JPH0219240B2 - - Google Patents

Info

Publication number
JPH0219240B2
JPH0219240B2 JP4934782A JP4934782A JPH0219240B2 JP H0219240 B2 JPH0219240 B2 JP H0219240B2 JP 4934782 A JP4934782 A JP 4934782A JP 4934782 A JP4934782 A JP 4934782A JP H0219240 B2 JPH0219240 B2 JP H0219240B2
Authority
JP
Japan
Prior art keywords
weight
starch
coating liquid
parts
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4934782A
Other languages
Japanese (ja)
Other versions
JPS58169595A (en
Inventor
Kojiro Nakada
Yasunobu Endo
Akitomo Terada
Kazumasa Hayashi
Michio Kobori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanwa Starch Co Ltd
Original Assignee
Sanwa Starch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanwa Starch Co Ltd filed Critical Sanwa Starch Co Ltd
Priority to JP4934782A priority Critical patent/JPS58169595A/en
Publication of JPS58169595A publication Critical patent/JPS58169595A/en
Publication of JPH0219240B2 publication Critical patent/JPH0219240B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Paper (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、薄紙、厚紙、板紙などの紙の白色
度、平滑度、隠ぺい力、光沢、インキ受理性など
を改良する紙塗被液の製造方法に関する。さらに
詳しくは、本発明は、高固形分濃度であるにもか
かわらず低粘度の紙塗被液を製造する方法に関す
る。 従来の紙塗被液は主として次の工程を経て調製
される: (1) 酸化澱粉、アミノ燐酸エステル化澱粉、ヒド
ロキシエチル澱粉などの澱粉約30重量%と水約
70重量%とを含有する澱粉スラリーを澱粉糊化
タンクにて70℃以上の温度のもとで約20〜30分
間加熱し糊化して約20〜30重量%濃度の糊化澱
粉を得るか、あるいは、澱粉スラリーを酵素に
より糊化して約10〜35%濃度の酵素変性澱粉を
得ること、 (2) 顔料として例えばクレー70重量部と水30重量
部とを顔料分散タンクにて混合し顔料水性分散
液を調製すること、および (3) 上記糊化澱粉スラリーを塗被液調製槽にて上
記顔料分散液に混合すること。 このような従来法においては、澱粉を糊化する
ために多量の水が必要である。その水のために、
塗被液の固形分濃度が低くなる。過剰の水を塗被
紙の製造過程で除去するには、乾燥用の熱エネル
ギーの消費が大きい。しかも、乾燥設備やその設
置空間が必要であるため、著しく経費を要する。
澱粉を糊化するために行われる加熱もまた著しい
エネルギー消費となる。 澱粉の糊化用水を少量にする試みとして、顔料
の存在下で澱粉を糊化することや酵素で変性する
ことが例えばJames P.Casey、「Pulp and
Paper、Chemistry&Chemical Technology」
vol.2、P.1020―1025(1952)に開示されている。
また、塗被液に用いられる全水量のもとで澱粉を
酵素で変性し変性後の澱粉に顔料を添加すること
も上記文献に開示されている。いづれの方法も多
量の水を加熱せねばならないことおよび使用前に
タンク全体を冷やして澱粉と顔料との温度を下げ
ねばならないという重大な欠点を有する。 本発明の目的は、粉状もしくは顆粒状の乾燥澱
粉を顔料水性分散液に直接添加することにより、
高固体濃度でありながら低粘度に塗被液の製造方
法と提供することにある。本発明のさらに他の目
的は、使用澱粉が顔料の冷水分散液に可溶でかつ
糊化するために糊化用設備も糊化用加熱も不要な
冷水可溶性澱粉有塗被液の製造方法を提供するこ
とにある。本発明のさらに他の目的は、高固形分
濃度の故に紙に塗布するとき乾燥に必要な熱エネ
ルギーが少くてすむ塗被液の製造方法を提供する
ことにある。本発明のさらに他の目的は、調製時
間が著しく短い塗被液の製造方法を提供すること
にある。 以下に本発明を説明する。 本発明の塗被液は、冷水可溶性澱粉を顔料分散
液に粉状または顆粒状粉末のまま直接添加するこ
とにより調製される。澱粉は冷水可溶であるた
め、顔料分散液中の水を利用することができしか
も加温することなく溶解する。粉末を直接添加す
るために、得られる塗被液は高濃度である。高濃
度であるにもかかわらず、この塗被液は流動性に
富みかつ粘度が低い。高濃度でかつ低粘度のゆえ
に、紙への塗布工程において以下のような効果を
生ずる: (a) コーテイング装置のブレード刃先きにおいて
正常な塗被液フローが保たれる; (b) ブレード刃先きの良好なクリーニングが果さ
れる; (c) 原紙層中への選択吸収が防止されるため、条
跡トラブルやロールパターンが塗被紙上に発生
しない; (d) 得られる塗被紙は優れた平滑性、隠ぺい力、
光沢、インキ受理性などを有する;そして (e) 流動性の改良にともなつて、エアーナイフコ
ータで一般に生じやすいモトル(塗りむら)が
改善される。 本発明において用いる冷水可溶性澱粉とはD.
E.20重量%以下の酵素変性澱粉、α化澱粉、焙焼
デキストリン、澱粉誘導体などの冷水可溶となる
ように処理された澱粉をいう。酵素変性澱粉は、
とうもろこし、ワキシー種とうもろこし、馬鈴
薯、甘薯、小麦、米、タピオカ、サゴやその澱粉
誘導体などに由来する澱粉スラリーを所定の濃度
とPHに調整して後、α―アミラーゼやその他の酵
素を用いて液化反応を行い、次いで、加熱(例え
ば、110〜150℃)または酸により酵素を不活性化
し、これを乾燥して得られたものである。この酵
素変性澱粉は、粉状または顆粒状であり、水分20
重量%以下、粗蛋白2.0重量%以下、粗脂肪1.0重
量%以下、粗繊維1.0重量%以下、粗灰分1.0重量
%以下、D.E.20重量%以下、そして30重量%分散
液の粘度が3000cp以下という物性値を有する。
特に、D.E.は8〜12重量%であるものが望まし
い。D.E.が8重量%を下まわると粘度が高くなり
粉未添加することはできても塗被液全体の粘度が
高くなつて紙への塗工が困難となる。D.E.が12重
量%を上まわると澱粉粒子は低分子になるため粘
度が低くなり塗被液の流動性は良くなるが接着強
度が低くなる。 α化澱粉は、前記澱粉もしくはその澱粉誘導体
のスラリーを加熱糊化、乾燥して得られる澱粉を
いう。このうち、ワキシー種とうもろこしからの
α化澱粉は、老化が少なく水に易溶なため、特
に、望ましい。 焙焼デキストリンは、前記澱粉やその澱粉誘導
体をそのままあるいは酸を加えて高温で焙焼して
得られるものをいう。澱粉誘導体は、エーテル
化、エステル化され、あるいはその他薬品と反応
して官能基を形成し、冷水可溶としたものをい
う。 本発明により得られる塗被液は、顔料100重量
部と、冷水可溶性澱粉1〜50重量部と、水とを含
有する。必要に応じて耐水化剤を10重量部以下の
量で使用する。顔料の例としては、塗被紙の製造
に一般に用いられるカオリン、クレー、タルク、
硫酸バリウム、硫酸カルシウム、炭酸カルシウ
ム、サチンホワイト、水酸化アルミニウム、二酸
化チタン、亜硫酸カルシウム、酸化亜鉛などがあ
り、その一種もしくは二種以上が適宜の割合で混
合され用いられる。顔料分散液の調製には分散剤
が用いられ得る。その例としては、顔料の分散剤
として一般に用いられるポリアクリル酸ナトリウ
ム、リグニンスルホン酸ナトリウム、リン酸塩、
オレフイン無水マレイン酸共重合体、クエン酸ナ
トリウム、コハク酸ナトリウムなどがあり、その
一種もしくは二種以上が必要に応じて使用され
る。 耐水化剤としては、例えば、ジアルデヒド化合
物、ポリアルキレンユリアまたはポリアミドユリ
ア、ホルムアルデヒドまたはN―メチロール化合
物もしくはその初期縮合物、エポキシ化合物があ
る。ジアルデヒドは、例えばグリオキザール、グ
ルタールアルデヒドである。ポリアルキレンユリ
アとは、例えば、ジエチレントリアミン、トリエ
チレンテトラミン、テトラエチレンペンタミン、
イミノビスプロピルアミンなどのポリアルキレン
ポリアミンと尿素との脱アンモニア反応によつて
製造される。ポリアミドユリアは、例えば、アジ
ピン酸、フタル酸などのジカルボン酸とポリアル
キレンポリアミンを縮合して得られたポリアミド
と尿素とを反応させることにより製造される。N
―メチロール化合物は、例えば、トリメチロール
メラミン、トリメチロールメラミンのジメチルエ
ーテルなどのメチロール化メラミン;部分アルキ
ル化メチロールメラミン;メチロール化尿素;ジ
メチロールエチレン尿素、ジメチロールグリオキ
シモノユリアなどのメチロール化環状尿素であ
る。その初期縮合体とは、上記N―メチロール化
合物を水溶性が失われない程度にまで縮合して得
られたものである。エポキシ化合物とは、例え
ば、グリセロールポリグリシジルエーテル、トリ
メチルプロパノールポリグリシジルエーテル、ジ
グリセロールポリグリシジルエーテル、ソルビト
ールポリグリシジルエーテルである。 本発明により得られる塗被液は、さらに、合成
樹脂ラテツクスを含有し得る。合成樹脂ラテツク
スは、顔料結合能力、紙との接着力、塗被紙の耐
水性及び光沢などを向上させるものであり、その
例としては、スチレン・ブタジエン共重合体、メ
チルメタアクリレート・ブタジエン共重体などの
ジエン系重合ラテツクス;アクリル酸エステルお
よび/またはメタアクリル酸エステルの重合体ま
たは共重合体などのアクリル系重合体ラテツク
ス;エチレン・酢酸ビニル共重合体などの酢酸ビ
ニル系重合体ラテツクス;あるいはこれら各種重
合体の官能基変性重合体ラテツクスがある。これ
らを単独もしくは二種以上を混合して用いる。 この塗被液は、さらに、一般に用いられる分散
剤、流動変性剤、消泡剤、染料、潤滑剤、耐水化
剤、保水剤などの各種の助剤を含有し得る。 本発明を実施例にもとづきさらに詳述する。 実施例 1 とうもろこし澱粉製造工程のほぼ最終工程にお
ける澱粉乳液をボーメ20度の濃度に調整した。次
いで、消石灰を加えてPHを6〜7に調整した。こ
れにα―アミラーゼ(大和化成、10000ユニツ
ト/g)を対澱粉(無水に換算)に約0.3重量%
添加し、約90℃で加熱糊化し、酵素液化反応を行
つた。酵素液化反応は約90℃で2時間行つた。所
定の酵素液化反応の終了後、125℃まで加圧・加
熱し酵素を不活性化した。得られた酵素変性澱粉
含有の糊液を噴霧乾燥した。ついで、噴霧乾燥粉
体を20メツシユの篩を通して少量の凝塊物を除去
した。生成した酵素変性澱粉の品質および物性値
を第1表に示す。
The present invention relates to a method for producing a paper coating liquid that improves the whiteness, smoothness, hiding power, gloss, ink receptivity, etc. of paper such as thin paper, cardboard, and paperboard. More specifically, the present invention relates to a method of producing a paper coating liquid that has a low viscosity despite a high solids concentration. Conventional paper coating liquids are mainly prepared through the following steps: (1) About 30% by weight of starch such as oxidized starch, aminophosphate starch, hydroxyethyl starch, etc. and about water.
A starch slurry containing 70% by weight is gelatinized by heating in a starch gelatinization tank at a temperature of 70°C or higher for about 20 to 30 minutes to obtain gelatinized starch with a concentration of about 20 to 30% by weight, or Alternatively, starch slurry can be gelatinized with an enzyme to obtain enzyme-modified starch with a concentration of about 10 to 35%; (2) As a pigment, for example, 70 parts by weight of clay and 30 parts by weight of water can be mixed in a pigment dispersion tank to form an aqueous pigment. preparing a dispersion; and (3) mixing the gelatinized starch slurry with the pigment dispersion in a coating liquid preparation tank. In such conventional methods, a large amount of water is required to gelatinize the starch. For that water
The solid content concentration of the coating liquid becomes low. Removal of excess water during the manufacturing process of coated paper consumes a large amount of thermal energy for drying. Moreover, since drying equipment and space for its installation are required, the cost is extremely high.
The heating performed to gelatinize the starch also consumes significant energy. In an attempt to reduce the amount of water required for gelatinizing starch, gelatinizing starch in the presence of pigments or denaturing it with enzymes has been proposed, for example, by James P. Casey, “Pulp and
Paper, Chemistry & Chemical Technology”
Disclosed in vol.2, P.1020-1025 (1952).
The above-mentioned document also discloses that starch is modified with an enzyme in the total amount of water used in the coating liquid and a pigment is added to the modified starch. Both methods have the significant disadvantage that large amounts of water must be heated and the entire tank must be cooled to reduce the temperature of the starch and pigment before use. The purpose of the present invention is to directly add powdered or granular dry starch to an aqueous pigment dispersion.
