JPH02192595A - Ehd heat pipe - Google Patents
Ehd heat pipeInfo
- Publication number
- JPH02192595A JPH02192595A JP894489A JP894489A JPH02192595A JP H02192595 A JPH02192595 A JP H02192595A JP 894489 A JP894489 A JP 894489A JP 894489 A JP894489 A JP 894489A JP H02192595 A JPH02192595 A JP H02192595A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- heat
- liquid
- operating liquid
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007788 liquid Substances 0.000 claims abstract description 44
- 230000005684 electric field Effects 0.000 abstract description 8
- 238000010992 reflux Methods 0.000 abstract description 8
- 238000001704 evaporation Methods 0.000 abstract description 3
- 239000004698 Polyethylene Substances 0.000 abstract description 2
- 229920000573 polyethylene Polymers 0.000 abstract description 2
- 238000009413 insulation Methods 0.000 abstract 1
- 230000032258 transport Effects 0.000 description 16
- 239000012530 fluid Substances 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 230000006866 deterioration Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Landscapes
- Thermal Insulation (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は熱交換器やケーブルの冷却などに用いられるE
HDヒートバイブの長寿命化や熱輸送量の増大などに関
するものである。Detailed Description of the Invention (Industrial Field of Application)
This relates to extending the life of the HD heat vibrator and increasing the amount of heat transport.
(従来技術)
熱交換器や排熱回収、蓄熱装置における熱輸送、或いは
電子機器やケーブルの冷却などに従来使用されているヒ
ートパイプは、内面に同心円状の毛細管質をライニング
し、内部真空中に作動液体を入れた金属封管とよりなる
。そしてその一端を加熱し他端を冷却することにより、
封入作動液体を蒸発させて輸送すべき熱を吸収し、この
蒸気を他面において凝縮させることにより吸収熱を放出
させて熱輸送を行い、またこれと同時に作動液体の低温
部から高温部への還流を毛細管現象を利用して行うよう
にして、全く動力を使用することなく大量の熱輸送を行
わんとするものである。(Prior art) Heat pipes, which are conventionally used for heat exchangers, waste heat recovery, heat transport in heat storage devices, or cooling of electronic equipment and cables, have concentric capillary linings on the inner surface, and operate in an internal vacuum. It consists of a metal sealed tube containing working liquid. By heating one end and cooling the other,
The enclosed working liquid is evaporated to absorb the heat to be transported, and this vapor is condensed on the other surface to release the absorbed heat and transport the heat. The idea is to transport a large amount of heat without using any power by performing reflux using capillary action.
ところでこの場合単位時間当たりの熱輸送量および輸送
速度は、作動液体の性質と還流速度によってほぼ定まる
が、前記のように毛細管現象を作動液体の還流に使用す
る方法では自らなる限度がある。Incidentally, in this case, the amount of heat transported per unit time and the transport speed are approximately determined by the properties of the working liquid and the reflux rate, but as mentioned above, the method of using capillary action for refluxing the working liquid has its own limitations.
そこで作動液体の還流に電気力を利用した所謂EHDヒ
ートパイプ(E HD Heat pipe)が提案
され注目を集めている。このヒートパイプは第1図に示
す断面図のように、金属封管(1)の内部に封管(1)
と同心円状かつ適当な間隔を隔てて複数個の電極(2)
、例えば4個のリボン状電極を等間隔で設けると共に、
電気伝導性の低い作動液体(3)例えばフロンを封入し
たものである。そして各リボン状電極(2)と金属封管
(1)との間に直流電圧Eを印加(図では3個の電極へ
の電圧印加の図示を省略している)することにより、以
下のように動作して熱輸送を行う。Therefore, a so-called EHD heat pipe that uses electric power to circulate the working liquid has been proposed and is attracting attention. As shown in the cross-sectional view shown in Figure 1, this heat pipe has a sealed tube (1) inside a metal sealed tube (1).
multiple electrodes (2) concentrically and spaced apart at appropriate intervals.
For example, four ribbon-shaped electrodes are provided at equal intervals, and
A working liquid (3) with low electrical conductivity, such as fluorocarbon, is sealed therein. Then, by applying a DC voltage E between each ribbon-shaped electrode (2) and the metal sealed tube (1) (the voltage application to the three electrodes is omitted in the figure), the following is achieved. It operates to transport heat.
