合金
成分を添加したフェライト系ステンレス鋼の耐食性を検
討した結果、Cuの添加が耐食性を向上させることを見
出し、本発明に至ったものである。
(Means for Solving Problem W) The present inventors have focused on the fact that corrosion resistance can be greatly improved by adding a small amount of an alloying component to carbon steel, and have developed a ferritic stainless steel to which a small amount of an alloying component has been added. As a result of examining corrosion resistance, it was discovered that addition of Cu improves corrosion resistance, leading to the present invention.

すなわち1本発明は、重量基準でC0.002〜0.0
30%、 Si 1.0%以下、Mn1.0%以下、C
r16.0〜20.0%、 Mo 0.5%以下、Ni
 0.6%以下、N 0.030%以下、Tiもしくは
Nb 6x(C+N)〜0.75%、 Co 0.05
%以下、 Cu 0.01〜0.5% を含み、残部が
Feおよび付随的不純物からなるフェライト系ステンレ
ス鋼である。
That is, 1 the present invention has C0.002 to 0.0 on a weight basis.
30%, Si 1.0% or less, Mn 1.0% or less, C
r16.0-20.0%, Mo 0.5% or less, Ni
0.6% or less, N 0.030% or less, Ti or Nb 6x (C+N) ~ 0.75%, Co 0.05
It is a ferritic stainless steel containing 0.01 to 0.5% of Cu, with the balance consisting of Fe and incidental impurities.

(作 用) 後述する実施例の第1図は、Cuの含有量を変化させた
18crのフェライト系ステンレス鋼(実施例1〜3)
と従来の18 Crのフェライト系ステンレス鋼(比較
例)の腐食減社の経時変化を示すグラフである。このグ
ラフによれば、従来材と比較して本発明に係る材料の腐
食性は大幅に向上しており、耐食性に及ぼすCuの効果
は大である。
(Function) Figure 1 of the examples described later shows 18 cr ferritic stainless steel (Examples 1 to 3) with varying Cu content.
It is a graph showing the change over time in corrosion reduction of conventional 18 Cr ferritic stainless steel (comparative example). According to this graph, the corrosion resistance of the material according to the present invention is significantly improved compared to the conventional material, and the effect of Cu on corrosion resistance is significant.

すなわち、本発明はCuのvll量の添加によりフェラ
イト系ステンレス鋼の耐食性を向上させるという新しい
知見により達成されたものであり、従来材の耐食性に劣
るという欠点が改善されたものである。
That is, the present invention was achieved based on the new knowledge that the corrosion resistance of ferritic stainless steel is improved by adding a vll amount of Cu, and the drawback of poor corrosion resistance of conventional materials has been improved.

次に、この発明のフェライト系ステンレス鋼においてそ
の化学組成を上記のように限定した理由を説明する。以
下の記載において組成を表わす1%」は、特に断わらな
い限り重量基準とする。
Next, the reason why the chemical composition of the ferritic stainless steel of the present invention is limited as described above will be explained. In the following description, "1%" in the composition is based on weight unless otherwise specified.

C0.002〜0.030%: Cはフェライト系ステンレス鋼の高温純水環境での応力
腐食感受性を著しく高める元素であり、その量は低いほ
ど好ましい、Cを0.030%以下にすることにより応
力腐食割れの発生を防止できるので、上限を0.03%
とする。但し、後述する安定化元素のTiの添加により
目的を達成できる。
C0.002-0.030%: C is an element that significantly increases the stress corrosion susceptibility of ferritic stainless steel in a high-temperature pure water environment, and the lower the amount, the more preferable it is.By setting C to 0.030% or less, The upper limit is set at 0.03% to prevent stress corrosion cracking.
shall be. However, the purpose can be achieved by adding Ti, a stabilizing element, which will be described later.

一方、Cは焼入性を向上させ、引張強さおよび耐力を向
上させるのに不可欠の元素で、C含有量が0.002%
以下では十分な強度が得られない、このためCの下限は
0.002%とする。
On the other hand, C is an essential element to improve hardenability, tensile strength and yield strength, and the C content is 0.002%.
If C is less than 0.0%, sufficient strength cannot be obtained. Therefore, the lower limit of C is set to 0.002%.

N 0.030%以下: NはCと同様フェライト系ステンレス鋼の応力腐食割れ
感受性を著しく高める元素であり、その量は低いほど好
ましい。Nを0.030%以下にすることにより応力腐
食割れの発生を防止できるので、上限を0.030%と
する。
N 0.030% or less: Like C, N is an element that significantly increases the stress corrosion cracking susceptibility of ferritic stainless steel, and the lower the amount, the better. Since the occurrence of stress corrosion cracking can be prevented by reducing N to 0.030% or less, the upper limit is set to 0.030%.