An object of the present invention is to provide a method for producing a coating liquid having a high solids concentration and a low viscosity. Still another object of the present invention is to provide a method for producing a coating liquid containing cold water soluble starch, in which the starch used is soluble in a cold water dispersion of pigment and gelatinization is performed, so that neither gelatinization equipment nor gelatinization heating is required. It is about providing. Still another object of the present invention is to provide a method for producing a coating liquid that requires less heat energy for drying when applied to paper due to its high solids concentration. Yet another object of the present invention is to provide a method for producing a coating fluid that requires significantly less preparation time. The present invention will be explained below. The coating liquid of the present invention is prepared by directly adding the cold water soluble starch to the pigment dispersion in the form of powder or granules. Since starch is soluble in cold water, the water in the pigment dispersion can be used and it can be dissolved without heating. Due to the direct addition of powder, the resulting coating liquid is highly concentrated. Despite its high concentration, this coating liquid has high fluidity and low viscosity. Due to its high concentration and low viscosity, it produces the following effects in the paper coating process: (a) normal coating liquid flow is maintained at the blade edge of the coating equipment; (b) at the blade edge. (c) Since selective absorption into the base paper layer is prevented, streak troubles and roll patterns do not occur on the coated paper; (d) The resulting coated paper has excellent properties. smoothness, hiding power,
It has good gloss, ink receptivity, etc.; and (e) along with improved fluidity, mottles (uneven coating) that commonly occur with air knife coaters are improved. What is the cold water soluble starch used in the present invention?D.
E.20% by weight or less of enzyme-modified starch, pregelatinized starch, roasted dextrin, starch derivatives, etc. that have been treated to be soluble in cold water. Enzyme-modified starch is
Starch slurry derived from corn, waxy corn, potatoes, sweet potatoes, wheat, rice, tapioca, sago and its starch derivatives is adjusted to a specified concentration and pH, and then liquefied using α-amylase and other enzymes. It is obtained by carrying out a reaction, then inactivating the enzyme by heating (for example, 110 to 150°C) or using an acid, and then drying this. This enzyme-modified starch is in powder or granule form and has a moisture content of 20%
% by weight or less, crude protein 2.0% by weight or less, crude fat 1.0% by weight or less, crude fiber 1.0% by weight or less, crude ash content 1.0% by weight or less, DE 20% by weight or less, and the viscosity of a 30% dispersion is 3000 cp or less. has value.
In particular, it is desirable that the DE content be 8 to 12% by weight. When the DE content is less than 8% by weight, the viscosity increases, and even if no powder is added, the viscosity of the entire coating liquid increases, making it difficult to coat paper. When the DE content exceeds 12% by weight, the starch particles have a low molecular weight, resulting in a low viscosity and improved fluidity of the coating liquid, but a decrease in adhesive strength. Pregelatinized starch refers to starch obtained by heating, gelatinizing, and drying a slurry of the starch or its starch derivative. Among these, pregelatinized starch from waxy corn is particularly desirable because it is less retrograded and easily soluble in water. Roasted dextrin refers to something obtained by roasting the starch or its starch derivative as it is or with the addition of an acid at a high temperature. Starch derivatives are those that have been etherified, esterified, or reacted with other chemicals to form a functional group, making them soluble in cold water. The coating liquid obtained according to the invention contains 100 parts by weight of pigment, 1 to 50 parts by weight of cold water-soluble starch, and water. If necessary, use a waterproofing agent in an amount of 10 parts by weight or less. Examples of pigments include kaolin, clay, talc, commonly used in the manufacture of coated papers,
Examples include barium sulfate, calcium sulfate, calcium carbonate, satin white, aluminum hydroxide, titanium dioxide, calcium sulfite, zinc oxide, etc., and one or more of these are used as a mixture in an appropriate ratio. Dispersants may be used in preparing pigment dispersions. Examples include sodium polyacrylate, sodium lignin sulfonate, phosphate, commonly used as a pigment dispersant,
Examples include olefin maleic anhydride copolymer, sodium citrate, and sodium succinate, and one or more of these may be used as necessary. Examples of the waterproofing agent include dialdehyde compounds, polyalkylene urea or polyamide urea, formaldehyde or N-methylol compounds or their initial condensates, and epoxy compounds. Dialdehydes are, for example, glyoxal and glutaraldehyde. Examples of polyalkylene urea include diethylenetriamine, triethylenetetramine, tetraethylenepentamine,
It is produced by the deammoniation reaction of a polyalkylene polyamine such as iminobispropylamine and urea. Polyamide urea is produced, for example, by reacting a polyamide obtained by condensing a dicarboxylic acid such as adipic acid or phthalic acid with a polyalkylene polyamine and urea. N
-Methylol compounds include, for example, methylolated melamines such as trimethylolmelamine, dimethyl ether of trimethylolmelamine; partially alkylated methylolmelamines; methylolated ureas; methylolated cyclic ureas such as dimethylolethylene urea and dimethylolglyoxymonourea; be. The initial condensate is obtained by condensing the above N-methylol compound to the extent that water solubility is not lost. Examples of the epoxy compound include glycerol polyglycidyl ether, trimethylpropanol polyglycidyl ether, diglycerol polyglycidyl ether, and sorbitol polyglycidyl ether. The coating liquid obtained according to the present invention may further contain a synthetic resin latex. Synthetic resin latex improves pigment binding ability, adhesion to paper, water resistance and gloss of coated paper, and examples include styrene-butadiene copolymer and methyl methacrylate-butadiene copolymer. diene polymer latex such as; acrylic polymer latex such as a polymer or copolymer of acrylic acid ester and/or methacrylic acid ester; vinyl acetate polymer latex such as ethylene/vinyl acetate copolymer; There are functional group-modified polymer latexes of various polymers. These may be used alone or in combination of two or more. This coating liquid may further contain various commonly used auxiliary agents such as dispersants, flow modifiers, antifoaming agents, dyes, lubricants, waterproofing agents, and water retention agents. The present invention will be further explained in detail based on examples. Example 1 A starch emulsion in almost the final step of the corn starch manufacturing process was adjusted to a concentration of 20 degrees Baumé. Then, slaked lime was added to adjust the pH to 6-7. Add α-amylase (Daiwa Kasei, 10,000 units/g) to this at approximately 0.3% by weight based on starch (converted to anhydrous).
The mixture was added and gelatinized by heating at about 90°C to perform an enzyme liquefaction reaction. The enzyme liquefaction reaction was carried out at about 90°C for 2 hours. After the specified enzyme liquefaction reaction was completed, the enzyme was inactivated by pressurizing and heating to 125°C. The resulting paste containing enzyme-modified starch was spray-dried. The spray dried powder was then passed through a 20 mesh sieve to remove a small amount of coagulum. Table 1 shows the quality and physical properties of the produced enzyme-modified starch.

