JPH0219205B2 - - Google Patents

Info

Publication number
JPH0219205B2
JPH0219205B2 JP56183737A JP18373781A JPH0219205B2 JP H0219205 B2 JPH0219205 B2 JP H0219205B2 JP 56183737 A JP56183737 A JP 56183737A JP 18373781 A JP18373781 A JP 18373781A JP H0219205 B2 JPH0219205 B2 JP H0219205B2
Authority
JP
Japan
Prior art keywords
weight
polymer
block copolymer
acrylonitrile
hollow fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56183737A
Other languages
Japanese (ja)
Other versions
JPS5887318A (en
Inventor
Eiji Sato
Atsushi Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP18373781A priority Critical patent/JPS5887318A/en
Publication of JPS5887318A publication Critical patent/JPS5887318A/en
Publication of JPH0219205B2 publication Critical patent/JPH0219205B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアクリロニトリル系重合体からなる中
空繊維に関する。更に詳しくは新規な分離用中空
繊維に関するものであり、特定のブロツク共重合
体とアクリロニトリル系重合体(以下AN系重合
体と略す)とからなり、過あるいは透析による
物質分離法において高度の選択的分離能を有し、
かつ透水量の大きな中空繊維に関するものであ
る。 従来バクテリア、ウイルス、タンパク又はコロ
イド状物質等々の微粒子物質を含有する液体の分
離精製にはセルロースアセテート、キユプロハン
等のセルロース系中空繊維が使用されて来たが、
かかる中空繊維は透水性が低く、また目詰りを生
じ易いこと及び透水性が低い故に処理液との接触
面積を大きくしなければならず、必然的に装置が
大きくなり操作性も低下して経済的不利益を招く
などの欠点を有していた。 一方これらセルロース系中空繊維の欠点である
透水性を改良することを目的としたAN系重合体
からなる中空繊維が提案され、実際に限外過膜
としては透水性の向上、あるいは目詰りの減少等
有利な点が見い出されつつあるが、人工臓器、特
に人工腎臓などの医療用途分野において充分な透
水性を得ようとすると分離しようとする物質以外
の有用な物質までも透過してしまい、注目した物
質のみを分離するという選択的分離能の点では極
めて不満足なものであり、これらの改良が種種検
討されてはいるが未だ透水性と選択的分離能を同
時に満足する中空繊維は得られていないのが現状
である。 本発明者らは、これらの欠点に鑑み、人工臓器
特に人工腎臓などの医療用途分野において、優れ
た透水性能と高度の選択的分離能を合わせもつた
極めて有用な中空繊維を提供することを目的とし
て鋭意研究を進めた結果本発明に至つたものであ
る。 本発明者らは、これらの目的を達成する為に、
AN系重合体からなる中空繊維の優れた透水性能
に着目し、中空繊維を構成する重合体の構造、組
成特にANを主成分とするブロツク共重合体によ
り処理液との親和性を高め優れた選択的分離能を
付与する特異な構造とすることによる新しい技術
思想のもとにAN系重合体につき、種々のビニル
系単重体との共重合組成、重合度、あるいはAN
を主成分とするブロツク共重合体、その共重合組
成等々の詳細な検討を進める中で、ANを主成分
とするセグメントとAN以外のビニル系単量体を
一定割合以上含有するセグメントとからなる特定
のブロツク共重合体に、特定混合比率のAN系重
合体を混合した重合組成物からなる中空繊維が、
優れた透水性能を有し且つ極めて高度の選択的分
離能を有することを見いだし、更に鋭意検討を進
めた結果本発明を完成したものである。 即ち、本発明の要旨は次のとおりである。 (A)実質的に繊維軸方向に連続した中空部を有す
る中空繊維であつて、該中空繊維が、実質的にア
クリロニトリル(以下ANと略す)の重合量が40
重量%以上であるアクリロニトリル系重合体(以
下AN系重合体と略す)が5〜50重量%と、80重
量%以上のAN重合量を有するセグメントと(B)分
子内に水酸基、カルボシル基、アミノ基、アミド
基、イミド基、エチルエステル基を有するビニル
単量体の一種または二種以上を20重量%以上含有
するセグメント(B)とからなるAB型ブロツク共重
合体が50〜95重量%からなり、かつ下式(1)及び(2)
を同時に満足してなることを特徴とするアクリロ
