JPH02192419A - Oxide superconductor composition - Google Patents

Oxide superconductor composition

Info

Publication number
JPH02192419A
JPH02192419A JP1012583A JP1258389A JPH02192419A JP H02192419 A JPH02192419 A JP H02192419A JP 1012583 A JP1012583 A JP 1012583A JP 1258389 A JP1258389 A JP 1258389A JP H02192419 A JPH02192419 A JP H02192419A
Authority
JP
Japan
Prior art keywords
phase
oxide
oxide superconductor
composition
superconductor composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1012583A
Other languages
Japanese (ja)
Inventor
Yuji Iino
祐二 飯野
Saburo Nagano
三郎 永野
Gentaro Kaji
源太郎 梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1012583A priority Critical patent/JPH02192419A/en
Publication of JPH02192419A publication Critical patent/JPH02192419A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To increase formation of high Tc phase and to shorten calcination time by partially replacing Bi and Sr of Bi-Sr-Ca-Cu-O-based oxide with Pb as shown by a given formula and further adding one or more of Mg, B, Ba, K and Zn to the oxide. CONSTITUTION:This oxide superconductor composition comprises a Bi-Sr-Ca-Cu- O-based oxide consisting of an oxide shown by the formula (x is 0.2-0.6). The oxide is blended with 0.15-1mol% one or more of Mg, B, Ba, K and Zn. The composition has further improved formation ratio of high Tc phase and extremely shortened calcination time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、B i−8r−Ca−Cu−0系酸化物超電
導体組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a B i-8r-Ca-Cu-0 based oxide superconductor composition.

(従来の技術) 現在、超電導体としては、NbTi、Nb、Snで代表
される金属系超電導体が実用化されているが、これらの
臨界温度(Tc・・・超電導状態になる温度)は20K
(絶対温度、以下同様)程度である。
(Prior art) Metal-based superconductors represented by NbTi, Nb, and Sn are currently in practical use as superconductors, but their critical temperature (Tc...the temperature at which they become superconducting) is 20K.
(absolute temperature, the same applies hereafter).

亦、近年、 Physical Revev Lett
ers 58(197g) pp90g−910に於い
て、77にで超電導現象を示すアルカリ土類元素及び酸
化鋼から成る複合酸化物超電導体が報告され、高価な液
体ヘリウムから安価な液体窒素温度での使用が可能とな
った。更に、Jap、J、Appl、Latters 
27(1988) L209で、Tcが110K及び8
0にであるB i−3r−Ca−Cu−0系の酸化物超
電導体が報告され注目を集めるところとなった。
In addition, in recent years, Physical Revev Lett
ers 58 (197g) pp90g-910, a composite oxide superconductor consisting of alkaline earth elements and oxidized steel that exhibits superconductivity was reported in 77, and it was used at temperatures ranging from expensive liquid helium to inexpensive liquid nitrogen. became possible. Additionally, Jap, J., Appl., Latters.
27 (1988) L209, Tc is 110K and 8
A B i-3r-Ca-Cu-0 based oxide superconductor, which has a B i-3r-Ca-Cu-0 structure, was reported and attracted attention.

(発明が解決しようとする課題) 然し乍ら、上記B i−8r−Ca−Cu−Off酸化
物超電導体を焼結体(バルク体)として製造する場合、
Tc=110にの相と80にの相とが混在して来る為、
110に相の単相化が非常に困難であると云う問題点が
あった。因みに、現在知られているこれらの相は、 110に相がB l 2S r zCa 2Cu 30
10+δ、80に相がB l 2 S r’ 2 Ca
 I Cu z Os+sとされている。又B l 2
S r zCa zCu 3010.5は、一般に行な
われている酸化性雰囲気での焼成法では、得られる焼結
体の反磁性磁化率が非常に小さく、焼結体中のTc=1
10に相の含有率が小さなものしか得られていないのが
実状であった。
(Problems to be Solved by the Invention) However, when producing the above Bi-8r-Ca-Cu-Off oxide superconductor as a sintered body (bulk body),
Since the phase at Tc=110 and the phase at Tc=80 are mixed,
110 had a problem in that it was extremely difficult to convert the phase into a single phase. Incidentally, these currently known phases are: 110 and B l 2S r zCa 2Cu 30
10+δ, the phase at 80 is B l 2 S r' 2 Ca
It is said that I Cu z Os+s. Also B l 2
When S r zCa zCu 3010.5 is fired in a commonly used oxidizing atmosphere, the diamagnetic susceptibility of the resulting sintered body is extremely small, and Tc in the sintered body is 1.
In reality, only those with a small phase content of 10% were obtained.