【表】 実施例 (a) 70重量%顔料分散液の調製 顔料としてNo.1カオリン(EMC社製、UW
―90)100重量部と分散剤としてポリアクリル
酸ソーダ0.2重量部をコーレス分散機を用いて
水に分散し、固形分濃度が70重量%の顔料分散
液を調製した。 (b) 塗被液の調製 実施例で調製した顆粒粉末澱粉20重量部を
70重量%カオリン分散液に室温にて撹拌しつつ
直接添加した。得られた混合物を550rpmで20
分間撹拌し糊化した。次いで、カレンダー加工
潤滑剤であるステアリン酸カルシウムを添加
し、さらに30分間熟成して塗被液を調製した。
その組成を以下に示す。 カオリン(UW―90) 100重量部 ポリアクリル酸ソーダ 0.2重量部 デンプン(固形分) 20重量部 ステアリン酸カルシウム 1.5重量部 (c) 塗被紙の製造 上記塗被液を米坪量68g/m2の原紙に、R.D.
S.Laboratory Coating Rodを使用して片面塗
工した。塗工後直ちに熱風乾燥機中で105℃、
3分間乾燥した。由利ロール製スーパーカレン
ダーを使用し、温度55℃、線圧100Kg/cmの条
件で、3回カレンダー処理した。得られた片面
塗被紙を24時間、温度20℃、湿度65%の条件下
で調湿し、塗被紙の性質の測定に供した。結果
を第2表に示す。 (d) 対照塗被液の調製 市販アミノ燐酸エステル化澱粉に水を加え、
95℃にて20分間加熱し溶解させて30重量%濃度
の糊液に調製した。これを30℃に冷却後、70重
量%カオリン分散液に添加して前記(b)と同様の
手順を経て対照塗被液を得た。これを用いて前
記(c)と同様な手順を経て対照塗被紙を得た。結
果を比較例として第2表に示す。 実施例 実施例で得た酵素変性澱粉の顆粒粉末を50℃
の温水に溶かして30重量%濃度の糊液に調製し
た。これを実施例で得た70重量%カオリン分散
液に添加し、実施例と同様にして塗被液を得
た。この塗被液を用いて実施例と同様にして塗
被紙を得た。結果を第2表に示す。 実施例 実施例で得た酵素変性澱粉の顆粒粉末を、あ
らかじめ50℃に加温した実施例の70重量%カオ
リン分散液に撹拌しつつ直接添加し後は実施例
と同様にして塗被液を得た。この塗被液を用いて
実施例と同様にして塗被紙を得た。結果を第2
表に示す。 第2表から明らかなように、実施例、、
は比較例より固形分濃度が高いにもかかわらず
粘度が低く、高剪断流動性が改善されている。保
水性は比較例と同等である。塗被紙の表面強度
が比較例より低い。実施例、、による酵
素変性澱粉の顔料分散液への添加方法のうち、澱
粉を室温の顔料分散液へ直接添加する実施例の
方法が最も合理的で簡便であることがわかる。
[Table] Example (a) Preparation of 70% by weight pigment dispersion No. 1 kaolin (manufactured by EMC, UW
-90) 100 parts by weight and 0.2 parts by weight of sodium polyacrylate as a dispersant were dispersed in water using a Coles disperser to prepare a pigment dispersion with a solid content concentration of 70% by weight. (b) Preparation of coating liquid 20 parts by weight of the granulated starch prepared in the example was added.
It was added directly to a 70% by weight kaolin dispersion at room temperature with stirring. The resulting mixture was heated at 550 rpm for 20
The mixture was stirred for a minute to gelatinize. Next, calcium stearate, which is a calendering lubricant, was added and further aged for 30 minutes to prepare a coating liquid.
Its composition is shown below. Kaolin (UW-90) 100 parts by weight Sodium polyacrylate 0.2 parts by weight Starch (solid content) 20 parts by weight Calcium stearate 1.5 parts by weight (c) Manufacture of coated paper The above coating liquid was applied to On the original paper, RD
One side was coated using S.Laboratory Coating Rod. Immediately after coating, heat in a hot air dryer at 105℃.
Dry for 3 minutes. Calendar treatment was performed three times using a super calender manufactured by Yuri Roll at a temperature of 55° C. and a linear pressure of 100 kg/cm. The resulting single-sided coated paper was conditioned for 24 hours at a temperature of 20°C and a humidity of 65%, and was used to measure the properties of the coated paper. The results are shown in Table 2. (d) Preparation of control coating solution Add water to commercially available aminophosphoric acid ester starch,
The mixture was heated at 95° C. for 20 minutes to dissolve and prepare a paste solution with a concentration of 30% by weight. After cooling this to 30° C., it was added to a 70% by weight kaolin dispersion and the same procedure as in (b) above was carried out to obtain a control coating liquid. Using this, a control coated paper was obtained through the same procedure as in (c) above. The results are shown in Table 2 as a comparative example. Example The enzyme-modified starch granules obtained in the example were heated at 50°C.
A paste solution with a concentration of 30% by weight was prepared by dissolving it in warm water. This was added to the 70% by weight kaolin dispersion obtained in the example to obtain a coating liquid in the same manner as in the example. A coated paper was obtained using this coating liquid in the same manner as in the example. The results are shown in Table 2. Example The enzyme-modified starch granules obtained in the example were directly added to the 70% by weight kaolin dispersion of the example, which had been preheated to 50°C, with stirring, and then the coating liquid was prepared in the same manner as in the example. Obtained. A coated paper was obtained using this coating liquid in the same manner as in the example. Second result
Shown in the table. As is clear from Table 2, Examples,
Although the solid content concentration is higher than that of the comparative example, the viscosity is lower, and the high shear fluidity is improved. Water retention is equivalent to the comparative example. The surface strength of the coated paper is lower than that of the comparative example. It can be seen that among the methods of adding enzyme-modified starch to the pigment dispersion according to Examples, the method of Examples, in which starch is directly added to the pigment dispersion at room temperature, is the most rational and simple.