ニトリル系重合体からなる中空繊維 イヌリン通過率≧50 (1) log(透水量)≧110−(イヌリン通過率)/30 (2) 本発明においては、後記詳細に説明する方法に
て測定されるイヌリン通過率及び透水量は式(1)及
び(2)を同時に満足してなることが肝要である。血
液透析膜としては、中分子量尿毒性物質というも
のが重要視されており、蛋白質代謝産物から該物
質を除去する必要がある。そこで、この中分子量
溶質の透過性の指標として式(1)でイヌリンを用い
たものである。即ち、式(1)は、イヌリンの分子量
は5000〜6300であり、該分子量範囲を境にして、
それ以上のものと、以下のものとを効率よく分け
ることを意味するものであり、いわゆるイヌリン
通過率は選択的分離能を表わす分画性の尺度であ
つて、50%以下となると、たとえ充分な透水性能
を有し式(2)を満足するものであつても分離に供さ
れる液体中からの不要物と有要物との分離は充分
に行なわれず、一方、イヌリン通過率が50%以上
であつても透水量が式(2)を満足しない場合にあつ
ては必要量の処理に極めて長時間を要することに
なり、特に本発明の目的用途である人工臓器とし
ての分離用中空繊維とした場合に、使用患者の精
神的、肉体的疲労かつ経済的不利益は絶大なもの
となり、本発明の目的を達し得ないものとなる。 本発明の中空繊維が極めて優れた透水性能及び
選択的分離能を合わせ持つための要旨とするとこ
ろは、AN系重合体と極めて高い親和性を有する
セグメント(A)と、特に人工臓器として用いられた
場合に分離・精製に供される血液或いは体液との
親和性の高いセグメント(B)とを合わせ持つ特定の
AB型ブロツク共重合体が、AN系重合体と共に
中空繊維を構成し、このAB型ブロツク共重合体
とAN系重合体との特定の比率によつて、分離・
精製に極めて好適なミクロ相分離構造と形成して
いる点にある。 一般に異種重合体の混合物から成形された成形
物或いはブロツク共重合体から成形された成形物
がしばしばミクロ相分離構造を示すことは既に知
られたことであるが、かかるミクロ相分離構造が
分離用中空繊維、特に人工臓器用中空繊維として
透水性能と選択的分離能の両特性共に優れたもの
となることを開示された例はなく、また単にAN
系重合体とAB型ブロツク共重合体とから構成さ
れた中空繊維とすることによつて容易に両特性を
合わせ持つ中空繊維とすることは出来ず、本発明
の中空繊維においては、特定のAB型ブロツク共
重合体とAN系重合体が、特定の比率によつて特
異な構造を有する中空繊維を構成していることに
よつてのみ極めて優れた透水性能と高度の選択的
分離能を合わせ持つものであることは理解されね
ばならない。 従つて本発明の目的である透水性能及び選択的
分離能に優れ、式(1)及び(2)を同時に満足する中空
繊維とする為には、該中空繊維がAN系重合体と
AB型ブロツク共重合体との両者とからなること
が極めて重要な要素である。 本発明の中空繊維を構成する両重合体のうち、
AN系重合体は、後記詳細に説明されるAB型ブ
ロツク共重合体のセグメント(A)部と共に主に高い
透水性能を発揮する役割を果たす部分と考えら
れ、中空繊維を構成する不可欠の要素であり、
ANの重合量が40重量%以上のAN系重合体とす
る必要がある。ANの重合量が40重量%以下とな
ると透水性能の低下を引き起こすばかりでなく、
中空繊維の充分な機械的強度が得られなくなるの
で好ましくないが、ANの重合量が40重量%以上
であれば何等本発明に差し支えるものではない。 AN系重合体とAB型ブロツク共重合体の組成
比率は、透水性能及び選択的分離能ばかりでな
く、中空繊維の機械的強度にも影響し、AN系重
合体の比率が高くなるに従つて透水性能及び機械
的強度は増大する傾向を示すが、選択的分離能の
大巾な低下を招き、目的とする選択的分離能を達
成することが不可能となる為好ましくなく、AN
系重合体の比率は5〜50重量%とする必要があ
る。 本発明の中空繊維を実質的に構成するもう一方
の重合体であるAB型ブロツク共重合体のセグメ
ント(A)及び(B)が以下に示されるものであることが
本発明の中空繊維において重要な第2の要素であ
る。 セグメント(A)は前記の如く主として、本発明の
中空繊維を構成するもう一方の成分であるAN系
重合体と共に高い透水性能を発揮すると共に、機
械的強度特性を発現する為、AN系重合体との親
和性を高める役割を果す部分であると考えられ、
その為には80重量%以上のANを含有することが
必要であり、80重量%未満では充分な透水性能及
び機械的強度を充分に発揮することは難かしく好
ましくない。 セグメント(B)は、本発明の最大の目的である選
択的分離能を高める為の不可欠の要素であり、セ
グメント(B)を構成する組成々分が、AN以外の分
子内に水酸基、カルボキシル基、アミノ基、アミ
ド基、イミド基、メチルエステル基、エチルエス
テル基等のシアノ基以外の官能基を有するビニル
系単量体を少なくとも20重量%以上含有すること
が肝要であり、特に前述の官能基のうち、カルボ
キシル基、水酸基、アミド基、メチルエステル基
を有するものが好ましい。具体的に好適なビニル
系単量体をあげれば、アクリルアミド、メタクリ
ルアミド、アリルアルコール、メタリルアルコー