リボン状電極(2)に直流電圧を印加すると、作動液体
(3)は第1図のように直流電圧にもとづく電界による
電気力により、各電極(2)とこれと対向する金属封管
(1)の内面間に集められる。そして作動液体(3)が
電極(2)(1)間を橋絡すると液面(3a)には外向
きの引出し電気力が作用する。そこで金属封管(1)の
一端を第2図(a)横断面図のように加熱Hし他端を第
2図(b)のように冷却Cすると、蒸発部と凝縮部との
間で第2図(a)とΦ)図のように液面(3a)の形状
が変化し、蒸発部の液面に働く両外向きの引出し力T
evaO方が凝縮部の外向き引出し力Tconより強ま
る( T ova > T con)、このため金属封
管(1)の軸方向に作動液体の移動を生じて還流が行わ
れて熱の輸送が行われる。When a DC voltage is applied to the ribbon-shaped electrodes (2), the working liquid (3) is moved between each electrode (2) and the metal sealed tube (1 ) are collected between the inner surfaces of the When the working liquid (3) bridges the electrodes (2) and (1), an outward drawing electric force acts on the liquid surface (3a). Therefore, when one end of the metal sealed tube (1) is heated H as shown in the cross-sectional view of Fig. 2(a) and the other end is cooled as shown in Fig. 2(b), a As shown in Figure 2 (a) and Φ), the shape of the liquid surface (3a) changes, and the outward pulling force T acts on the liquid surface in the evaporation section.
evaO is stronger than the outward drawing force Tcon of the condensing part (Tova > Tcon), so the working liquid moves in the axial direction of the metal sealed tube (1), reflux occurs, and heat is transported. be exposed.
(解決すべき問題点)
以上のようにEHDヒートパイプは電気力を利用して作
動液体を強制的に還流させるため、従来の毛細管方式に
比べて熱輸送量を大きくできる。(Problems to be Solved) As described above, since the EHD heat pipe uses electric power to force the working liquid to flow back, it is possible to increase the amount of heat transport compared to the conventional capillary tube method.
しかしその反面このEHDヒートバイブでは、■作動液
体の電気伝導度が高いともれ電流による電力損失が増大
し、劣化が著しくなるため、使用できる作動液体は電気
伝導度の低いものに限られる。On the other hand, however, in this EHD heat vibrator, (1) If the working liquid has high electrical conductivity, power loss due to leakage current increases and deterioration becomes significant, so the usable working fluid is limited to one with low electrical conductivity.
■電気伝導度の低い作動液体は熱伝導度の低いものが多
く、熱伝達効果が劣る。■作動液体の劣化と放電の発生
を防ぎ得ないため長期の使用に耐えない。■ドライアウ
ト即ち作動液体の還流の途切れを生じ易いため、安定な
熱輸送の阻害を生じ易い、などの解決されなければなら
ない各種の問題点をもつ。■Many working liquids with low electrical conductivity have low thermal conductivity, resulting in inferior heat transfer effects. ■Unable to withstand long-term use because deterioration of the working fluid and generation of discharge cannot be prevented. (2) There are various problems that must be solved, such as dry-out, that is, interruption of the reflux of the working liquid, which tends to impede stable heat transport.
(発明の目的)
本発明は長寿命化とドライアウトの発生防止と併せて、
従来のヒートパイプより熱輸送量が遥かに大きく、しか
も少ない温度差のもとに効率的な熱輸送が可能なEHD
ヒートバイブの提供を目的としてなされたものである。(Purpose of the invention) The present invention extends the lifespan and prevents dryout.
EHD has a much larger amount of heat transport than conventional heat pipes and is capable of efficient heat transport with small temperature differences.
It was created for the purpose of providing heat vibes.
