JPH02192711A - Contracted projection type exposure device - Google Patents

Contracted projection type exposure device

Info

Publication number
JPH02192711A
JPH02192711A JP1011324A JP1132489A JPH02192711A JP H02192711 A JPH02192711 A JP H02192711A JP 1011324 A JP1011324 A JP 1011324A JP 1132489 A JP1132489 A JP 1132489A JP H02192711 A JPH02192711 A JP H02192711A
Authority
JP
Japan
Prior art keywords
reticle
semiconductor wafer
mark
slit
laser beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1011324A
Other languages
Japanese (ja)
Inventor
Toshiya Yamaguchi
俊也 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1011324A priority Critical patent/JPH02192711A/en
Publication of JPH02192711A publication Critical patent/JPH02192711A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To enhance the alignment precision by a method wherein He-Ne laser beams scan the part near the alignment mark of a semiconductor wafer through a reticle and a contraction lens while reflected rays are entered into a photodetector to measure any position slip. CONSTITUTION:He-Ne laser beams 9 irradiate an alignment mark 7 on a semiconductor wafer 6 through a reticle and a contraction lens 4 while reflected rays which are diffracted and scattered enter into a photodetector 8. At this time, when a light emitting part 1 is shifted at specific rate, the laser beams 9 scan the part near the mark 7 from the dark part on the reticle 2 to the other dark part on the opposite side passing through slit part. Then, the center of the the mark 7 is measured by analyzing the signal on the part where the signal is changed by the mark 7 of the laser beams 9 transmitting the slit part. Simultaneously, the center of the slit on the reticle 2 is measured to measure the difference in the centers i.e., the overlapped slip amount of the reticle 2 and the semiconductor wafer 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、縮小投影型露光装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a reduction projection type exposure apparatus.

〔従来の技術〕[Conventional technology]

従来、縮小投影型露光装置において半導体つ工−ハの位
置合わせ(以下アライメントと記す)は、第4図に示す
ように、He−Neレーザ発発光部上り放射したレーザ
光9をハーフミラ−3及び縮小レンズ4を通してステー
ジ5に載置した半導体ウェーハ6の上に設けた回折格子
状の位置合わせマーク7の付近を照射し、回折散乱され
た反射光を縮小レンズ4を通しハーフミラ−3で反射さ
せ、受光部8で検出し、同時にステージ5を動かして位
置合わせマーク7の近傍を走査することにより生已る光
の強度の変化からマーク位置を求めていた。
Conventionally, in a reduction projection type exposure apparatus, the alignment of the semiconductor tool (hereinafter referred to as alignment) is performed by directing the laser beam 9 emitted upward from the He-Ne laser emitting part to the half mirror 3 and The area around the diffraction grating alignment mark 7 provided on the semiconductor wafer 6 placed on the stage 5 is irradiated through the reduction lens 4, and the diffracted and scattered reflected light is reflected by the half mirror 3 through the reduction lens 4. The mark position was determined from the change in the intensity of the light detected by the light receiving unit 8 and simultaneously moved the stage 5 to scan the vicinity of the alignment mark 7.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の縮小投影型露光装置は、レーザ光がレチ
クルを通さない方式のなめ、実際の露光時の光路と異な
り、アライメントずれを生じてしまうという欠点がある
The above-mentioned conventional reduction projection type exposure apparatus has a drawback in that the laser beam does not pass through the reticle, and the optical path differs from that during actual exposure, resulting in misalignment.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の縮小投影型露光装置は、アライメント用レーザ
光発生部と、前記レーザ光発生部がち放射しなレーザ光
をレチクル及び縮小レンズを通して半導体ウェーハの位
置合わせマーク付近を走査した反射光を前記縮小レンズ
を通して受光し前記半導体ウェーハの位置を検出する受
光部とを備えている。
The reduction projection type exposure apparatus of the present invention includes an alignment laser beam generation section, and a laser beam emitted by the laser beam generation section, which scans the vicinity of the alignment mark of the semiconductor wafer through a reticle and a reduction lens, and reduces the reflected light. and a light receiving section that receives light through a lens and detects the position of the semiconductor wafer.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例を示す模式図である。He−
Neレーザ発発光部上り放射されたレーザ光9はレチク
ル2.ハーフミラ−3及び縮小レンズ4を通して半導体
ウェーハ6の表面に設けた回折格子状の位置合わせマー
ク7を照射する。
FIG. 1 is a schematic diagram showing an embodiment of the present invention. He-
The laser beam 9 emitted upward from the Ne laser emitting section is emitted from the reticle 2. A diffraction grating-shaped alignment mark 7 provided on the surface of the semiconductor wafer 6 is irradiated through the half mirror 3 and the reduction lens 4.

半導体ウェーハ6の位置合わせマーク7によって回折散
乱した反射光は、入射光と同じ経路をたどり、ハーフミ
ラ−3で反射されて受光部8に到達する。ここで発光部
1を矢印の方向に一定速度で動かずことにより、レーザ
光9は位置合わせマーク7近傍を走査することができる
The reflected light diffracted and scattered by the alignment mark 7 of the semiconductor wafer 6 follows the same path as the incident light, is reflected by the half mirror 3, and reaches the light receiving section 8. By not moving the light emitting unit 1 at a constant speed in the direction of the arrow, the laser beam 9 can scan the vicinity of the alignment mark 7.