ル、アクリル酸、メタクリル酸、メチルアクリレ
ート、メチルメタクリレート等があげられるがこ
れらに特に限定されるものではない。 これらのアクリロニトリル以外のビニル系単量
体は1種又は2種以上とすることは本発明の目的
達成上何等差支えないが、20重量%以下となると
高度の選択的分離能を保持することが不可能とな
り本発明の目的を達成し得ない。 本発明の中空繊維を構成するAB型ブロツク共
重合体の重合度はオリゴマー程度のセグメント(A)
及び(B)の結合であつても有用ではあるが、通常は
30℃、0.2g/100mlのジメチルホルムアミド溶液
にて測定される固有粘度(ηinh)で0.5以上の高
分子量とすることが好ましい。 かようなAB型ブロツク共重合体は、通常のブ
ロツク共重合体の合成法、例えばイオン重合技
術、未端に縮合反応性を有する官能基例えば水酸
基、アミノ基等を有するセグメント(A)及び(B)を二
官能性のイソシアナート、例えばトリレンジイソ
シアナート、4,4′−ジイソシアナートジフエニ
ルメタン等、或いはテレフタル酸クロライド、イ
ソフタル酸クロライド等の二官能性試薬により縮
合し結合する技術、あるいは例えばジシクロヘキ
サノンパーオキサイド等の活性の異なる二種のパ
ーオキサイド基を有する重合触媒を用いる二段重
合法などのラジカル重合技術、等々あるいはこれ
らの技術の組み合わせによつて合成することが出
来る。 一般にはかような重合技術によつて重合系全部
を完全にAB型ブロツク共重合体とすることは難
かしく、生成する重合体中にはブロツク共重合体
以外の重合体を含むことが多いが、これら混合重
合体中からブロツク共重合体のみを分離するに
は、混合重合体の溶媒である例えばジメチルホル
ムアミド、N−メチル−2−ピロリドン等々と、
非溶媒である水、アセトン、メタノール等々との
混合溶剤により分別沈澱させればよい。また混合
重合体中のブロツク共重合体以外の重合体が後述
するアクリロニトリル系重合体の場合にはブロツ
ク共重合体のみを分離して取り出す必要はなく、
混合重合体のまま使用することも出来る。 本発明の中空繊維を構成するAN系重合体は、
ANが40重量%以上となる様に、ANと共重合可
能なビニル系単量体、具体的にはアクリルアミ
ド、メタクリルアミド、N−メチルアクリルアミ
ド、N−エチルメタクリルアミド、マレイミド、
アリルアルコール、メタリルアルコール、β−ヒ
ドロキシエチルメタクリレート、メタリルアミ
ン、β−アミノエチルメタクリレート、アクリル
酸、メタクリル酸、イタコン酸、メチルアクリレ
ート、メチルメタクリレート、エチルメタクリレ
ート、α−メチルアクリロニトリル、α−シアノ
アクリロニトリル、酢酸ビニル、塩化ビニル、塩
化ビニリデン、スチレン等々の1種又は2種以上
とを通常の重合方法、例えばラジカル重合によつ
て重合することにより容易に得ることが出来る。 本発明の中空繊維を造るには、AN系重合体と
AB型ブロツク共重合体との組成比率が本発明の
中空繊維の構成比率となる様に両重合体を混合
し、共通溶媒に溶解して溶液となし、通常の中空
繊維を製造する方法、例えば環状紡糸口金の外側
吐出口より該溶液を、内側より両重合体に対して
非溶剤である液体例えば水等を導入しつつ凝固浴
に導く方法によつて容易に造ることが出来る。 紡糸成形に用いられる共通溶媒としては、AN
系重合体及びAB型ブロツク共重合体を同時に溶
解し得る溶媒であれば特に差支えないが通常は
AN系重合体の溶媒であるジメチルホルムアミ
ド、ジメチルアセトアミド、N−メチル−2−ピ
リドン、ジメチルスルホキシド等の有機溶媒、硝
酸、ロダンソーダ水溶液、塩化亜鉛水溶液等の無
機系溶剤等の1種又は2種以上の混合溶剤が用い
られる。 得られた溶液は一般には透明な均一溶液として
観察される場合が多いが、微分干渉顕微鏡等によ
る観察によつては微細な相分離を呈した極めて安
定な溶液である。これらの溶液に例えば酸化防止
剤、難燃剤、あるいはツヤ消し剤等の種々の添加
剤等を加えることは何等本発明の目的達成に悪影
響を及ぼすものではなく差支えない。 この様にして得られた本発明の中空繊維は上述
した如き特異な組成及び構造により、式(1)及び式
(2)で示される極めて高い透水性能と高度の選択的
分離能を有し、特に人工腎臓に用いる中空繊維と
しては、極めて優れたものである。尚式(1)及び式
(2)で示される透水量、イヌリン通過率は以下の方
法で測定される。 透水量:内径、外径をあらかじめ測定した中空
繊維を一定数第1図に示す様に両端を樹脂でポツ
テイングし、注入側と流出側の間に200mmHgの圧
力差をつけ、単位時間当りの生理食塩水の透過量
を測定し、中空繊維の内壁の有効面積を計算によ
り求めた値で除し、単位面積当りの値(ml/
Hr・m2・mmHg)として算出したものである。 イヌリン通過率:イヌリン通過率は塩酸酸性溶
液中で加熱により果糖から生じた反応生成物を、
チオバルビツール酸と反応発色させ吸光光度を測
定する方法により以下の手順で実施される。 イヌリン1.00gを生理食塩水20mlにとかした
後、血清又は牛血980mlを加え全量を1000mlとし
てイヌリンの100mg/dl溶液を調整する。(この溶
