JPH02193111A - Fabry-perot type optical filter - Google Patents

Fabry-perot type optical filter

Info

Publication number
JPH02193111A
JPH02193111A JP1186889A JP1186889A JPH02193111A JP H02193111 A JPH02193111 A JP H02193111A JP 1186889 A JP1186889 A JP 1186889A JP 1186889 A JP1186889 A JP 1186889A JP H02193111 A JPH02193111 A JP H02193111A
Authority
JP
Japan
Prior art keywords
mirrors
optical filter
cell
fabry
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1186889A
Other languages
Japanese (ja)
Inventor
Yoji Fujii
藤井 洋二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1186889A priority Critical patent/JPH02193111A/en
Publication of JPH02193111A publication Critical patent/JPH02193111A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the Fabry-Perot type optical filter with small size and stably operated, capable of enlarging a passing wavelength variable range by constituting a cell of two pieces of mirrors for constituting a resonance circuit, and controlling a temperature of a substance packed in the cell. CONSTITUTION:On the inside surfaces of two pieces of substrates 1a, 1b placed so as to be opposed to each other, mirrors 2a, 2b having a high reflection factor are provided. By these mirrors 2a, 2b and a spacer 3, a cell 4 being a closed space is formed, it is packed with a thermo-optical effect substance 5, and also, a heater 6 being a temperature control means for heating it is provided. In such a state, when a temperature of the substance 5 in the cell is varied by a temperature control means 6, a resonance condition of a light beam which is made incident roughly vertically on one of two pieces of mirrors, and wavelength of a light beam which passes through an optical filter is varied. In such a way, the optical filter becomes smaller in size and stably operated, and its passing wavelength can be varied to a comparatively large range.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、通過波長を可変としたファブリ・ペロー形光
フィルタに関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a Fabry-Perot type optical filter with variable transmission wavelength.

〈従来の技術〉 通過波長を可変としたファブリ・ペロー形光フィルタの
従来の例としては、共通のベース上に2枚のミラーを対
向して平行に配置し、ねじ式若しくはピエゾ式の微動装
置を介して2枚のミラー間の間隔を変えることにより、
通過波長を可変とするものが挙げられる。
<Prior art> A conventional example of a Fabry-Perot optical filter with a variable transmission wavelength consists of two mirrors arranged in parallel and facing each other on a common base, and a screw-type or piezo-type fine adjustment device. By changing the distance between the two mirrors via
One example is one in which the passing wavelength is variable.

〈発明が解決しようとする課題〉 しかしながら、前述したような形式の従来のファブリ・
ペロー形光フィルタでは、2枚のミラーが個別部品であ
るため、温度や振動などの影響でそのアライメントが狂
いやすく、また、ミラーを移動するための微動装置の寸
法が比較的大きいので、小形に構成できないという問題
がある。
<Problem to be solved by the invention> However, the conventional fabrication process as described above
In the Perot type optical filter, since the two mirrors are separate parts, their alignment is easily lost due to the effects of temperature, vibration, etc. Also, the fine movement device for moving the mirrors is relatively large, so it can be made smaller. The problem is that it cannot be configured.

そこで、本発明者らは、電気光学効果を有する誘電体平
行平板の対向する2つの平面上に、共振回路を構成する
2枚のミラーを設け、上記誘電体平行平板に電界を印加
してその屈折率を変化させることにより、通過波長を可
変としたファブリ・ペロー形光フィルタを先に発明した
(特願昭63−198903号)。
Therefore, the present inventors provided two mirrors constituting a resonant circuit on two opposing planes of a dielectric parallel plate having an electro-optical effect, and applied an electric field to the dielectric parallel plate to He first invented a Fabry-Perot optical filter in which the wavelength of transmission can be varied by changing the refractive index (Japanese Patent Application No. 198903/1983).