【表】 実施例 塗被紙の表面強度を向上させるために、接着剤
として澱粉の他にさらに変性スチレン・ブタジエ
ン共重合ラテツクスを併用した。澱粉と該ラテツ
クスとでなる接着剤20重量部を70重量%カオリン
分散液100重量部に対して用いた。酵素変性澱粉
の顆粒粉末を接着剤の全量に対し75〜15重量%の
範囲にわたつて70重量%カオリン分散液に直接添
加した。次いで、該ラテツクスを接着剤の全量に
対し25〜85重量%の範囲にわたつて添加し混合し
た。得られた混合物にステアリン酸カルシウムを
添加した後、アンモニア水でPH9に調整した。希
釈水を加えて固形分濃度50重量%の塗被液を得
た。その組成を以下に示す。
[Table] Example In order to improve the surface strength of coated paper, modified styrene-butadiene copolymer latex was used in addition to starch as an adhesive. 20 parts by weight of an adhesive consisting of starch and the latex was used for 100 parts by weight of a 70% by weight kaolin dispersion. Granular powder of enzyme-modified starch was added directly to the 70% by weight kaolin dispersion in the range of 75-15% by weight based on the total amount of adhesive. Next, the latex was added and mixed in an amount ranging from 25 to 85% by weight based on the total amount of the adhesive. After adding calcium stearate to the resulting mixture, the pH was adjusted to 9 with aqueous ammonia. Dilution water was added to obtain a coating liquid with a solid content concentration of 50% by weight. Its composition is shown below.

【表】 上記塗被液を用い、実施例と同様にして塗被
紙を得た。結果を第3表に示す。対照塗被液は、
実施例の比較例に用いた30重量%アミノ燐酸
エステル化澱粉の糊液を70重量%カオリン分散液
に添加し後は該実施例と同様な手順を通して調
製した。この対照塗被液を用いて、同様に、対照
塗被紙を得た。結果を比較例として第3表に示
す。 第3表から、実施例の塗被液の固形分濃度が
対照とほぼ同一であるにもかかわらず、その粘度
は対照に比較して著しく低いことがわかる。高剪
断流動性も改善され、塗工性も良好である。ラテ
ツクスの使用は保水性を低下せしめ、ラテツクス
の配合比が増加するほどその傾向が大きい。塗被
紙の性質の一つである白紙光沢は対照よりも5〜
10ポイント高く、大巾に改良されている。塗被紙
の印刷適性を示し同時にインキ受理性を評価する
K&Nインキ試験は、対照よりわずかに優れてい
る。印刷光沢はラテツクスの配合割合が50%
[Table] Using the above coating liquid, coated paper was obtained in the same manner as in the examples. The results are shown in Table 3. The control coating liquid was
After adding the 30 wt % aminophosphoric acid starch paste used in the comparative example of the example to the 70 wt % kaolin dispersion, the preparation was carried out in the same manner as in the example. A control coated paper was similarly obtained using this control coating liquid. The results are shown in Table 3 as a comparative example. From Table 3, it can be seen that although the solids concentration of the coating fluids of the Examples is almost the same as that of the Control, the viscosity thereof is significantly lower than that of the Control. High shear fluidity is also improved, and coating properties are also good. The use of latex reduces water retention, and this tendency becomes more pronounced as the blending ratio of latex increases. The white paper gloss, which is one of the properties of coated paper, is 5~5% higher than that of the control.
It is 10 points higher and has been greatly improved. The K&N ink test, which indicates the printability of coated papers and also evaluates ink receptivity, is slightly better than the control. The printing gloss is 50% latex.