液を血清元液とする。)この元液を透水量測定と
同様にしてセツトされた装置を用いて注入側と流
出側の間に200mmHgの圧力差をつけて流し、1時
間後に中空繊維壁を通して出てくる血清液を採取
しイヌリン量を定量する。定量は、血清元液及び
中空繊維を介して流出して来た血清液1容に対し
て、3CdSO4・8H2O17.5gに対しIN−H2SO4
び、精製水500mlを加えた溶液を3容、及び
0.166N−NaOH6容を加えて混和して得られた上
澄液を用いて行なわれる。 この上澄液1.0mlに生理食塩水1.0ml及び2N−
NaOH0.1mlを加えて98℃×15分間の加熱処理を
行い、冷却後、35%濃塩酸500mlにチオバルビツ
ール酸1.00gを溶かした溶液3mlを加え、更に83
℃×5分間の加熱処理を施し、室温に冷却後吸光
光度分析を行い435nmの値より下式によつてイヌ
リン通過率を求めた。 イヌリン通過率(%)=血清通液のABS/血清元液のA
BS×102 以下本発明を実施例により更に詳しく説明する
が、これに限定されるものではなく、また実施例
中の%は特にことわりのない限り重量%を意味す
る。 (参考例) AB型ブロツク共重合体の合成 次式で示されるジシクロヘキサノンパーオキシ
ド12g を含むアクリロニトリル312gを、ラウリル硫酸
ソーダ2.5gを含む脱イオン水3000mlに加えて懸
濁させ、これにロンガリツト7.2gを加えて40℃
に昇温し第1段目の重合を開始した。反応系内を
撹拌し、40℃以上とならない様に温度を調節しつ
つ2時間重合させた。系内の少量を取り出しガス
クロマトグラフイーによりアクリロニトリルの残
量を測定したところ、仕込のアクリロニトリルの
92.6%が重合していることが判明した。ついで重
合反応系に第2段目重合用として、メチルアクリ
レートを200g加えて系内の温度を70℃に保つて
3時間撹拌し重合を行なわせた。 得られた懸濁液を過、水洗、乾燥して白色の
重合体446gを得た。 この重合体中には、第1段目の重合で生成した
ポリアクリロニトリル、第2段目で生成したポリ
メチルアクリレート及び目的とするアクリロニト
リルをセグメント(A)成分とし、メチルアクリレー
トをセグメント(B)とするAB型ブロツク共重合体
を含む為、約5000mlのアセトンを加えてポリメチ
ルアクリレートのみを溶解させ、別する操作を
3回繰返して除去した。この操作によつて重合体
重量は310.6gとなつた。この重合体の一部をジ
メチルホルムアミド−アセトンの混合溶剤で分別
沈澱法により分析した結果、ポリアクリロニトリ
ルを46.5%、AB型ブロツク共重合体を53.5%を
含むことが判明した。尚分別して得られたAB型
ブロツク共重合体の固有粘度は1.83であつた。 実施例 1 前記、参考例の方法によつて重合及び分別され
たアクリロニトリルをセグメント(A)とし、メチル
アクリレートをセグメント(B)とするAB型ブロツ
ク共重合合体が表1に示す組成となる様に、アク
リロニトリル/メチルアクリレート=92/8とか
らなるアクリロニトリル系重合体と混合した。つ
いでこれらの重合体組成物を、全重合体濃度が16
%となる様に70%の硝酸水溶液に溶解し、内径
200ミクロン、外径300ミクロンとなる様に、外径
0.45mm、内径0.1mmの環状紡糸口金を用い、外側
環状部より溶液を、内側部より水を導入し前記溶
液に内包させて吐出した。この時の溶液の吐出線
速は16.6m/minであつて、この溶液は約90mmの
空間部を隔てて30%硝酸水溶液中に紡糸して中空
繊維を得た。本発明の中空繊維は透水性能及びイ
ヌリン通過率の点で極めて優れたものであり、比
較例に示す従来の中空繊維とは比較にならないも
のである。
The present invention relates to hollow fibers made of acrylonitrile polymers. More specifically, it concerns a new hollow fiber for separation, which is made of a specific block copolymer and an acrylonitrile polymer (hereinafter referred to as AN polymer), and is highly selective in material separation methods using filtration or dialysis. Has separation ability,
The invention also relates to hollow fibers with large water permeability. Conventionally, cellulose-based hollow fibers such as cellulose acetate and cuprohan have been used to separate and purify liquids containing particulate matter such as bacteria, viruses, proteins, and colloidal substances.