このファブリ・ペロー形光フィルタハ、可動部を有さな
いので上記問題点を解決することはできるが、通過波長
の可変範囲がかなり小さいという問題がある。例えば、
通過波長が1.3μm程度である、100μm厚程度の
ニオブ酸リチウムからなる誘電体平行平板を用いたファ
ブリ・ペロー形光フィルタにおいては、1 kV程度の
電圧を加えても、通過波長が35 pm程度しか変化し
ないという問題がある。
This Fabry-Perot optical filter does not have a movable part, so it can solve the above problems, but it has the problem that the variable range of the passing wavelength is quite small. for example,
In a Fabry-Perot optical filter using dielectric parallel plates made of lithium niobate with a thickness of about 100 μm and which has a passing wavelength of about 1.3 μm, even when a voltage of about 1 kV is applied, the passed wavelength is 35 pm. The problem is that it only changes in degree.

本発明はこのような事情に鑑み、小形且つ安定であり、
その通過波長を比較的広範囲に変化する乙とができるフ
ァブリ・ペロー形光フィルタを提供することを目的とす
る。
In view of these circumstances, the present invention is small and stable,
An object of the present invention is to provide a Fabry-Perot optical filter that can change its passing wavelength over a relatively wide range.

〈課題を解決するための手段〉 前記目的を達成する本発明にかかるファブリ・ペロー形
光フィルタは、2枚の高反射率ミラーを相対向して平行
に配置することにより共振回路を構成し、上記ミラーの
何れか一方にほぼ垂直に入射した光のうち共振条件を満
足する波長の光のみを通過させ、他の波長を有する残り
の光を通過させないファブリ・ペロー形光フィルタにお
いて、上記2枚のミラーでセルを形成すると共に該セル
内に光学的に透明で等方的な物質を有し、且つ、当該物
質を加熱若しくは冷却することによりその屈折率を変化
させて共振条件を変える温度制御手段を具備することを
特徴とする。
<Means for Solving the Problems> The Fabry-Perot optical filter according to the present invention that achieves the above object constitutes a resonant circuit by arranging two high-reflectance mirrors facing each other in parallel, In the Fabry-Perot optical filter, which passes only the light with a wavelength that satisfies the resonance condition among the light that is almost perpendicularly incident on one of the mirrors, and does not pass the remaining light with other wavelengths, the above two filters are used. Temperature control that forms a cell with mirrors, has an optically transparent and isotropic substance within the cell, and changes the refractive index by heating or cooling the substance to change the resonance conditions. It is characterized by comprising means.

く作   用〉 前記構成において、温度制御手段により2枚のミラーで
形成されたセル内の物質の温度を変化させると2枚のミ
ラーの何れか一方にほぼ垂直に入射する光の共振条件が
変化する。
Effect> In the above configuration, when the temperature control means changes the temperature of the substance in the cell formed by the two mirrors, the resonance condition of light that is almost perpendicularly incident on either of the two mirrors changes. do.

よって、これにより通過波長、すなわち当該光フィルタ
を通過する光の波長が変化される。
Therefore, this changes the passing wavelength, that is, the wavelength of the light that passes through the optical filter.

〈実 施 例〉 以下、本発明の好適な実施例を図面を参照しながら詳細
に説明する。
<Embodiments> Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、本実施例にかかるファブリ・ペロー形光フィ
ルタの一部を切り欠いた構造図、第2図はその縦断面図
である。両図に示すように、相対向して配置された2枚
の基板1a。
FIG. 1 is a partially cutaway structural diagram of a Fabry-Perot optical filter according to this embodiment, and FIG. 2 is a longitudinal sectional view thereof. As shown in both figures, two substrates 1a are placed facing each other.

1bの内面には高反射率のミラー2a、2bが設けられ
ている。これらミラー2a、2bばスペーサ3を介して
一定間隔を置いて平行に配設されており、これらミラー
2a、2bとスペーサ3とにより密閉された空間である
セル4が形成されている。そして、このセル4内には熱
光学効果物質5が充填されると共に、この熱光学効果物
質5を加熱する温度制御手段であるヒータ6が配設され
ている。
Mirrors 2a and 2b with high reflectivity are provided on the inner surface of 1b. These mirrors 2a, 2b are arranged parallel to each other with a certain distance between them via a spacer 3, and these mirrors 2a, 2b and the spacer 3 form a cell 4, which is a sealed space. The cell 4 is filled with a thermo-optic effect substance 5, and a heater 6 serving as a temperature control means for heating the thermo-optic effect substance 5 is provided.