TiもしくはNb  6X(C十N)〜0.75%:T
iもしくはNbはCおよびNを固定するため溶接時の鋭
敏化を防止し、粒界型応力腐食割れを抑制する効果があ
るが、6X(C+N)%未満では十分な効果が得られな
いため、下限を6X(C+N)% とする。一方、0.
75%を越える添加は靭性の低下をきたすので上限は0
.75%とする。
Ti or Nb 6X (C1N) ~ 0.75%:T
Since i or Nb fixes C and N, it prevents sensitization during welding and has the effect of suppressing intergranular stress corrosion cracking, but if it is less than 6X (C + N)%, a sufficient effect cannot be obtained. The lower limit is set to 6X(C+N)%. On the other hand, 0.
Addition of more than 75% causes a decrease in toughness, so the upper limit is 0.
.. It shall be 75%.

SL 1.0%以下、Mn1.0%以下:SiおよびM
nは、それぞれ脱酸剤、脱硫剤として添加するもので、
Si、Mnともに1.0%以下とする。上限を越えたS
iの添加は靭性を低下させ、またMnの添加は焼入性を
上げる効果を有するが過剰であると耐食性を低下させる
SL 1.0% or less, Mn 1.0% or less: Si and M
n is added as a deoxidizing agent and a desulfurizing agent, respectively;
Both Si and Mn are 1.0% or less. S exceeds the upper limit
Addition of i reduces toughness, and addition of Mn has the effect of increasing hardenability, but excessive addition reduces corrosion resistance.

Cr 16.0〜20.0%: Crはフェライト系ステンレス鋼の耐食性向上に不可欠
な成分である。高温純水環境では、全面腐食に対し16
.0%未満では十分な耐食性がないので、下限を16.
0%とする。一方Cr含有量が20.0%を越えると、
フェライト系ステンレス鋼に特有な475℃脆性が生じ
るおそれがあるため、上限は20.0%に制限している
Cr 16.0-20.0%: Cr is an essential component for improving the corrosion resistance of ferritic stainless steel. 16 against general corrosion in high temperature pure water environment
.. If it is less than 0%, there is insufficient corrosion resistance, so the lower limit is set to 16.
0%. On the other hand, when the Cr content exceeds 20.0%,
The upper limit is limited to 20.0% because there is a risk of 475°C embrittlement that is unique to ferritic stainless steel.

Mo0.5%以下: MoはCrと同様含有量が増大すると475℃脆性が生
じるおそれがあるため、上限を0.5%に制限している
Mo 0.5% or less: Like Cr, if the Mo content increases, 475° C. embrittlement may occur, so the upper limit is limited to 0.5%.

Cu 0.01〜0.5%: Cuは、本発明に係るフェライト系ステンレス鋼の構成
元素中で特に重要な元素であり、初期腐食を少なくし、
Cu含有のち密な密着性の良い保護皮膜を形成させるた
めに0.O1〜0.5%添加する。
Cu 0.01-0.5%: Cu is a particularly important element among the constituent elements of the ferritic stainless steel according to the present invention, and reduces initial corrosion.
0.0 to form a Cu-containing protective film with good adhesion. Add 1-0.5% O.

CuはCrの存在の下でその効果を発揮するが、o、o
i%未滴の添加ではその効果は十分でないので、下限は
0.01%とする。しかし0.5%を越えて添加しても
、もはやそれ以上の効果は望めないので。
Cu exhibits its effect in the presence of Cr, but o, o
Since the effect is not sufficient if only i% is added, the lower limit is set to 0.01%. However, even if it is added in excess of 0.5%, no further effect can be expected.

上限を0.5%とする。The upper limit is set to 0.5%.

Ni 0.6%以下: Niは、オーステナイト相形成元素であり、含有量が増
大するにつれてFe−Cr系合金状態図のγループ幅が
広がり、溶接熱影響部にマルテンサイトが変態生成しや
すくなり、溶接割れを引き起こすため、また放射線源の
Co”を生成するため、その量は低いほど好ましいaN
iを0.6%以下にすることにより溶接熱影響部におけ
るマルテンサイトの変態生成を防止することができるの
で、上限を0.6% とする。
Ni 0.6% or less: Ni is an austenite phase forming element, and as the content increases, the γ loop width of the Fe-Cr alloy phase diagram widens, making it easier for martensite to transform and form in the weld heat affected zone. , to cause weld cracking and to generate a radiation source of Co, the lower the amount of aN, the better.
By setting i to 0.6% or less, transformation formation of martensite in the weld heat affected zone can be prevented, so the upper limit is set to 0.6%.