Such hollow fibers have low water permeability and are easily clogged, and because of the low water permeability, the contact area with the processing liquid must be increased, which inevitably increases the size of the equipment and reduces operability, making it uneconomical. It had disadvantages such as causing financial disadvantage. On the other hand, hollow fibers made of AN-based polymers have been proposed with the aim of improving water permeability, which is a drawback of these cellulose-based hollow fibers, and have actually been used as ultrafiltration membranes to improve water permeability or reduce clogging. However, when trying to obtain sufficient water permeability in the field of medical applications such as artificial organs, especially artificial kidneys, useful substances other than the substance to be separated will also pass through, making it difficult to attract attention. It is extremely unsatisfactory in terms of the selective separation ability of separating only the substances that are separated, and although various improvements have been investigated, no hollow fiber has yet been obtained that satisfies water permeability and selective separation ability at the same time. The current situation is that there is no such thing. In view of these drawbacks, the present inventors aimed to provide extremely useful hollow fibers that have both excellent water permeability and high selective separation ability in the field of medical applications such as artificial organs, especially artificial kidneys. As a result of intensive research, we have arrived at the present invention. In order to achieve these objectives, the present inventors
Focusing on the excellent water permeability of hollow fibers made of AN-based polymers, we have improved the structure and composition of the polymers that make up the hollow fibers, especially the block copolymer whose main component is AN, to improve the compatibility with the processing liquid. Based on the new technical idea of creating a unique structure that provides selective separation ability, AN-based polymers have been developed with various copolymerization compositions with various vinyl monopolymers, polymerization degrees, and AN-based polymers.
While conducting detailed studies on the block copolymer whose main component is AN and its copolymer composition, we discovered that it consists of a segment whose main component is AN and a segment containing more than a certain percentage of vinyl monomers other than AN. Hollow fibers are made of a polymer composition in which a specific block copolymer is mixed with an AN polymer at a specific mixing ratio.
It was discovered that it has excellent water permeability and extremely high selective separation ability, and as a result of further intensive studies, the present invention was completed. That is, the gist of the present invention is as follows. (A) A hollow fiber having a hollow portion substantially continuous in the fiber axis direction, wherein the hollow fiber has a substantially polymerized amount of acrylonitrile (hereinafter abbreviated as AN) of 40
5 to 50% by weight of acrylonitrile-based polymer (hereinafter referred to as AN-based polymer) that is 80% or more by weight of an acrylonitrile-based polymer (hereinafter referred to as AN-based polymer), and (B) a segment having an AN polymerization amount of 80% or more by weight; AB type block copolymer consisting of a segment (B) containing 20% by weight or more of one or more vinyl monomers having a group, an amide group, an imide group, or an ethyl ester group from 50 to 95% by weight. and the following formulas (1) and (2)
A hollow fiber made of an acrylonitrile-based polymer characterized by simultaneously satisfying the following: It is important that the inulin passage rate and water permeability measured by the method described in detail later satisfy equations (1) and (2) at the same time. For hemodialysis membranes, intermediate molecular weight urinary toxic substances are considered important, and it is necessary to remove these substances from protein metabolites. Therefore, inulin was used in formula (1) as an indicator of the permeability of this medium molecular weight solute. That is, formula (1) shows that the molecular weight of inulin is 5000 to 6300, and that within this molecular weight range,
The so-called inulin passage rate is a measure of fractionation that expresses selective separation ability, and if it is less than 50%, even if it is insufficient, Even if the inulin has good water permeability and satisfies formula (2), the separation of unnecessary and necessary substances from the liquid subjected to separation is not sufficient, and on the other hand, the inulin passage rate is 50%. Even if the water permeation rate is above, if the water permeation rate does not satisfy formula (2), it will take an extremely long time to process the required amount, and in particular, hollow fibers for separation as artificial organs, which is the intended use of the present invention. In this case, the mental and physical fatigue of the patient and the economic disadvantage would be enormous, making it impossible to achieve the purpose of the present invention. In order for the hollow fibers of the present invention to have extremely excellent water permeability and selective separation ability, the key points are that the segment (A) has an extremely high affinity with AN polymers, and is particularly suitable for use as artificial organs. A specific segment (B) that has a high affinity with blood or body fluids to be subjected to separation and purification when
The AB type block copolymer constitutes a hollow fiber together with the AN type polymer, and depending on the specific ratio of the AB type block copolymer and the AN type polymer,
It has a microphase-separated structure that is extremely suitable for purification. Generally, it is already known that molded articles molded from mixtures of different types of polymers or molded articles molded from block copolymers often exhibit a microphase-separated structure. There are no examples of hollow fibers, especially hollow fibers for artificial organs, that have been disclosed to have excellent properties in both water permeability and selective separation ability.
It is not possible to easily obtain a hollow fiber that has both properties by making it a hollow fiber composed of a block copolymer and an AB type block copolymer. The type block copolymer and AN-based polymer form hollow fibers with a unique structure in a specific ratio, which allows for extremely excellent water permeability and a high degree of selective separation. It must be understood that it is a thing. Therefore, in order to obtain a hollow fiber that has excellent water permeability and selective separation ability and satisfies formulas (1) and (2) at the same time, which is the objective of the present invention, the hollow fiber must be made of an AN-based polymer.