【表】 以上において同等である。IGT表面強度および
RI印刷強度はいづれもラテツクスの配合割合が
50%以上において同等である。 実施例 本実施例では、塗被紙の耐水性を改良するべ
く、耐水化剤の効果を検討した。塗被液は、酵素
変性澱粉の顆粒粉末を実施例と同様に70重量%
カオリン分散液に添加し調製した。接着剤として
この澱粉に加えて実施例と同様にラテツクス
(JSR#0692)を用いた。耐水化剤を用いた点が
実施例とは異なる。耐水化剤としてはメラミン
系樹脂(住友化学工業製:スミレツツレジン
#613)を用いた。得られた塗被液の組成は以下
のとおりであつた: カオリン(UW―90) 100重量部 ポリアクリル酸ソーダ 0.2重量部 澱粉(固形分) 10重量部 ラテツクス(JSR#0692) 10重量部 ステアリン酸カルシウム 1.5重量部 メラミン樹脂(スミレツツレジン#613)(耐水
化剤) 5〜15重量% (澱粉に対して) アンモニア水 適量 この塗被液を用いて塗被紙を得、品質の評価を
行つた。その結果を第4表に示す。対照の塗被液
については、耐水化剤メラミン系樹脂(スミレツ
ツレジン#613)を使用したこと以外は実施例
の対照と同じである。対照の塗被液および塗被紙
に関する試験結果は、比較例処法1として第4
表に示される。 実施例 実施例の塗被液の耐水化剤としてのメラミン
系樹脂の代りにエポキシ系樹脂(長瀬化成製:デ
ナコール#PC―1000)を用いた他は、すべて実
施例と同様であつた。結果を第4表に示す。対
照の塗被液および塗被紙に関する試験結果は、比
較例処法2として第4表に示される。 第4表から明らかなように、塗被紙の耐水性は
耐水化剤としてエポキシ系樹脂を用いたとき対照
とほぼ同等である。耐水化剤としてメラミン系樹
脂を用いた場合でも塗工7日後には十分な耐水性
を示す。
[Table] The above are equivalent. IGT surface strength and
The RI printing strength depends on the latex blending ratio.
Equivalent in 50% or more. Example In this example, the effect of a water-resistant agent was investigated in order to improve the water resistance of coated paper. The coating liquid was 70% by weight of enzyme-modified starch granule powder as in the example.
It was prepared by adding it to a kaolin dispersion. In addition to this starch, latex (JSR#0692) was used as an adhesive in the same manner as in the examples. This example differs from the example in that a water resistant agent was used. Melamine resin (Sumitomo Chemical Co., Ltd.: Sumiretsu Resin #613) was used as the water resistant agent. The composition of the resulting coating liquid was as follows: Kaolin (UW-90) 100 parts by weight Sodium polyacrylate 0.2 parts by weight Starch (solid content) 10 parts by weight Latex (JSR#0692) 10 parts by weight Stair Calcium phosphate 1.5 parts by weight Melamine resin (Violet Resin #613) (water resistant agent) 5-15% by weight (based on starch) Ammonia water Appropriate amount Coated paper was obtained using this coating liquid and the quality was evaluated. Ivy. The results are shown in Table 4. The coating liquid for the control was the same as the control for the example except that a melamine-based resin (violet resin #613) was used as a water-resistant agent. The test results for the control coating fluid and coated paper are as follows: Comparative Example Treatment 1
Shown in the table. Example Everything was the same as in Example, except that an epoxy resin (Denacol #PC-1000, manufactured by Nagase Kasei) was used instead of the melamine resin as the water-resistant agent in the coating liquid of Example. The results are shown in Table 4. The test results for the control coating fluid and coated paper are shown in Table 4 as Comparative Example Treatment 2. As is clear from Table 4, the water resistance of the coated paper is almost the same as that of the control when an epoxy resin is used as the water resistance agent. Even when a melamine-based resin is used as a water-resistant agent, sufficient water resistance is exhibited 7 days after coating.