ここで、基板1a、Ibは、光の透過損失の少ない材料
で形成するのが望ましいが、通常は光学ガラスを用いれ
ばよい。また、ミラー2a、2bとしては、金属ミラー
、屈折率の異なる複数の誘電体膜を積層して形成される
誘電体多層膜ミラーなどを用いることができるが、反射
率と光吸収特性の面から誘電体多層膜ミラーの方が実用
上は有利である。
Here, it is desirable that the substrates 1a and Ib be formed of a material with low transmission loss of light, but usually optical glass may be used. Further, as the mirrors 2a and 2b, metal mirrors, dielectric multilayer mirrors formed by laminating a plurality of dielectric films with different refractive indexes, etc. can be used, but from the viewpoint of reflectance and light absorption characteristics, A dielectric multilayer mirror is more advantageous in practice.

方、スペーサ3の材質は特に制限されないが、好ましく
は熱膨張係数の小さいものがよく、例えばインバーや低
熱膨張係数のガラスを用いればよい。なお、ミラー2a
、2bとスペーサ3との接着は例えば低融点ガラスの粉
を溶かして行えばよい。
On the other hand, the material of the spacer 3 is not particularly limited, but it is preferably a material with a small coefficient of thermal expansion, such as Invar or glass with a low coefficient of thermal expansion. In addition, the mirror 2a
, 2b and the spacer 3 may be bonded, for example, by melting low melting point glass powder.

このようなファブリ・ペロー形光フィルタの共振条件は
、光がミラー2aとミラー2bとの間を1往復したとき
の位相変化量が2πの整数い)倍に等しいことである。
The resonance condition of such a Fabry-Perot optical filter is that the amount of phase change when light makes one round trip between the mirror 2a and the mirror 2b is equal to an integer times 2π.

すなわち、熱光学効果物質5の屈折率をn、Eシー2a
とミラー2bとの間隔をdとすれば、 λ。= 2 n d / m の式でファブリ・ペロー光フィルタの通過波長λ。が決
定される。そこで、本発明では熱光学効果物質5の屈折
率nを変化させることにより、通過波長λ。を可変とし
ている。すなわち、ヒータ6によって熱光学効果物質5
の温度を変えることによりその屈折率nを変化させ、通
過波長λ。を制御するようになっている。
That is, the refractive index of the thermo-optic effect material 5 is n, and the refractive index of the thermo-optic effect substance 5 is
If the distance between the mirror 2b and the mirror 2b is d, then λ. = 2 n d / m is the passing wavelength λ of the Fabry-Perot optical filter. is determined. Therefore, in the present invention, by changing the refractive index n of the thermo-optic effect material 5, the transmission wavelength λ can be adjusted. is variable. That is, the thermo-optic effect material 5 is heated by the heater 6.
By changing the temperature of the refractive index n, the transmitted wavelength λ is changed. is designed to be controlled.

ことて、熱光学効果物質5の温度がToのとき、その屈
折率がn。で、ファブリ・ペロー形光フィルタの通過波
長がλ。。、熱光学効果物質5の温度がT1のとき、そ
の屈折率がnlで、ファブリ・ペロー形光フィルタの通
過波長がλ とすると、 入   =2nd/m λ =2nd/m n、=no(1+k (T、−To) )の関係があり
、 λ。1/λ。。−n 、/ n。
In other words, when the temperature of the thermo-optic effect material 5 is To, its refractive index is n. And the wavelength passed by the Fabry-Perot optical filter is λ. . , when the temperature of the thermo-optic effect material 5 is T1, its refractive index is nl, and the passing wavelength of the Fabry-Perot optical filter is λ, then input = 2nd/m λ = 2nd/m n, = no(1+k (T, −To)), and λ. 1/λ. . -n, /n.