It is extremely important that the polymer is composed of both the AB type block copolymer and the AB type block copolymer. Of both polymers constituting the hollow fiber of the present invention,
The AN polymer is considered to be a part that mainly plays a role in exhibiting high water permeability, together with the segment (A) part of the AB type block copolymer, which will be explained in detail later, and is an essential element constituting the hollow fiber. can be,
It is necessary to use an AN-based polymer in which the amount of AN polymerized is 40% by weight or more. When the polymerized amount of AN is less than 40% by weight, it not only causes a decrease in water permeability, but also
Although this is not preferable because sufficient mechanical strength of the hollow fibers cannot be obtained, as long as the amount of AN polymerized is 40% by weight or more, it does not interfere with the present invention in any way. The composition ratio of AN polymer and AB type block copolymer affects not only water permeability and selective separation ability, but also the mechanical strength of hollow fibers, and as the ratio of AN polymer increases, Although water permeability and mechanical strength tend to increase, this is not desirable because it causes a drastic decrease in selective separation ability, making it impossible to achieve the desired selective separation ability.
The proportion of the system polymer must be 5 to 50% by weight. It is important in the hollow fiber of the present invention that segments (A) and (B) of the AB type block copolymer, which is the other polymer substantially constituting the hollow fiber of the present invention, are as shown below. This is the second element. As mentioned above, the segment (A) mainly exhibits high water permeability and mechanical strength characteristics together with the AN polymer, which is the other component constituting the hollow fiber of the present invention. It is thought that this is a part that plays a role in increasing compatibility with
For this purpose, it is necessary to contain 80% by weight or more of AN, and if it is less than 80% by weight, it is difficult to exhibit sufficient water permeability and mechanical strength, which is not preferable. Segment (B) is an essential element for increasing selective separation ability, which is the main objective of the present invention, and the components constituting segment (B) have hydroxyl groups and carboxyl groups in molecules other than AN. It is important to contain at least 20% by weight of vinyl monomers having functional groups other than cyano groups such as , amino groups, amide groups, imide groups, methyl ester groups, and ethyl ester groups. Among these groups, those having a carboxyl group, a hydroxyl group, an amide group, and a methyl ester group are preferred. Specifically preferred vinyl monomers include acrylamide, methacrylamide, allyl alcohol, methallyl alcohol, acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, etc., but are not particularly limited to these. do not have. The use of one or more types of vinyl monomers other than acrylonitrile has no problem in achieving the objective of the present invention, but if it is less than 20% by weight, it will be impossible to maintain a high degree of selective separation. Therefore, the object of the present invention cannot be achieved. The degree of polymerization of the AB type block copolymer constituting the hollow fiber of the present invention is segment (A) on the order of oligomers.
Although combinations of (B) and (B) are also useful, they are usually
It is preferable to have a high molecular weight with an intrinsic viscosity (ηinh) of 0.5 or more as measured in a dimethylformamide solution of 0.2 g/100 ml at 30°C. Such an AB type block copolymer can be produced using a conventional block copolymer synthesis method, such as ionic polymerization technique, and a segment (A) having a functional group having condensation reactivity such as a hydroxyl group or an amino group ( A technique of condensing and bonding B) with a difunctional isocyanate, such as tolylene diisocyanate, 4,4'-diisocyanatodiphenylmethane, etc., or a difunctional reagent such as terephthalic acid chloride, isophthalic acid chloride, etc. Alternatively, it can be synthesized by a radical polymerization technique such as a two-stage polymerization method using a polymerization catalyst having two types of peroxide groups with different activities such as dicyclohexanone peroxide, etc., or a combination of these techniques. Generally, it is difficult to completely convert the entire polymerization system into an AB type block copolymer using such polymerization techniques, and the resulting polymer often contains polymers other than block copolymers. In order to separate only the block copolymer from these mixed polymers, a solvent for the mixed polymer, such as dimethylformamide, N-methyl-2-pyrrolidone, etc., is used.
Fractional precipitation may be performed using a mixed solvent with a non-solvent such as water, acetone, methanol, etc. Furthermore, if the polymer other than the block copolymer in the mixed polymer is an acrylonitrile polymer described later, it is not necessary to separate and take out only the block copolymer.
It is also possible to use the mixed polymer as it is. The AN-based polymer constituting the hollow fiber of the present invention is
Vinyl monomers copolymerizable with AN, specifically acrylamide, methacrylamide, N-methylacrylamide, N-ethylmethacrylamide, maleimide, so that AN is 40% by weight or more,
Allyl alcohol, methallyl alcohol, β-hydroxyethyl methacrylate, methallylamine, β-aminoethyl methacrylate, acrylic acid, methacrylic acid, itaconic acid, methyl acrylate, methyl methacrylate, ethyl methacrylate, α-methylacrylonitrile, α-cyanoacrylonitrile, acetic acid It can be easily obtained by polymerizing one or more of vinyl, vinyl chloride, vinylidene chloride, styrene, etc., by a conventional polymerization method, for example, radical polymerization. In order to make the hollow fiber of the present invention, an AN-based polymer and
A method of manufacturing ordinary hollow fibers by mixing both polymers so that the composition ratio with the AB type block copolymer becomes the composition ratio of the hollow fibers of the present invention, and dissolving them in a common solvent to form a solution, e.g. This solution can be easily produced by introducing a liquid such as water, which is a non-solvent for both polymers, into the coagulation bath from the inside through the outer discharge port of the annular spinneret. A common solvent used for spinning and forming is AN.