Coo、05%以下: CoはNiと同様オーステナイト相形成元素であり、か
つ放射線源のC060を生成する元素なので。
Coo, 0.5% or less: Co is an austenite phase forming element like Ni, and is an element that generates C060, which is a radiation source.

その量は低いほど好ましいが、0.05%までは影響が
ないので、上限を0.05%とする。
The lower the amount, the better, but since there is no effect up to 0.05%, the upper limit is set at 0.05%.

上記成分ならびに主成分としてFeを加える際に付随的
に含まれる不純物はなるべく少ない方が好ましい。
It is preferable that impurities incidentally included when adding the above components and Fe as the main component be as small as possible.

本発明のフェライト系ステンレス鋼は、まず各素材金属
を真空あるいは大気圧下で混合溶解し、脱酸後において
実質的に上記組成のフェライト系ステンレス鋼溶湯を得
、次いでこれを造塊し、圧延を施すことにより伝熱管用
の素材となる。
The ferritic stainless steel of the present invention is produced by first mixing and melting various raw material metals under vacuum or atmospheric pressure, and after deoxidizing, obtaining a molten ferritic stainless steel having substantially the above composition, which is then ingot-formed and rolled. By applying this, it becomes a material for heat transfer tubes.

この様にして作られた素材は最終用途に応じて抽伸、熱
処理、フィン加工等を施すことにより、給水加熱器、湿
分分離加熱器伝熱管等として形成される。
The material made in this manner is subjected to drawing, heat treatment, fin processing, etc. depending on the final use, and is formed into feed water heaters, moisture separation heaters, heat exchanger tubes, etc.

以下、実施例により本発明をよ−り具体的に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

(実施例) 第1表に示す組成(表中の数字は重量%を意味する)を
有する4種類の18Cr系のフェライト系ステンレス鋼
をそれぞれ溶解、造塊し、圧延加工を行ない熱処理を施
して、素材試験片を得た。
(Example) Four types of 18Cr ferritic stainless steels having the compositions shown in Table 1 (numbers in the table mean weight percent) were melted and ingot-formed, rolled, and heat treated. , a material test piece was obtained.

(以下余白) かくして得られた素材試験片について、実機湿分分離加
熱器において最も腐食の激しい箇所に相当する条件とし
て温度200℃、湿り度11%、流速30 m/see
の蒸気条件にて腐食試験を実施した。得られた結果を第
1図に示す 第1図に示す結果をみれば、本発明による素材は何れも
耐食性が従来材(比較例)より優れている。特にCu含
有量の最も多い実施例3においては、腐食減量は従来材
の1/2以下で耐食性が大幅に改善されており、Cuの
添加の効果は大であることがわかる。
(Left below) The material test pieces obtained in this manner were tested under conditions corresponding to the most corrosive areas in an actual moisture separation heater: temperature of 200°C, humidity of 11%, and flow rate of 30 m/see.
Corrosion tests were conducted under steam conditions. The obtained results are shown in FIG. 1. Looking at the results shown in FIG. 1, all of the materials according to the present invention have superior corrosion resistance than the conventional materials (comparative examples). In particular, in Example 3, which has the highest Cu content, the corrosion loss was less than 1/2 that of the conventional material, and the corrosion resistance was significantly improved, indicating that the effect of adding Cu is significant.

上記実施例においては、材料は金属地肌のままで評価し
たものであるが、ブレフィルミング処理を施せば更に耐
食性が向上するのはもちろんのことであり、製造方法は
特に制限されるものではな%N。
In the above examples, the material was evaluated with its bare metal surface, but it goes without saying that the corrosion resistance can be further improved by applying a bleed film treatment, and the manufacturing method is not particularly limited. %N.

〔発明の効果〕〔Effect of the invention〕

上述したように、本発明によれば比較的安価な元素のわ
ずかな添加により、従来の材料に比べて耐食性が大幅に
改善されたフェライト系ステンレス鋼が与えられる。こ
のため、給水加熱器、湿分分離加熱器等の伝熱管に用い
れば、従来材で有しているすぐれた耐SCC性、低Co
に併せて給水中のFeグラッドが減少し、原子力発電プ
ラント等の安全性、信頼性が向上するなど、産業上有効
な効果がもたらされる。
As mentioned above, the present invention provides a ferritic stainless steel with significantly improved corrosion resistance compared to conventional materials with the addition of a small amount of relatively inexpensive elements. Therefore, if used for heat exchanger tubes such as feed water heaters and moisture separation heaters, it will have excellent SCC resistance and low Co
At the same time, the amount of Fe granules in the water supply is reduced, which brings about industrially effective effects such as improving the safety and reliability of nuclear power plants and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来材と本発明による材料との腐食試験結果
の比較を示すグラフである。 代理人 弁理士 則 近 憲 佑 同    第子丸   健
FIG. 1 is a graph showing a comparison of corrosion test results between conventional materials and materials according to the present invention. Agent Patent Attorney Noriyuki Chika Yudo Ken Daishimaru