=1+k (T1−To) となる。但し、kは屈折率nの温度係数である。そして
、 八λ=λ ΔT=T とすると、 1+Δλ/λ。。=1十に八T Δλ/λ。。二にΔT の式が導かれる。したがって、熱光学効果物質5の温度
変化によって効率的に通過波長の変化Δλを生じさせる
には、屈折率nの温度係数にの大きな熱光学効果物質5
を用いる必要がある。
=1+k (T1-To). However, k is the temperature coefficient of the refractive index n. Then, if 8λ=λ ΔT=T, then 1+Δλ/λ. . = 10 to 8T Δλ/λ. . Second, the formula for ΔT is derived. Therefore, in order to efficiently cause a change in the transmission wavelength Δλ due to a temperature change in the thermo-optic effect material 5, the thermo-optic effect material 5 must have a large temperature coefficient of refractive index n.
It is necessary to use

したがって、このような理由から、熱光学効果物質5と
しては、1,3−シクロロブ四パン、1,2−ジブロモ
プロパン、アニリン、ニド資ベンゼン、0−トルイジン
などの温度係数kが大きい物質を用いるのが好ましい。
Therefore, for this reason, as the thermo-optic effect substance 5, a substance having a large temperature coefficient k such as 1,3-cyclobutetetpane, 1,2-dibromopropane, aniline, nidobenzene, and 0-toluidine is used. is preferable.

これらの例示物質は何れも−5X 10”−’/℃程度
の屈折率の温度係数kを有している。
All of these exemplified materials have a temperature coefficient k of refractive index on the order of -5 x 10''-'/°C.

これらの物質を熱光学効果物質5とした場合、 ΔT−±206 とすると、 Δλ/^。0〜0.01 となる。これを前述したニオブ酸リチウムからなる誘電
体平板を用いた場合と比べるために、λ。。=1.3μ
mを想定すると、△λヱ±i3nmとなり、本実施例の
通過波長範囲は誘電体平板を用いたファブリ・べ四−形
光フィルタの例に比べて数百倍以上大きい値であること
が認められる。
When these substances are used as thermo-optic effect material 5, and ΔT-±206, Δλ/^. 0 to 0.01. In order to compare this with the case of using a dielectric flat plate made of lithium niobate mentioned above, λ. . =1.3μ
Assuming m, it becomes △λヱ±i3nm, and it is recognized that the passing wavelength range of this example is several hundred times larger than that of an example of a Fabry-Bay type optical filter using a dielectric flat plate. It will be done.

〈発明の効果〉 以上説明したように、本発明では、共振回路を構成する
2枚のミラーでセルを構成して該セル内に充填した物質
の温度制御を行うことによりその屈折率を変化させ、通
過波長を可変とするようにしている。したがって、可動
部がないという理由からも小形且つ安定なものであり、
しかも、熱光学効果による屈折率変化は電気光学効果に
よる屈折率変化と比べても大きいので、通過波長可変範
囲も比較的大きなファブリ・ペロー形光フィルタが実現
できる。
<Effects of the Invention> As explained above, in the present invention, a cell is formed by two mirrors forming a resonant circuit, and the refractive index of the substance is changed by controlling the temperature of the substance filled in the cell. , the passing wavelength is made variable. Therefore, it is small and stable because there are no moving parts.
Moreover, since the refractive index change due to the thermo-optic effect is larger than the refractive index change due to the electro-optic effect, a Fabry-Perot type optical filter with a comparatively large wavelength variable range can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例にかかるファブリ・ペロー形
光フィルタの一部を切り欠いた構造図、第2図はその縦
断面図である。 一 図面中、 la、lbは基板、 2a、2bはミラー 3はスペーサ、 4はセル、 5は熱光学効果物質、 6はヒータである。
FIG. 1 is a partially cutaway structural diagram of a Fabry-Perot optical filter according to an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view thereof. In one drawing, la and lb are substrates, 2a and 2b are mirrors 3 are spacers, 4 is a cell, 5 is a thermo-optic effect material, and 6 is a heater.