(発明の目的) 本発明は、上記に鑑みなされたもので、上記のBi  
Sr Ca  Cu  O系酸化物超電導体22231
G+δ のT、c=110に相を増大させるべく鋭意研究した結
果、Bi及びSrの一部をpbで置換し、更にMg、B
、Ba、K及びZnを適当量含有させることがTc=1
10に相の増大に極めて有効で且つ短時間での焼成が可
能となることを知見し、ここに本発明を提供せんとする
ものである。
(Object of the invention) The present invention has been made in view of the above, and the present invention has been made in view of the above.
Sr Ca Cu O-based oxide superconductor 22231
As a result of intensive research to increase the phase to T of G+δ, c=110, some of Bi and Sr were replaced with pb, and further Mg, B
, Ba, K and Zn in appropriate amounts is Tc=1.
The inventors have found that this method is extremely effective in increasing the phase size and can be fired in a short period of time, and the present invention is therefore intended to be provided here.

(課題を解決する為の手段) 上記目的を達成する本発明の酸化物超電導体組成物は、
組成式が Bi   Pb  Sr    Ca  Cu  02
−x   x   2−x/2  2  3 10+δ
(但し、0.2≦X≦0.6) で表される酸化物であって、該酸化物がMg、B、Ba
、K及びZnから選ばれた少なくとも1種をを0.15
〜1.0モル%含有することを特徴とするものである。
(Means for Solving the Problems) The oxide superconductor composition of the present invention that achieves the above objects is
The composition formula is Bi Pb Sr Ca Cu 02
-x x 2-x/2 2 3 10+δ
(However, 0.2≦X≦0.6), and the oxide is Mg, B, Ba
, at least one selected from K and Zn at 0.15
It is characterized by containing ~1.0 mol%.

ここで、0.2≦X≦0.6としたのは、Xが0.2未
満の場合、焼結速度が遅くなり高Tc相、即ちT c 
= 110 K相の生成が少なくなり、またXが0.6
を超える場合、Ca、PbO4等の不純物が生成しTc
やJc(臨界電流密度)が大きく低下する傾向となるか
らである。
Here, the reason for setting 0.2≦X≦0.6 is that when X is less than 0.2, the sintering rate becomes slow and a high Tc phase occurs
= 110 The generation of K phase is reduced and X is 0.6
If it exceeds Tc, impurities such as Ca and PbO4 will be generated.
This is because the current density and Jc (critical current density) tend to decrease significantly.

又、Mg、B、Ba、K及びZnの含有率を0゜15〜
1.0モル%としたのは、0.15モル%未満の場合は
系の焼成温度が高くなり、それに伴い安定なCa2Pb
O4の増加をまねくことになり、1.0モル%を超える
と粒界に常伝導相が増加しTcを低下させるからである
In addition, the content of Mg, B, Ba, K and Zn is 0°15~
The reason for setting it to 1.0 mol% is that if it is less than 0.15 mol%, the firing temperature of the system will be high, and accordingly, stable Ca2Pb
This is because if it exceeds 1.0 mol %, the normal conductive phase will increase at the grain boundaries and Tc will decrease.

(作用) 上記構成の酸化物超電導体は、各構成元素の酸化物或い
は炭酸化物を所望量秤量して混合し、これを焼成する所
謂酸化物焼結法によって主に生成されるが、この時、B
i及びSrサイトの一部がpbにより置換され、これに
より反応が促進されてT c = 110 K相が多く
生成される。又、Mg。
(Function) The oxide superconductor having the above structure is mainly produced by the so-called oxide sintering method in which desired amounts of oxides or carbonates of each constituent element are weighed and mixed and then fired. , B
Some of the i and Sr sites are replaced by pb, which promotes the reaction and produces a large amount of T c = 110 K phase. Also, Mg.

B、Ba、に或いはZnの存在が反磁性磁化率に大きく
影響し、粒成長を促進する。その結果、Tc=110に
相の生成率が一層向上し、焼成時間が大幅に短縮される
。このような特性は1反応性スパッタ法或いは蒸着法に
於いても充分予想されるところである。
The presence of B, Ba, or Zn greatly affects the diamagnetic susceptibility and promotes grain growth. As a result, the phase formation rate is further improved to Tc=110, and the firing time is significantly shortened. Such characteristics can be fully expected in one-reactive sputtering or vapor deposition.

(実施例) 次に実施例について述べる。(Example) Next, an example will be described.

(1)Bi203、SrCO3、CuO及びpb。(1) Bi203, SrCO3, CuO and pb.