【表】 実施例 および 塗被液の接着剤の量および調製時に必要な希釈
水の効果について検討した。 実施例では、実施例の酵素変性澱粉の顆粒
粉末35重量%と実施例で用いたラテツクス65重
量%とでなる接着剤15重量部をカオリン100重量
部に対して用いた。塗被液の調製は、この澱粉を
実施例と同様に70重量%カオリン分散液に直接
添加し、次いで実施例の処法5と同様に行つ
た。次いで、希釈水を添加して固形分濃度を62重
量%とした塗被液と、希釈水を全く用いないで
67.7重量%の高固形分濃度を示す塗被液とを得
た。これら塗被液の組成は以下のとおりであつ
た: カオリン(UW―90) 100重量部 ポリアクリル酸ソーダ 0.2重量部 澱 粉 ラテツクス} 15重量部 ステアリン酸カルシウム 1.5重量部 エポキシ系樹脂(デナコール#PC―1000)
5重量%(澱粉に対して) アンモニア水 適量 この塗被液およびこれを用いて得た塗被紙の品
質を第5表に示す。対照塗被液は接着剤15重量部
をカオリン100重量部に対して用いる他は実施例
の対照(比較例)と同様に市販のアミノ燐酸
エステル化澱粉の30重量%糊液を70重量%カオリ
ン分散液に添加し実施例の対照(比較例処法
2)と同様にして調製した。希釈水を全く使用し
ない場合にはこの対照塗被液の固形分濃度は62.6
重量%であつた。この対照については比較例処
法として第5表に示される。 実施例では、接着剤15重量部の代りに20重量
部を用いた点だけが実施例と異なる。希釈水を
用いたときの塗被液は固形分濃度が62重量%であ
り、希釈水を用いなかつたときの塗被液は固形分
濃度が67.4重量%であつた。この塗被液の組成は
以下のとおりであつた: カオリンン(UW―90) 100重量部 ポリアクリル酸ソーダ 0.2重量部 澱 粉 ラテツクス} 20重量部 ステアリン酸カルシウム 1.5重量部 エポキシ系樹脂(デナコール#PC―1000)
5重量% (澱粉に対して) アンモニア水 適量 塗被液およびこれを用いて得た塗被紙の品質を
第5表に示す。対照の塗被液は、接着剤15重量部
の代りに20重量部を用いる他はすべて上記比較例
処法1と同様にして調製した。その固形分濃度
は61.4重量%であつた。これを比較例処法2と
して第5表に示す。 第5表は、本発明の塗被液が高固形分濃度であ
るにもかかわらず低粘度であることを示してい
る。保水性も改良されている。同一固形分濃度で
あれば高剪断流動性の改善が認められる。また、
ブレードコーダーによる塗工性も良好で、塗工時
のストリーク、スクラツチは全く発生しなかつ
た。塗被紙の性質及び印刷適性についても比較例
と略同等である。
[Table] Examples and Effects of the amount of adhesive in the coating liquid and the dilution water required during preparation were investigated. In the example, 15 parts by weight of an adhesive consisting of 35% by weight of the enzyme-modified starch granule powder of the example and 65% by weight of the latex used in the example was used for 100 parts by weight of kaolin. The coating liquid was prepared by directly adding this starch to a 70% by weight kaolin dispersion in the same manner as in the example, and then in the same manner as in Process 5 of the example. Next, a coating solution was prepared with dilution water added to give a solid content concentration of 62% by weight, and another without using dilution water at all.
A coating liquid having a high solid content concentration of 67.7% by weight was obtained. The compositions of these coating liquids were as follows: Kaolin (UW-90) 100 parts by weight Sodium polyacrylate 0.2 parts by weight Starch Powder latex 15 parts by weight Calcium stearate 1.5 parts by weight Epoxy resin (Denacol #PC- 1000)
5% by weight (based on starch) Aqueous ammonia Appropriate amount Table 5 shows the quality of this coating liquid and the coated paper obtained using it. The control coating liquid was the same as the control (comparative example) of the example except that 15 parts by weight of adhesive was used for 100 parts by weight of kaolin, and a 30% by weight size liquid of commercially available aminophosphoric acid ester starch was mixed with 70% by weight of kaolin. It was added to the dispersion liquid and prepared in the same manner as in the control of the example (comparative example treatment 2). If no dilution water was used, the solids concentration of this control coating solution would be 62.6.
It was in weight%. This control is shown in Table 5 as a comparative treatment. The only difference in this example is that 20 parts by weight of the adhesive was used instead of 15 parts by weight. The coating liquid when dilution water was used had a solid content concentration of 62% by weight, and the coating liquid when dilution water was not used had a solid content concentration of 67.4% by weight. The composition of this coating liquid was as follows: Kaolin (UW-90) 100 parts by weight Sodium polyacrylate 0.2 parts by weight Starch Powder latex 20 parts by weight Calcium stearate 1.5 parts by weight Epoxy resin (Denacol #PC- 1000)
5% by weight (based on starch) Aqueous ammonia Appropriate amount Table 5 shows the quality of the coating liquid and the coated paper obtained using the coating liquid. A control coating solution was prepared in the same manner as Comparative Example 1 above except that 20 parts by weight of the adhesive was used instead of 15 parts by weight. Its solid content concentration was 61.4% by weight. This is shown in Table 5 as Comparative Example Treatment 2. Table 5 shows that the coating fluid of the present invention has a low viscosity despite its high solids concentration. Water retention has also been improved. An improvement in high shear fluidity is observed at the same solid content concentration. Also,
Coatability with a blade coder was also good, with no streaks or scratches occurring during coating. The properties of the coated paper and printability are also approximately the same as those of the comparative example.

【表】【table】

【表】 実施例 既述の実施例におけると同様の手順により第6
表上段に示す組成の塗被液を得た。これをテスト
プラントバーコーターにて塗工速度70m/分で塗
被用原紙に塗布した。得られた塗被紙の両面の
各々の塗工量は固形で11g/m2であつた。乾燥後
この塗被紙をスーパカレンダー処理した。塗被液
の性質、操業性および塗被紙の品質を第6表中段
の下段に示す。対照の塗被液は澱粉としてアミノ
燐酸エステル化澱粉を用いたこと以外は実施例X
と同一である。これを比較例として同様に第6
表に示す。 第6表から、塗被液の粘度および高剪断流動性
が向上していることがわかる。テストプラントバ
ーコーターにおける塗工性においてはストリー
ク、スクラツチ等の条跡トラブルは全く発生しな
かつた。塗被紙品質においては特に白紙光沢が優
れている。 次に、実施例及び比較例の紙塗被液を用い
てテストプラントバーコーターにより試作された
[Table] Example The sixth example was prepared using the same procedure as in the example described above.
A coating liquid having the composition shown in the upper row of the table was obtained. This was applied to a base paper for coating using a test plant bar coater at a coating speed of 70 m/min. The coating weight on each side of the resulting coated paper was 11 g/m 2 in solid form. After drying, the coated paper was supercalendered. The properties of the coating liquid, workability, and quality of the coated paper are shown in the lower middle row of Table 6. The control coating liquid was the same as Example X except that aminophosphate starch was used as the starch.
is the same as Using this as a comparative example, the sixth
Shown in the table. Table 6 shows that the viscosity and high shear fluidity of the coating liquid are improved. Regarding coating properties using a test plant bar coater, no streak troubles such as streaks or scratches occurred. In terms of coated paper quality, white paper gloss is particularly excellent. Next, a prototype was produced using a test plant bar coater using the paper coating liquids of Examples and Comparative Examples.

【表】【table】

【表】 塗被紙に下記条件で実機印刷を行なつた。印刷
時の作業性、ピツキング、紙粉の発生状況、印刷
品質、その他の総合的評価を第7表に示す。
[Table] Actual printing was performed on coated paper under the following conditions. Table 7 shows workability during printing, picking, paper dust generation, printing quality, and other comprehensive evaluations.

【表】 第7表は、本発明の紙塗被液により試作された
塗被紙が印刷総合評価で最も優れていることを示
している。 印刷条件 1 印刷機ローランドレコードRZK3型 2色機 2 テスト版富士写真フイルム製 GAP― 3 ブランケツト金陽社(株)S5300W エアーブランケツトセミハード仕立て 4 インキ大日本インキ(株) ニユーチヤンピオンスーパーアペツクス Sタ
イプ 5 刷 順 藍→紅 6湿し水工場用水+EPA 5% 大日本インキ(株)DH―78を0.5%添加 7印 圧版胴とブランケツト胴との線圧15/100
mm ブランケツト胴と圧胴との線圧15/100mm 8 印刷速度 5000枚/時 9 刷枚数 2000枚 実施例 XI 冷水可溶性澱粉として市販のワキシーαを用い
た。塗被液の組成を下記に示す。 カオリン(UW―90) 100重量部 ポリアクリル酸ソーダ 0.2重量部 澱 粉 5.6重量部 ラテツクス(JSR#0692) 10.4重量部 ステアリン酸カルシウム 1.5重量部 実施例と同様な手順を経て塗被紙を得た。そ
の測定結果を第8表に示す。対照の塗被液につい
ては、比較例と同様の手順で糊化溶解した市販
アミノ燐酸エステル化澱粉の糊液を実施例XIのワ
キシーαの代わりに用いたこと以外は、実施例XI
と同じである。対照の塗被液に関する測定結果を
比較例として第8表に示す。
[Table] Table 7 shows that the coated paper prototyped using the paper coating liquid of the present invention was the most excellent in the overall printing evaluation. Printing conditions 1 Printing machine Roland Record RZK3 type 2-color press 2 Test version Fuji Photo Film GAP- 3 Blanket Kinyosha Co., Ltd. S5300W Air blanket semi-hard finish 4 Ink Dainippon Ink Co., Ltd. New Champion Super Apex S type 5 printing Order Indigo → Red 6 Dampening water Factory water + EPA 5% Addition of 0.5% DH-78 from Dainippon Ink Co., Ltd. 7 impressions Linear pressure between plate cylinder and blanket cylinder 15/100
mm Linear pressure between blanket cylinder and impression cylinder 15/100 mm 8 Printing speed 5000 sheets/hour 9 Number of sheets printed 2000 sheets Example XI Commercially available Waxy α was used as the cold water soluble starch. The composition of the coating liquid is shown below. Kaolin (UW-90) 100 parts by weight Sodium polyacrylate 0.2 parts by weight Starch 5.6 parts by weight Latex (JSR#0692) 10.4 parts by weight Calcium stearate 1.5 parts by weight Coated paper was obtained through the same procedure as in the example. The measurement results are shown in Table 8. Regarding the control coating liquid, Example
is the same as The measurement results for the control coating liquid are shown in Table 8 as a comparative example.