(問題点を解決すべき本発明の手段)
本発明は前記第1図で説明した電極とこれと対向する管
内面を絶縁被膜により被覆することを特徴とするもので
ある。そしてこれにより電極(2)と管(1)との間に
流れる電流を抑止できるようにして、作動液体(3)の
劣化と放電の発生の阻止を図りうるようにすると同時に
、従来使用が考えられているフロンのような電気伝導度
の低い作動液体のみでなく電気伝導度の高い作動液体も
使用しうるようにしたものである。これにより、水のよ
うに熱伝達特性の優れた作動液体が使用でき、従来のも
のより遥かに大きい量の熱輸送を可能とする長寿命のE
HDヒートパイプの実現を図った。次に実施例により本
発明を説明する。(Means of the Invention to Solve the Problems) The present invention is characterized in that the electrode explained in FIG. 1 and the inner surface of the tube facing the electrode are coated with an insulating coating. This makes it possible to suppress the current flowing between the electrode (2) and the tube (1), thereby preventing the deterioration of the working fluid (3) and the occurrence of discharge, and at the same time making it possible to prevent the current from flowing between the electrode (2) and the tube (1). This makes it possible to use not only working fluids with low electrical conductivity, such as Freon, which is commonly used, but also working fluids with high electrical conductivity. This allows the use of working fluids with excellent heat transfer properties, such as water, and provides a long-life E
We aimed to realize an HD heat pipe. Next, the present invention will be explained with reference to examples.
(実施例)
第3図は本発明の一実施例を示す横断面図、第4図(a
)(b)は本発明による還流作用を説明するために第3
図の一点鎖線の部分でみた縦断面図(第1図と同一符号
は同等部分を示す)である。第3図において(1)は金
属封管、(2)は電極、(3)は作動液体であって、本
発明においては、電極(2)の全面と電極(2)と対向
する金属封管(1)の内面とを絶縁被膜(4)例えばポ
リエチレン膜により被覆したものであって、このように
構成した本発明EHDヒートバイブは次のようにして熱
輸送を行う。電極(2)に従来と同様に直流電圧Eを印
加すると、第4図(a)に点線で示すような電界(5)
を生じ、これにより作動液体(3)の表面と垂直な方向
に図中に実線で示す電気力(6)を発生する。このため
当初電極間の一部にあった作動液体(3)は、第4図(
b)のように電極(2) (1)間を橋絡する。しかし
橋絡した部分では液体(3)内の電界は微弱であって力
は働かないが、電極間に作動液体(3)のない部分があ
ると、第4図(b)中に実線で示すように作動液体(3
)の無い部分の方向に向けて引出し電気力(7)を発生
して作動液体(3)を金属封管(1)の軸方向に移動さ
せ、凝縮部から蒸発部への還流を生じさせて熱輸送が行
われる。(Example) Figure 3 is a cross-sectional view showing an example of the present invention, and Figure 4 (a
)(b) is the third example to explain the reflux effect according to the present invention.
1 is a vertical cross-sectional view taken along the dashed-dotted line in the figure (the same reference numerals as in FIG. 1 indicate the same parts); In Fig. 3, (1) is a metal sealed tube, (2) is an electrode, and (3) is a working liquid. The inner surface of (1) is coated with an insulating coating (4), for example, a polyethylene film, and the EHD heat vibe of the present invention configured in this manner transports heat in the following manner. When a DC voltage E is applied to the electrode (2) as in the conventional case, an electric field (5) as shown by the dotted line in Fig. 4(a) is generated.
, thereby generating an electric force (6) shown by a solid line in the figure in a direction perpendicular to the surface of the working liquid (3). For this reason, the working liquid (3) that was initially located between the electrodes, as shown in Figure 4 (
As in b), bridge the electrodes (2) and (1). However, in the bridged part, the electric field in the liquid (3) is weak and no force is exerted, but if there is a part where there is no working liquid (3) between the electrodes, this is shown by the solid line in Figure 4(b). The working liquid (3
) to generate an electric force (7) in the direction of the part without the part to move the working liquid (3) in the axial direction of the metal sealed tube (1), causing reflux from the condensing section to the evaporating section. Heat transport takes place.
(発明の効果)
従来のEHDヒートパイプでは作動液体(3)の劣化防
止と電極(2)と管(1)間のもれ電流による損失の抑
制の面から、作動液体(3)として電気伝導度の低いフ
ロンなどの使用が考えられているが、本発明のように電
極(2)とこれに対向する管(1)の内面に絶縁被膜(
4)を設ければ、作動液体の電気伝導度に考慮を及ぼす
必要がなくなる。(Effects of the Invention) In conventional EHD heat pipes, electric conduction is used as the working liquid (3) in order to prevent deterioration of the working liquid (3) and suppress loss due to leakage current between the electrode (2) and the tube (1). The use of low-strength fluorocarbons is being considered, but as in the present invention, an insulating coating (
If 4) is provided, there is no need to consider the electrical conductivity of the working liquid.