Claims (1)

【特許請求の範囲】[Claims] 2枚の高反射率ミラーを相対向して平行に配置すること
により共振回路を構成し、上記ミラーの何れか一方にほ
ぼ垂直に入射した光のうち共振条件を満足する波長の光
のみを通過させ、他の波長を有する残りの光を通過させ
ないファブリ・ペロー形光フィルタにおいて、上記2枚
のミラーでセルを形成すると共に該セル内に光学的に透
明で等方的な物質を有し、且つ、当該物質を加熱若しく
は冷却することによりその屈折率を変化させて共振条件
を変える温度制御手段を具備することを特徴とするファ
ブリ・ペロー形光フィルタ。
A resonant circuit is constructed by arranging two high-reflectance mirrors in parallel and facing each other, and only light of a wavelength that satisfies the resonance conditions among the light that is almost perpendicularly incident on either of the mirrors passes through. In a Fabry-Perot optical filter that does not pass the remaining light having other wavelengths, the two mirrors form a cell, and the cell has an optically transparent isotropic material, A Fabry-Perot optical filter characterized by comprising temperature control means for heating or cooling the substance to change its refractive index and thereby change resonance conditions.
JP1186889A 1989-01-23 1989-01-23 Fabry-perot type optical filter Pending JPH02193111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1186889A JPH02193111A (en) 1989-01-23 1989-01-23 Fabry-perot type optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1186889A JPH02193111A (en) 1989-01-23 1989-01-23 Fabry-perot type optical filter

Publications (1)

Publication Number Publication Date
JPH02193111A true JPH02193111A (en) 1990-07-30

Family

ID=11789702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1186889A Pending JPH02193111A (en) 1989-01-23 1989-01-23 Fabry-perot type optical filter

Country Status (1)

Country Link
JP (1) JPH02193111A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643501A (en) * 1992-04-29 1994-02-18 American Teleph & Telegr Co <Att> Tunable etalon filter
EP1126293A2 (en) * 1999-12-02 2001-08-22 JDS Uniphase Inc. Multiplexing/demultiplexing optical circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643501A (en) * 1992-04-29 1994-02-18 American Teleph & Telegr Co <Att> Tunable etalon filter
EP1126293A2 (en) * 1999-12-02 2001-08-22 JDS Uniphase Inc. Multiplexing/demultiplexing optical circuit
EP1126293A3 (en) * 1999-12-02 2004-02-25 JDS Uniphase Inc. Multiplexing/demultiplexing optical circuit

Similar Documents

Publication Publication Date Title
US5119454A (en) Bulk optic wavelength division multiplexer
US6285504B1 (en) Variable optical filter
US9244266B2 (en) Tunable optical filter and method of manufacture thereof
US20040001258A1 (en) Solid state etalons with low thermally-induced optical path length change
US20120075636A1 (en) Tunable optical filters using cascaded etalons
US20030012250A1 (en) Tunable filter for laser wavelength selection
JP2005157109A (en) Tunable filter
US6486999B1 (en) Using crystalline materials to control the thermo-optic behavior of an optical path
US6901175B2 (en) Tunable wavelength multiplexer
Ilchenko et al. Tunability and synthetic lineshapes in high-Q optical whispering-gallery modes
US4998255A (en) Resonant phase modulator
US6714305B2 (en) Tunable fabry-perot cavity filter and method for making and using the filter
Lequime Tunable thin film filters: review and perspectives
Pinhas et al. Design of fiber-integrated tunable thermo-optic C-band filter based on coated silicon slab
US20110317170A1 (en) Wedge pair for phase shifting
JPH02193111A (en) Fabry-perot type optical filter
JP6484779B1 (en) Tunable filter and optical communication device
JPH1062625A (en) Wavelength filter
JP3031394B2 (en) Transmission wavelength control method
JPS63232386A (en) Fabry-perot interferometer
Wang et al. Design and modeling of asymmetric Fabry-Perot electrooptic modulators containing a polymeric film
EP1687671A1 (en) Polarization-independent electro-optic modulator
JP4616721B2 (en) Gate switch
JPH0720413A (en) Composite optical circuit
Iodice et al. Simple and low-cost technique for wavelength division multiplexing channel monitoring