There is no particular problem if the solvent can dissolve the block copolymer and the AB block copolymer at the same time, but usually
One or more of organic solvents such as dimethylformamide, dimethylacetamide, N-methyl-2-pyridone, and dimethyl sulfoxide, which are solvents for AN polymers, and inorganic solvents such as nitric acid, rhodan soda aqueous solution, and zinc chloride aqueous solution. A mixed solvent is used. The obtained solution is generally observed as a transparent homogeneous solution in many cases, but when observed using a differential interference microscope or the like, it is an extremely stable solution exhibiting fine phase separation. Adding various additives such as antioxidants, flame retardants, or matting agents to these solutions does not adversely affect the achievement of the objectives of the present invention. The hollow fiber of the present invention obtained in this way has the above-mentioned unique composition and structure, and has the formula (1) and the formula
It has extremely high water permeability and high selective separation ability as shown in (2), and is extremely excellent especially as a hollow fiber used in artificial kidneys. Formula (1) and formula
The water permeability and inulin passage rate shown in (2) are measured by the following method. Water permeability: A certain number of hollow fibers whose inner and outer diameters have been measured in advance are potted at both ends with resin as shown in Figure 1, and a pressure difference of 200 mmHg is created between the injection side and the outflow side, and the physiological flow per unit time is Measure the permeation amount of saline solution, divide the effective area of the inner wall of the hollow fiber by the calculated value, and calculate the value per unit area (ml/
Hr・m 2・mmHg). Inulin passage rate: Inulin passage rate is the reaction product generated from fructose by heating in an acidic solution of hydrochloric acid.
It is carried out by the following procedure using a method of reacting with thiobarbituric acid to develop color and measuring absorbance. Dissolve 1.00 g of inulin in 20 ml of physiological saline, then add 980 ml of serum or bovine blood to make a total volume of 1000 ml to prepare a 100 mg/dl solution of inulin. (This solution is used as the serum stock solution.) This stock solution was poured into the tube with a pressure difference of 200 mmHg between the injection side and the outflow side using a device set up in the same manner as in the water permeability measurement, and after 1 hour, the hollow The serum fluid that comes out through the fiber wall is collected and the amount of inulin is determined. For quantitative determination, add IN-H 2 SO 4 to 17.5 g of 3CdSO 4 8H 2 O and 500 ml of purified water to 1 volume of the serum solution that has flowed out through the hollow fiber. 3 volumes, and
This is carried out using the supernatant obtained by adding and mixing 6 volumes of 0.166N-NaOH. Add 1.0 ml of physiological saline and 2N− to 1.0 ml of this supernatant.
Add 0.1 ml of NaOH and heat at 98°C for 15 minutes. After cooling, add 3 ml of a solution of 1.00 g of thiobarbituric acid in 500 ml of 35% concentrated hydrochloric acid, and
C. for 5 minutes, and after cooling to room temperature, spectrophotometric analysis was performed and the inulin passage rate was determined from the value at 435 nm using the following formula. Inulin passage rate (%) = ABS of serum solution/A of serum source solution
BS x 10 2 The present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto, and % in Examples means % by weight unless otherwise specified. (Reference example) Synthesis of AB type block copolymer 12g of dicyclohexanone peroxide represented by the following formula 312 g of acrylonitrile containing 2.5 g of sodium lauryl sulfate was added and suspended in 3000 ml of deionized water containing 2.5 g of sodium lauryl sulfate, 7.2 g of Rongarit was added thereto, and the mixture was heated at 40°C.
The temperature was raised to start the first stage polymerization. Polymerization was carried out for 2 hours while stirring the inside of the reaction system and controlling the temperature so as not to exceed 40°C. When a small amount of acrylonitrile was removed from the system and the remaining amount of acrylonitrile was measured using gas chromatography, it was found that the amount of acrylonitrile remaining in the system was
It was found that 92.6% was polymerized. Next, 200 g of methyl acrylate was added to the polymerization reaction system for second-stage polymerization, and while the temperature inside the system was maintained at 70° C., the mixture was stirred for 3 hours to carry out polymerization. The resulting suspension was filtered, washed with water, and dried to obtain 446 g of a white polymer. In this polymer, polyacrylonitrile produced in the first stage polymerization, polymethyl acrylate produced in the second stage, and the desired acrylonitrile are used as segment (A) components, and methyl acrylate is used as segment (B). Since it contains an AB type block copolymer, about 5000 ml of acetone was added to dissolve only the polymethyl acrylate, and another operation was repeated three times to remove it. This operation resulted in a polymer weight of 310.6 g. A part of this polymer was analyzed by fractional precipitation using a mixed solvent of dimethylformamide and acetone, and it was found that it contained 46.5% polyacrylonitrile and 53.5% AB type block copolymer. The AB type block copolymer obtained by fractionation had an intrinsic viscosity of 1.83. Example 1 An AB type block copolymer having acrylonitrile as the segment (A) and methyl acrylate as the segment (B) polymerized and fractionated by the method of the reference example described above was prepared so as to have the composition shown in Table 1. , an acrylonitrile-based polymer consisting of acrylonitrile/methyl acrylate = 92/8. These polymer compositions were then reduced to a total polymer concentration of 16
Dissolved in 70% nitric acid aqueous solution so that the inner diameter
The outer diameter is 200 microns and the outer diameter is 300 microns.