第 1 表
従って、第1表のように従来使用が考えられているフロ
ンに比べて電気伝導度の遥かに高い液体、例えばフロン
より蒸発潜熱が遥かに高く熱伝導度も高い水の使用が可
能であり、これからフロンに比べて遥かに高い熱輸送量
を得ることができ、しかも少ない温度差で熱輸送できる
ので効率的となる。Table 1 Therefore, as shown in Table 1, it is possible to use liquids that have a much higher electrical conductivity than the fluorocarbons that have been considered for use in the past, such as water, which has a much higher latent heat of vaporization than fluorocarbons and has a higher thermal conductivity. As a result, it is possible to obtain a much higher amount of heat transport than with fluorocarbons, and it is also efficient because it can transport heat with a small temperature difference.
次にフロンを作動液体として用いた場合と、水を作動液
体として用いた場合とについて、EHDヒートパイプの
熱輸送性能を表す指標として用いられているEHD性能
指数N、□。値を示す。従来のEHDヒートパイプにお
いては性能指数としてNEM。=(ε3−1)ε。E/
/”δ1/μが用いられるが、本発明による場の場合に
は液面における電界の方向が異なるためN。D = (
1−1/ε、)ε。・E工・ρ・i、/μで表わされる
。ここで、ρ:液体の密度、l:蒸発潜熱、μ;液体の
粘性係数、ε、;液体の比誘電率、ε。:真空誘電率8
.854 X 10− ’ ”F/m、Ett、Eよ:
液面と並行方向および垂直方向の電界である。Next, the EHD performance index N, □, which is used as an index representing the heat transport performance of the EHD heat pipe, for the case where Freon is used as the working liquid and the case where water is used as the working liquid. Show value. NEM is the figure of merit for conventional EHD heat pipes. =(ε3−1)ε. E/
/”δ1/μ is used, but in the case of the field according to the present invention, the direction of the electric field at the liquid surface is different, so N.D = (
1-1/ε, )ε.・It is expressed as E・ρ・i,/μ. Here, ρ: density of liquid, l: latent heat of vaporization, μ: viscosity coefficient of liquid, ε,; dielectric constant of liquid, ε. :Vacuum permittivity 8
.. 854 X 10-' “F/m, Ett. E:
These are electric fields parallel and perpendicular to the liquid surface.
そこで今E// = EA =10 (KV/ cm)
と仮定し第1表の値からNtHDを求めると、フロン1
13を用いた従来方式ではNEHD =4.7X10’
(w/1ffl)であるに対し、水を作用液体として
用いた本発明ではNEHD =2.5X10’ (W/
cffl)となり、本発明によりヒートパイプに高い熱
輸送性能をもたせうることが判る。So now E// = EA = 10 (KV/cm)
Assuming that, and calculating NtHD from the values in Table 1, Freon 1
In the conventional method using 13, NEHD = 4.7X10'
(w/1ffl), whereas in the present invention using water as the working liquid, NEHD = 2.5X10' (W/1ffl).
cffl), indicating that the present invention can provide a heat pipe with high heat transport performance.
以上に加えて本発明では作動液体として、第1表のよう
にフロンに比べて著しく表面張力が大きい水を用いるこ
とができる。従って作動液体が途切れにくくなりドライ
アウトの発生を防ぎうる。In addition to the above, in the present invention, water, which has a significantly higher surface tension than Freon as shown in Table 1, can be used as the working fluid. Therefore, the working fluid is less likely to be interrupted, and dryout can be prevented from occurring.
また更に本発明では電極が絶縁されていることから作動
液体の劣化や放電の発生がなく長寿命化が期待できる。Furthermore, in the present invention, since the electrodes are insulated, there is no deterioration of the working fluid or occurrence of discharge, and a longer life can be expected.
(1)・・・金属封管、 (2)・・・電極、(3a)
・・・液面、 H・・・加熱、(4)・・・絶縁被膜、
(5)・・・電界、(7)・・・引出し電気力。(1)...metal sealed tube, (2)...electrode, (3a)
...Liquid level, H...Heating, (4)...Insulating coating,
(5)...Electric field, (7)...Extraction electric force.