Claims (1)

【特許請求の範囲】[Claims] 重量比でC0.002〜0.030%、Si1.0%以
下、Mn1.0%以下、Cr16.0〜20.0%、M
o0.5%以下、Ni0.6%以下、N0.030%以
下、TiもしくはNb6×(C+N)〜0.75%、C
o0.05%以下、Cu0.01〜0.5%、残部Fe
および付随的不純物からなることを特徴とするフェライ
ト系ステンレス鋼。
Weight ratio: C0.002-0.030%, Si1.0% or less, Mn1.0% or less, Cr16.0-20.0%, M
o0.5% or less, Ni0.6% or less, N0.030% or less, Ti or Nb6×(C+N)~0.75%, C
o0.05% or less, Cu0.01-0.5%, balance Fe
and incidental impurities.
JP16601688A 1988-07-05 1988-07-05 Ferritic stainless steel Pending JPH0219447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16601688A JPH0219447A (en) 1988-07-05 1988-07-05 Ferritic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16601688A JPH0219447A (en) 1988-07-05 1988-07-05 Ferritic stainless steel

Publications (1)

Publication Number Publication Date
JPH0219447A true JPH0219447A (en) 1990-01-23

Family

ID=15823348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16601688A Pending JPH0219447A (en) 1988-07-05 1988-07-05 Ferritic stainless steel

Country Status (1)

Country Link
JP (1) JPH0219447A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301543A (en) * 1989-05-15 1990-12-13 Kobe Steel Ltd Ferritic stainless steel excellent in elution resistance in high-temperature water
WO2008151479A1 (en) * 2007-06-13 2008-12-18 Weidong Chen An ultra-thin flexible tube made of an alloy and the manufacture process thereof
EP3517647A4 (en) * 2016-12-21 2019-12-04 JFE Steel Corporation Ferritic stainless steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02301543A (en) * 1989-05-15 1990-12-13 Kobe Steel Ltd Ferritic stainless steel excellent in elution resistance in high-temperature water
WO2008151479A1 (en) * 2007-06-13 2008-12-18 Weidong Chen An ultra-thin flexible tube made of an alloy and the manufacture process thereof
EP3517647A4 (en) * 2016-12-21 2019-12-04 JFE Steel Corporation Ferritic stainless steel

Similar Documents

Publication Publication Date Title
JPS59176501A (en) Boiler tube
JPH0248614B2 (en) NETSUKANKAKOSEINISUGURERUKOTAISHOKUSEIOOSUTENAITOSUTENRESUKOTOSONOSEIZOHOHO
Debold Duplex stainless steel—Microstructure and properties
JPS5950437B2 (en) Covered arc welding rod for Cr-Mo based low alloy steel
JPH0219447A (en) Ferritic stainless steel
JPS6123259B2 (en)
JPS5914097B2 (en) Ferritic heat-resistant steel with improved toughness
JP2000015447A (en) Welding method of martensitic stainless steel
JPS61551A (en) Heat resistant alloy having superior corrosion resistance in highly oxidizing and sulfurizing corrosive atmosphere
JPH01242759A (en) Ferritic stainless steel
JPS5980755A (en) Chrome-molybdenum steel having superior temper embrittlement resistance at weld heat-affected zone
JPS5913949B2 (en) Welding method for molybdenum-containing, high-chromium ferritic stainless steel
JPS5819741B2 (en) Austenitic stainless steel with excellent stress corrosion cracking resistance and weldability in high-temperature pure water
JPS6376789A (en) Submerged arc welding wire for 9cr-mo steel
JPH02145752A (en) Ferritic stainless steel
JPS6115147B2 (en)
JPH0375278B2 (en)
JPS62297440A (en) Austenitic stainless steel having superior pitting corrosion resistance
JPS5943848A (en) Ferritic stainless steel
JP2583114B2 (en) Low carbon Cr-Mo steel sheet with excellent weld cracking resistance
JPH06128697A (en) Ferritic stainless steel
JPS61106747A (en) Martensitic stainless steel for oil well
JPS6039118A (en) Manufacture of austenitic stainless steel containing boron and having superior resistance to intergranular corrosion and intergranular stress corrosion cracking
JPS582268B2 (en) Stainless steel pipe with excellent workability and heat resistance
JPS61123496A (en) Pressure vessel excelient in corrosion resistance and peeling crack resistance due to hydrogen