【表】【table】

【表】 実施例 XII 冷水可溶性澱粉として、焙焼デキストリンを用
いた。61%硝酸で15倍に希釈した。これを純硝酸
として0.5%の割合でとうもろこし澱粉に添加混
合し、水分22%の澱粉を得た。この澱粉を50℃で
予備乾燥し水分5%とした。ついで、この澱粉を
180℃で8時間加熱し冷水に可溶な焙焼デキスト
リンを得た。この澱粉を粉末添加して得られた塗
被液の組成を下記に示す。 カオリン(UW―90) 100重量部 ポリアクリル酸ソーダ 0.2重量部 澱 粉 7重量部 ラテツクス(JSR#0692) 13重量部 耐水化剤(エポキシ系樹脂)) 0.35重量部 ステアリン酸カルシウム 1.5重量部 アンモニア水 適量 上記塗被液を用いて得られた塗被紙の性質と印
刷適性を第9表に示す。 実施例 冷水可溶性澱粉として澱粉誘導体を用いた。市
販の置換度0.1のエーテル化澱粉(ヒドロキシプ
ロピルスターチ)(三和澱粉工業株式会社の商品
名サンパールL―1)乳液を用いた。α―アミラ
ーゼの添加量が0.1重量%であることおよび液化
反応時間が10分であることを除いては実施例と
同様な手順により、D.E.2のエーテル化澱粉の冷
水可溶性物質を得た。次いで、この澱粉を用いて
上記実施例XIIと同じ組成の塗被液を調製した。そ
の塗被液の性質と、その液を用いて得た塗被紙の
性質および印刷適正を第9表に示す。対照塗被液
としては、実施例の澱粉の代わりに市販アミ
ノ燐酸澱粉糊液を用いた。これを比較例として
第9表に示す。
[Table] Example XII Roasted dextrin was used as the cold water soluble starch. Diluted 15 times with 61% nitric acid. This was added to corn starch at a ratio of 0.5% as pure nitric acid and mixed to obtain starch with a moisture content of 22%. This starch was pre-dried at 50°C to a moisture content of 5%. Next, add this starch to
By heating at 180°C for 8 hours, a roasted dextrin soluble in cold water was obtained. The composition of the coating liquid obtained by adding this starch powder is shown below. Kaolin (UW-90) 100 parts by weight Sodium polyacrylate 0.2 parts by weight Starch 7 parts by weight Latex (JSR#0692) 13 parts by weight Waterproofing agent (epoxy resin) 0.35 parts by weight Calcium stearate 1.5 parts by weight Aqueous ammonia Appropriate amount Table 9 shows the properties and printability of the coated paper obtained using the above coating liquid. Example A starch derivative was used as the cold water soluble starch. A commercially available emulsion of etherified starch (hydroxypropyl starch) with a degree of substitution of 0.1 (trade name Sunpearl L-1, manufactured by Sanwa Starch Industries Co., Ltd.) was used. A cold water-soluble substance of etherified starch DE2 was obtained by the same procedure as in the example except that the amount of α-amylase added was 0.1% by weight and the liquefaction reaction time was 10 minutes. Next, a coating liquid having the same composition as in Example XII above was prepared using this starch. Table 9 shows the properties of the coating liquid and the properties and printing suitability of the coated paper obtained using the liquid. As a control coating liquid, a commercially available aminophosphoric acid starch paste was used instead of the starch in the example. This is shown in Table 9 as a comparative example.

【表】 上記の各表における測定法は以下のとおりであ
る。 粘度測定は東京計器製BL型粘度計使用25℃、
60rpmでの測定;調製直後とは塗被組成物の調
製直後の粘度を示し;24時間後とは調製後24時
間経過後の測定値を示す。 熊谷理機製ハーキユレス型高剪断粘度計
8800rpm又は4400rpm時のトルク値の読み。 ×105dyne―cm 保水度はKMoO4法により、No.6の紙を用
いて判定した。 村上式光沢度計、入射角75℃での測定値。 村上式ハンター光度計によるブルーフイルタ
ーでの測定値。 村上式ハンター光度計によるグリーンフイル
ターでの測定値。 王研式平滑試験機による測定値。 ′ スムスター平滑度試験機による測定値。 王研式透気度試験機による測定値。 ′ スムスター透気度試験機による測定値。 K&Nインキにより白色度低下率で示した。 RI印刷テスターによるベタ刷り面の入射角
75゜での光沢度。 RI印刷テスターによるベタ刷り面の大日本
スクリーン製濃度計による反射濃度の測定値。 IGT印刷適性試験機での測定値。 RI印刷テスターを使用して印刷時の紙むけ
抵抗性を測定し目視で評価。 (劣)1〜5(優) RI印刷テスターを使用し、コート面に給水
ロールで水を付着させ、後印刷し、紙むけ抵抗
を測定し目視で評価。 (劣)1〜5(優) テーパー社製摩耗試験機を使用してコート面
に10mlの蒸留水を滴下し、250gのゴム輪(片
輪)により10〜20回転湿潤コート面を摩擦し、
摩擦面を蒸留水で2回洗い流して100mlに希釈
した。これを手間式光電比色計により透過率を
測定して試料から除去された塗料の量を間接的
に計量した測定値。 熊谷理機製テスト用高速枚葉プレードコータ
ーを使用して600m/分のスピードで塗工し、
塗被面を目視で評価した。 テストプラントバーコーターを使用して連続
塗工し、塗被面を目視で評価した。 なお、相対的な評価は下記5段階で評価した。 〓:極めて優れている。 ◎:優れている。 〇:良い。 △:普通。 ×:悪い。
[Table] The measurement methods in each table above are as follows. The viscosity was measured using a Tokyo Keiki BL type viscometer at 25°C.
Measurement at 60 rpm; "immediately after preparation" indicates the viscosity immediately after preparation of the coating composition; "24 hours later" indicates the value measured 24 hours after preparation. Kumagai Riki Hercules type high shear viscometer
Torque value reading at 8800rpm or 4400rpm. ×10 5 dyne-cm Water retention was determined by the KM o O 4 method using No. 6 paper. Measured value using a Murakami gloss meter at an incident angle of 75°C. Measured values with a blue filter using a Murakami Hunter photometer. Measured values with a green filter using a Murakami Hunter photometer. Measured value using Oken type smoothing tester. ′ Value measured by Sumstar smoothness tester. Measured value by Oken style air permeability tester. ′ Value measured by Sumstar air permeability tester. It is expressed as a whiteness reduction rate using K&N ink. Incident angle of solid printing surface using RI print tester
Glossiness at 75°. Reflection density measured using a Dainippon Screen densitometer on a solid printed surface using an RI print tester. Measured value with IGT printing suitability tester. The paper peel resistance during printing was measured and visually evaluated using an RI print tester. (Poor) 1 to 5 (Excellent) Using an RI printing tester, apply water to the coated surface with a water roll, then print, and measure paper peel resistance for visual evaluation. (Poor) 1-5 (Excellent) Using a taper abrasion tester, drop 10ml of distilled water onto the coated surface, rub the wet coated surface 10-20 times with a 250g rubber ring (one ring),
The friction surface was rinsed twice with distilled water and diluted to 100 ml. This is a measured value that indirectly measures the amount of paint removed from the sample by measuring the transmittance using a manual photoelectric colorimeter. Coating was performed at a speed of 600 m/min using a high-speed single-fed blade coater manufactured by Kumagai Riki for testing.
The coated surface was visually evaluated. Continuous coating was performed using a test plant bar coater, and the coated surface was visually evaluated. Note that the relative evaluation was performed in the following five stages. 〓: Extremely excellent. ◎: Excellent. ○: Good. △: Normal. ×: Bad.