第2図は発光部の位置より見た位置合わせマーク7とレ
チクル上のスリット11及びレーザ光の軌跡10の関係
を示す模式図である。重ね合わせた場合、半導体ウェー
ハ6上の位置合わせマーク7がレチクル2上のスリット
11の中心にくる様に設定されている。レーザ光っけ、
レチクル2上の暗部より走査を開始し、スリット11の
部分を通過して反対側の暗部で走査を終了する。つまり
スリット11の部分でのみ半導体ウェーハ6上に照射さ
れる。
FIG. 2 is a schematic diagram showing the relationship between the alignment mark 7, the slit 11 on the reticle, and the trajectory 10 of the laser beam as seen from the position of the light emitting section. When superimposed, the alignment mark 7 on the semiconductor wafer 6 is set to be in the center of the slit 11 on the reticle 2. Laser light,
Scanning starts from the dark area on the reticle 2, passes through the slit 11, and ends at the dark area on the opposite side. In other words, the semiconductor wafer 6 is irradiated only at the slit 11.

第3図はレーザ光を走査した場合の、受光部8における
信号強度を示した特性図である。信号は大きく3つの部
分に分けられる。まず、レチクル2上暗部を走査中で半
導体ウェーハ6にはレーザ光9が届かず、したがって信
号が全く出ない部分A、スリット11の中ではあるが、
位置合わせマーク7と離れている為回折散乱が起らず信
号がほとんど出ない部分B及び位置合わせマーク7で信
号が大きく変化する部分Cである。位置合わせマーク7
の中心部PはCの部分の信号を解析することにより求め
る事ができる。本発明では同時にレチクル上のスリット
の中心Qを求め、PとQの差つまり半導体ウェーハとレ
チクルの重ね合せずれを直接計測することができる。そ
の場合Qは、BとCを加えた部分の中心より簡単に求め
られる。
FIG. 3 is a characteristic diagram showing the signal intensity at the light receiving section 8 when scanning with laser light. The signal can be roughly divided into three parts. First, while the dark area on the reticle 2 is being scanned, the laser beam 9 does not reach the semiconductor wafer 6, so no signal is output at part A, although it is inside the slit 11.
Part B is far away from the alignment mark 7, so diffraction and scattering does not occur and almost no signal is output, and part C is where the signal changes greatly at the alignment mark 7. Alignment mark 7
The center P of can be found by analyzing the signal of the C portion. In the present invention, the center Q of the slit on the reticle is simultaneously determined, and the difference between P and Q, that is, the misalignment between the semiconductor wafer and the reticle, can be directly measured. In that case, Q can be easily found from the center of the sum of B and C.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、He−Neレーザ光を用
い、レチクル及び縮小レンズを通してレチクルと半導体
ウェーハのアライメントを行なうなめ、従来方法に比べ
て大幅にアライメント精度を向上することができる。
As explained above, the present invention uses a He-Ne laser beam to align the reticle and the semiconductor wafer through the reticle and the reduction lens, so that alignment accuracy can be significantly improved compared to conventional methods.

の軌跡、11・・・スリット、12・・・反射鏡。trajectory, 11...slit, 12...reflector.

Claims (1)

【特許請求の範囲】[Claims] 縮小投影型露光装置において、アライメント用レーザ光
発生部と、前記レーザ光発生部から放射したレーザ光を
レチクル及び縮小レンズを通して半導体ウェーハの位置
合わせマーク付近を走査した反射光を前記縮小レンズを
通して受光し前記半導体ウェーハの位置を検出する受光
部とを備えたことを特徴とする縮小投影型露光装置。
In a reduction projection type exposure apparatus, an alignment laser beam generation section and a laser beam emitted from the laser beam generation section are scanned around an alignment mark on a semiconductor wafer through a reticle and a reduction lens, and the reflected light is received through the reduction lens. A reduction projection type exposure apparatus comprising: a light receiving section that detects the position of the semiconductor wafer.
JP1011324A 1989-01-20 1989-01-20 Contracted projection type exposure device Pending JPH02192711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1011324A JPH02192711A (en) 1989-01-20 1989-01-20 Contracted projection type exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1011324A JPH02192711A (en) 1989-01-20 1989-01-20 Contracted projection type exposure device

Publications (1)

Publication Number Publication Date
JPH02192711A true JPH02192711A (en) 1990-07-30

Family

ID=11774847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1011324A Pending JPH02192711A (en) 1989-01-20 1989-01-20 Contracted projection type exposure device

Country Status (1)

Country Link
JP (1) JPH02192711A (en)

Similar Documents

Publication Publication Date Title
US4566795A (en) Alignment apparatus
JPH06112106A (en) Apparatus and method for focusing of object image as well as apparatus for focusing of mask image
JPH0348706A (en) Position detecting method
JP2890943B2 (en) Position detecting method and position detecting device using the same
US5859439A (en) Apparatus for aligning semiconductor wafer using mixed light with different wavelengths
US4621890A (en) Optical apparatus including two afocal systems
JPH02192711A (en) Contracted projection type exposure device
US4831272A (en) Apparatus for aligning a reticle mark and substrate mark
JPS62140418A (en) Position detector of surface
JPH02191314A (en) Pattern detector
JPS63145929A (en) Infrared temperature measuring apparatus
JP2778231B2 (en) Position detection device
JPH01180405A (en) Inclination detecting method
JPH0412523A (en) Position detector
JPH07104130B2 (en) Alignment device
JPS60180118A (en) Positioning apparatus with diffraction grating
JPS61153502A (en) Height detecting device
JPH08111372A (en) Aligner
KR200144702Y1 (en) Lens focus compensator for semiconductor manufacturing equipment
JPH07123102B2 (en) Projection optics
JPS6327703A (en) Light source apparatus for detecting position
JPS63172905A (en) Method and device for separating diffracted light
JPS62257010A (en) Detection of height
JPH01281725A (en) Wafer position measuring device in wafer exposure device
JPS6361915A (en) Reference signal generating device for position detecting device