等の構成金属の酸化物或いは炭酸化物粉末をB” 1.
66PbO,34Sr1.83°a2°u30to+ 
6” ”となるようなモル比で秤量配合し、これを75
0〜810℃で仮焼し、更に粉砕・仮焼を繰り返し平均
粒径5μmで上記組成式(串)の仮焼粉末を得た。これ
を組成物■とする。
1. Oxide or carbonate powder of constituent metals such as
66PbO, 34Sr1.83°a2°u30to+
Weigh and mix in a molar ratio such that the ratio is 75
Calcination was carried out at 0 to 810°C, and further pulverization and calcining were repeated to obtain a calcined powder having an average particle size of 5 μm and having the above composition formula (skewer). This is referred to as composition (2).

(2)上記組成物■に、MgO,B、O,、BaC01
、K、O及びZnOを夫々所定量添加して混合し、所望
形状に成型した後大気中810〜860℃で焼成した。
(2) In the above composition (■), MgO, B, O,, BaC01
, K, O, and ZnO were added and mixed in predetermined amounts, molded into a desired shape, and then fired in the air at 810 to 860°C.

(3)上記(2)で得た焼結体について、アルキメデス
法により比重を、電気抵抗を測定してTc(mid)を
定め、交流磁化率測定法により超電導体比率(Tc=1
10に相の比率)を測定した。
(3) Regarding the sintered body obtained in (2) above, the specific gravity was measured by the Archimedes method, the electrical resistance was determined to determine Tc (mid), and the superconductor ratio (Tc = 1
The ratio of phases to 10) was measured.

その結果を第1表に示す。The results are shown in Table 1.

(以下余白) 但し、第1表中■′■及び■は、夫々上記と同じ条件で
合成した B l 2S r 2Ca 2Cu 3010+a  
   ”’■2B l h9P b o、t S r’
 1.9sc a 2Cu 30y”’■B l 1.
3P b o、7S r 1.ssc a 2Cu 3
0y”’■である。また各添加元素の添数字は組成物■
及び■′に対するモル%を表す。
(The following are blank spaces) However, ■'■ and ■ in Table 1 are B l 2S r 2Ca 2Cu 3010+a synthesized under the same conditions as above, respectively.
”'■2B l h9P b o,t S r'
1.9sc a 2Cu 30y'''■B l 1.
3P b o, 7S r 1. ssc a 2Cu 3
0y'''■.The subscript number of each additive element is the composition■
It represents mol% with respect to and ■'.

第1表に於いて、試料NQIのpb無添加ではTc=1
10に相は10vo1%であるのに対し、Bi及びSr
の一部をpbで置換する辱とによりTc=110に相が
28vo1%まで高くなり、焼成時間を160時間まで
延長してもTc=110に相の生成量は35vo1%程
度である。これに対し、本発明に基づきに、Mg、Zn
、Ba、Bを所定量添加したものは80時間の焼成時間
でもTc=110に相がいずれも30vo1%以上とな
り試料&2よりも優れていることが理解される。また、
Tc(mid)においても95に以上が達成された。更
に、比重は、焼結が進行するに従い超電導結晶の粒成長
と共に小さくなる傾向にある。よって第1表によればに
1Mg、Zn、Ba、Bの添加によって、短時間に焼成
でき焼結が充分に進行していることが理解される。
In Table 1, Tc=1 for sample NQI without pb addition.
The phase in 10 is 10vo1%, while Bi and Sr
By substituting a part of PB with PB, the amount of phase produced at Tc=110 increases to 28vol%, and even if the firing time is extended to 160 hours, the amount of phase produced at Tc=110 is about 35vo1%. On the other hand, based on the present invention, Mg, Zn
It is understood that the sample to which predetermined amounts of , Ba, and B were added had a Tc of 110 and a phase of 30 vol 1% or more even after a firing time of 80 hours, which was superior to sample &2. Also,
Tc (mid) of 95 or higher was also achieved. Further, as sintering progresses, the specific gravity tends to decrease as the grains of the superconducting crystal grow. Therefore, according to Table 1, it is understood that by adding 1 Mg, Zn, Ba, and B, sintering can be performed in a short time and the sintering progresses sufficiently.