Claims (1)

【特許請求の範囲】 1 少なくとも顔料、接着剤および水を含有する
紙塗被液の製造方法において、該接着剤として粉
状または顆粒状のD.E.8〜12重量%の冷水可溶性
澱粉1〜50重量部を、顔料100重量部を含有する
顔料水性分散液へ粉状または顆粒粉末のまま直接
添加して完全に溶解させ、そのことにより、加熱
処理を行うことなく、糊液を得ることを特徴とす
る紙塗被液の製造方法。 2 前記冷水可溶性澱粉が、酵素変性澱粉、α化
澱粉、焙焼デキストリンおよび澱粉誘導体からな
る群から選択される少なくとも1つである前記特
許請求の範囲第1項に記載の方法。 3 前記接着剤として前記冷水可溶性澱粉の他
に、合成樹脂ラテツクスを併用する前記特許請求
の範囲第1項に記載の方法。 4 さらに耐水化剤を10重量部以下使用する前記
特許請求の範囲第1項に記載の方法。 5 前記耐水化剤がジアルデヒド化合物、ポリア
ルキレンユリア、ポリアミドユリア、ホルムアル
デヒド、N―メチロール化合物、Nメチロール化
合物の初期縮合体およびエポキシ化合物からなる
群から選択される少なくとも1つである前記特許
請求の範囲第4項に記載の方法。
[Scope of Claims] 1. A method for producing a paper coating liquid containing at least a pigment, an adhesive, and water, comprising 1 to 50 parts by weight of powdered or granular cold water-soluble starch having a DE of 8 to 12% by weight as the adhesive. is directly added as a powder or granules to an aqueous pigment dispersion containing 100 parts by weight of the pigment and completely dissolved, thereby obtaining a size liquid without heat treatment. A method for producing paper coating liquid. 2. The method according to claim 1, wherein the cold water soluble starch is at least one selected from the group consisting of enzyme-modified starch, pregelatinized starch, roasted dextrin, and starch derivatives. 3. The method according to claim 1, wherein a synthetic resin latex is used in combination with the cold water soluble starch as the adhesive. 4. The method according to claim 1, further comprising using 10 parts by weight or less of a waterproofing agent. 5. The water resistant agent is at least one selected from the group consisting of dialdehyde compounds, polyalkylene urea, polyamide urea, formaldehyde, N-methylol compounds, initial condensates of N-methylol compounds, and epoxy compounds. The method described in Scope No. 4.
JP4934782A 1982-03-26 1982-03-26 Production of paper coating liquid Granted JPS58169595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4934782A JPS58169595A (en) 1982-03-26 1982-03-26 Production of paper coating liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4934782A JPS58169595A (en) 1982-03-26 1982-03-26 Production of paper coating liquid

Publications (2)

Publication Number Publication Date
JPS58169595A JPS58169595A (en) 1983-10-06
JPH0219240B2 true JPH0219240B2 (en) 1990-05-01

Family

ID=12828473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4934782A Granted JPS58169595A (en) 1982-03-26 1982-03-26 Production of paper coating liquid

Country Status (1)

Country Link
JP (1) JPS58169595A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309765A (en) * 1999-04-27 2000-11-07 Nippon Starch Chemical Co Ltd Adhesive composition
BR112012026919B1 (en) * 2010-04-21 2020-01-07 Cargill, Incorporated COMPOSITION OF COATING, PROCESS, PAPER PRODUCT AND USE OF A COMBINATION
JP5798182B2 (en) * 2011-03-31 2015-10-21 日本製紙株式会社 Coated paper and method for producing the same
ITMI20130408A1 (en) * 2013-03-18 2014-09-19 Novachem Ind S R L SOLID DISPERSION OF A PIGMENT IN GRANULAR FORM AND ITS RELATED PREPARATION PROCEDURE

Also Published As

Publication number Publication date
JPS58169595A (en) 1983-10-06

Similar Documents

Publication Publication Date Title
US11697745B2 (en) Partially soluble dextrins of high molecular weight
US3477970A (en) Pigmented paper coating and adhesive compositions containing a polyvinyl alcohol binder and a modifier therefor
US11279843B2 (en) Dextrin-based coating slips
JPH023000B2 (en)
EA028114B1 (en) Methods and means for coating paper by film coating
CN109183500B (en) High-gloss coating, high-gloss paper and preparation method thereof
US3425896A (en) Starch coating insolubilized with a zirconium salt
US6783846B2 (en) Use of alkylhydroxyalkyl cellulose possibly in combination with a carboxymethyl cellulose for the improvement of gloss and printability
JPH0219240B2 (en)
FI98235C (en) Printing paper, method of making it and its use
AU2011235701A1 (en) Processes for preparing coated printing paper
US5314753A (en) Printing paper and a process for its manufacture
JPH0326151B2 (en)
US10837142B2 (en) Paper coating composition with highly modified starches
JP2516751B2 (en) Coating composition for paper
CA2975499A1 (en) Composition de couchage comprenant des proteines de ble hydrolysees
JP4060912B2 (en) Low viscosity starch derivative and coating composition for coated paper containing the starch derivative
US3647528A (en) Polyvinyl alcohol coating colors
JP6473427B2 (en) Coated white paperboard and method for producing the same
JP2003268695A (en) Coated paper for offset printing and method for producing the same
US2555057A (en) Process for the production of paper coating adhesives
JPS5971497A (en) Printing paper highly containing filler
JP2005299005A (en) Coating liquid for paper and coated paper using the same
JPH01221597A (en) Base paper for coated paper and production of coated paper
WO1998006899A1 (en) Compositions for coating sheet materials