(3)・・・作動液体、 C・・・冷却、 (6)・・・電気力、(3)... working liquid, C...Cooling, (6)...Electric force,
Claims (1)
前記管体間に直流電圧を印加し、これにより発生する電
気力により内封作動液体を還流するようにしたEHDヒ
ートパイプにおいて、前記電極とこれと対向する前記管
体内面を絶縁膜により被覆したことを特徴とするEHD
ヒートパイプ。In an EHD heat pipe, a DC voltage is applied between a plurality of electrodes provided concentrically at intervals within the tube and the tube, and the electric force generated thereby causes the internal working liquid to flow back, An EHD characterized in that the electrode and the inner surface of the tube facing the electrode are coated with an insulating film.
heat pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP894489A JPH02192595A (en) | 1989-01-18 | 1989-01-18 | Ehd heat pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP894489A JPH02192595A (en) | 1989-01-18 | 1989-01-18 | Ehd heat pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02192595A true JPH02192595A (en) | 1990-07-30 |
Family
ID=11706781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP894489A Pending JPH02192595A (en) | 1989-01-18 | 1989-01-18 | Ehd heat pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02192595A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013504730A (en) * | 2009-09-14 | 2013-02-07 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Heat exchange device with confined convection boiling and improved efficiency |
CN105486134A (en) * | 2015-12-23 | 2016-04-13 | 合肥联宝信息技术有限公司 | Electric charge power heat pipe |
WO2018161462A1 (en) * | 2017-03-08 | 2018-09-13 | 华为技术有限公司 | Flat plate heat pipe, micro-channel heat dissipation system and terminal |
-
1989
- 1989-01-18 JP JP894489A patent/JPH02192595A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013504730A (en) * | 2009-09-14 | 2013-02-07 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Heat exchange device with confined convection boiling and improved efficiency |
CN105486134A (en) * | 2015-12-23 | 2016-04-13 | 合肥联宝信息技术有限公司 | Electric charge power heat pipe |
WO2018161462A1 (en) * | 2017-03-08 | 2018-09-13 | 华为技术有限公司 | Flat plate heat pipe, micro-channel heat dissipation system and terminal |
CN108885066A (en) * | 2017-03-08 | 2018-11-23 | 华为技术有限公司 | Flat-plate heat pipe, microchannel cooling system and terminal |
CN108885066B (en) * | 2017-03-08 | 2020-09-25 | 华为技术有限公司 | Flat heat pipe, micro-channel heat dissipation system and terminal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6010800A (en) | Method and apparatus for transferring heat generated by a battery | |
WO2016127579A1 (en) | Heat radiation shielding device and terminal | |
US3852806A (en) | Nonwicked heat-pipe cooled power semiconductor device assembly having enhanced evaporated surface heat pipes | |
US9746248B2 (en) | Heat pipe having a wick with a hybrid profile | |
US3543841A (en) | Heat exchanger for high voltage electronic devices | |
JP2008091884A (en) | Cooling device for electrical operating means | |
US3746081A (en) | Heat transfer device | |
JP2009200467A (en) | Conduction cooled circuit board structure | |
US3955042A (en) | Cooling of power cables by a closed-cycle evaporation-condensation process | |
Shi et al. | Performance test of an ultra-thin flat heat pipe with a 0.2 mm thick vapor chamber | |
Shen et al. | Waste heat recovery in an oscillating heat pipe using interfacial electrical double layers | |
US6409975B1 (en) | Electrohydrodynamic induction pumping thermal energy transfer system and method | |
EP2704157A1 (en) | Electrical insulator bushing | |
Shaeri et al. | Thin hybrid capillary two-phase cooling system | |
US4260014A (en) | Ebullient cooled power devices | |
Gukeh et al. | Low-profile heat pipe consisting of wick-lined and non-adiabatic wickless wettability-patterned surfaces | |
JPH02192595A (en) | Ehd heat pipe | |
US3360035A (en) | Vapor cooling system having means rendering a flow of liquid therein electrically nonconductive | |
Avenas et al. | Thermal analysis of thermal spreaders used in power electronics cooling | |
US20140307360A1 (en) | Immersion cooled capacitor for power electronics convertor | |
US7004238B2 (en) | Electrode design for electrohydrodynamic induction pumping thermal energy transfer system | |
WO2022228767A1 (en) | Cooling apparatus for a medium voltage switchgear | |
JPH04196154A (en) | Semiconductor cooling device | |
EP3588707A1 (en) | A two-phase cooling device for an encapsulated electrical device | |
KR20050121128A (en) | A heat pipe |