尚、上記実施例では所謂単純混合系による場合ついて述
べたが、これに限定されず、例えば出発物質を上記と同
様とし、 (i )S r2Cu OX化合物(合成温度900−
950℃)(ii)Ca 2Cu O,化合物(合成温
度880−930℃)(+n ) B iI Cu 1
0 □化合物及びB l o、aP b o、30 g
化合物(合成温度500〜600℃) (IV)B il、8P b O,3Cu to 、化
合物(合成温度550〜600℃)を 予め調製しておき、(i)+(ii)+(in)或いは
(i)+(…)+(tv)の組合せで上記組成になるよ
う混合し、これを所望の形状に成型した後、810〜8
80℃で焼成して得ることも可能である。この場合、5
rCO,及びCaC0,とCu Oとを先に合成するの
で未反応の炭酸塩が残らず、また直接中間物から出発す
るので安定なT c = 80 K相が生成しにくい反
面Tc=110に相が得易く、更に、焼成時間が短縮出
来る、等のメリットがある。
In the above example, a so-called simple mixed system was described, but the case is not limited to this. For example, the starting material is the same as above, and (i) S r2Cu OX compound (synthesis temperature 900-
950°C) (ii) Ca2CuO, compound (synthesis temperature 880-930°C) (+n) B iI Cu 1
0 □ Compound and B lo, aP b o, 30 g
Compound (synthesis temperature 500-600°C) (IV) B il, 8P b O, 3Cu to , compound (synthesis temperature 550-600°C) is prepared in advance, and (i) + (ii) + (in) or (i) + (...) + (tv) is mixed to give the above composition, and after molding it into a desired shape, 810-8
It can also be obtained by firing at 80°C. In this case, 5
Since rCO, CaC0, and CuO are synthesized first, no unreacted carbonate remains, and since the process starts directly from intermediates, it is difficult to form a stable T c = 80 K phase. It has the advantage of being easy to obtain and shortening the firing time.

(発明の効果) 叙上の如く1本発明の酸化物超電導体組成物は。(Effect of the invention) As described above, the oxide superconductor composition of the present invention is as follows.

高Tc相(IIOK相)を多く含み、しかも従来に比べ
短い焼成時間で得られるものであり、超電導物質の用途
開発を推進する上でその実益は極めて大である。
It contains a large amount of high Tc phase (IIOK phase) and can be obtained in a shorter sintering time than conventional ones, so it is extremely beneficial in promoting the development of applications for superconducting materials.

一以上一one or more one

Claims (1)

【特許請求の範囲】[Claims] 1.組成式が Bi_2_−_xPb_xSr_2_−_x_/_2C
a_2Cu_3O_1_0_+_δ(但し、0.2≦x
≦0.6) で表される酸化物であって、該酸化物がMg、B、Ba
、K及びZnから選ばれた少なくとも1種をを0.15
〜1.0モル%含有することを特徴とする酸化物超電導
体組成物。
1. The composition formula is Bi_2_-_xPb_xSr_2_-_x_/_2C
a_2Cu_3O_1_0_+_δ (however, 0.2≦x
≦0.6), the oxide is Mg, B, Ba
, at least one selected from K and Zn at 0.15
An oxide superconductor composition characterized by containing ~1.0 mol%.
JP1012583A 1989-01-20 1989-01-20 Oxide superconductor composition Pending JPH02192419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1012583A JPH02192419A (en) 1989-01-20 1989-01-20 Oxide superconductor composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1012583A JPH02192419A (en) 1989-01-20 1989-01-20 Oxide superconductor composition

Publications (1)

Publication Number Publication Date
JPH02192419A true JPH02192419A (en) 1990-07-30

Family

ID=11809377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1012583A Pending JPH02192419A (en) 1989-01-20 1989-01-20 Oxide superconductor composition

Country Status (1)

Country Link
JP (1) JPH02192419A (en)

Similar Documents

Publication Publication Date Title
US5028585A (en) Superconducting oxide FCC oxide composite compositions and method of making such compositions
KR970002894B1 (en) Superconducting metal oxide compositions
EP0348986B1 (en) Bi-Pb-Sr-Ba-Ca-Cu-O system superconductor
JPH02192419A (en) Oxide superconductor composition
JP3165770B2 (en) Manufacturing method of oxide superconductor
US5378682A (en) Dense superconducting bodies with preferred orientation
JPH06176637A (en) Manufacture of bi oxide superconductive wire
JP3157667B2 (en) Oxide superconductor and manufacturing method thereof
JPH0574531B2 (en)
JP2964258B2 (en) Manufacturing method of oxide superconductor
JP2637617B2 (en) Manufacturing method of superconducting material
JP2789118B2 (en) Oxide superconductor and manufacturing method thereof
JP2523928B2 (en) Oxide superconductor and method for producing the same
JP2854338B2 (en) Copper oxide superconductor
EP0413581B1 (en) Superconducting material
Sastry et al. On the synthesis and structure of single-phase (Bi, Pb) 2 Ca 2 Sr 2 Cu 3 O 10
JP2789103B2 (en) Oxide superconductor and manufacturing method thereof
JPH03197347A (en) Production of oxide superconductor
JP2778104B2 (en) Oxide superconducting material
JP2801806B2 (en) Metal oxide material
KR970010349B1 (en) Bi-high - temperature superconductors composition
JPH06176636A (en) Manufacture of bi oxide superconductor
JPH01160821A (en) Ceramic superconductor and production thereof
Vogt et al. Synthesis and properties of polycrystalline Tl2Ba2CaCu2O (x) and Tl2Ba2Ca2Cu3O (x)
JPH0230618A (en) Oxide high-temperature superconductor