Using an annular spinneret with a diameter of 0.45 mm and an inner diameter of 0.1 mm, the solution was introduced from the outer annular part, and water was introduced from the inner part, and the solution was encapsulated in the solution and then discharged. The solution discharge linear speed at this time was 16.6 m/min, and this solution was spun into a 30% nitric acid aqueous solution with a space of about 90 mm in between to obtain hollow fibers. The hollow fibers of the present invention are extremely excellent in terms of water permeability and inulin passage rate, and are incomparable with the conventional hollow fibers shown in the comparative examples.

【表】 実施例 2及び3 前記参考例と同様の2段重合法により、アクリ
ロニトリルをセグメント(A)成分とし、アクリル酸
をセグメント(B)成分とするAB型ブロツク共重合
体の合成、及びセグメント(A)成分をアクリロニト
リルセグメント(B)成分をアクリルアミドとする
AB型ブロツク共重合体の合成を行つた。2段目
重合の終了後、第2段目重合で生成したポリアク
リル酸、及びポリアクリルアミドを除去する為、
それぞれを多量の温水で洗浄し、ついでDMF/
水系溶媒で分別沈澱を実施し、目的とするAB型
ブロツク共重合体のみを採取した。これらAB型
ブロツク共重合体の固有粘度及びAB型ブロツク
共重合体中に占めるセグメント(B)成分の組成は次
の通りであつた。
[Table] Examples 2 and 3 Synthesis of an AB type block copolymer containing acrylonitrile as the segment (A) component and acrylic acid as the segment (B) component, and segment (A) component is acrylonitrile segment (B) component is acrylamide
AB type block copolymer was synthesized. After the second stage polymerization is completed, in order to remove the polyacrylic acid and polyacrylamide produced in the second stage polymerization,
Wash each with plenty of warm water, then DMF/
Fractional precipitation was carried out using an aqueous solvent, and only the desired AB type block copolymer was collected. The intrinsic viscosity of these AB type block copolymers and the composition of the segment (B) component in the AB type block copolymers were as follows.

【表】 これらのAB型ブロツク共重合体に表3の組成
となる様に、ポリアクリロニトリル(固有粘度
1.21)を混合し、ついでこれらの本発明の重合体
組成物を全重合体濃度が19.5%となる様に65%硝
酸水溶液に溶解した。得られた溶液はいずれも不
透明でありミクロ相分離した均一な溶液であつ
た。 この溶液を実施例1と同様の装置により紡糸
し、表3に示す中空繊維を得た。いずれも優れた
透水性能及び選択的分離能を示すものであつた。
[Table] Polyacrylonitrile (intrinsic viscosity
1.21), and then these polymer compositions of the present invention were dissolved in a 65% nitric acid aqueous solution so that the total polymer concentration was 19.5%. All of the obtained solutions were opaque and homogeneous with microphase separation. This solution was spun using the same apparatus as in Example 1 to obtain hollow fibers shown in Table 3. All exhibited excellent water permeability and selective separation ability.

【表】 実施例 4 前記、参考例と同様の方法でセグメント(A)成分
をアクリロニトリル、セグメント(B)をアクリロニ
トリル/メチルアクリレートの比率の異なるラン
ダム共重合体とするAB型ブロツク共重合体を合
成した。参考例と同様にジメチルホルムアミド−
アセトンの混合溶剤からAB型ブロツク共重合体
のみを取り出し、組成解析及び固有粘度を測定し
た結果以下に示す通りのものであつた。
[Table] Example 4 Synthesis of an AB type block copolymer in which the segment (A) component is acrylonitrile and the segment (B) is a random copolymer with different ratios of acrylonitrile/methyl acrylate using the same method as in the reference example above. did. Dimethylformamide as in the reference example
Only the AB type block copolymer was taken out from the mixed solvent of acetone, and the results of compositional analysis and measurement of intrinsic viscosity were as shown below.

【表】 これらのAB型ブロツク共重合体に、アクリロ
ニトリル/メチルアクリレート/メタリルスルホ
ン酸ソーダ=92.5/7.0/0.5の組成からなるアク
リロニトリル系共重合体(固有粘度1.18)が、全
重合体に対して15重量%となる様に混合したの
ち、実施例1と同じ方法にて中空繊維を得た。得
られた中空繊維の性能は表5に示す通りであり、
いずれも高い透水性能及びイヌリン通過率を示す
ものであつた。
[Table] In addition to these AB type block copolymers, an acrylonitrile copolymer (intrinsic viscosity 1.18) with a composition of acrylonitrile/methyl acrylate/sodium methallylsulfonate = 92.5/7.0/0.5 was added to the total polymer. After mixing to a concentration of 15% by weight, hollow fibers were obtained in the same manner as in Example 1. The performance of the obtained hollow fibers is as shown in Table 5,
All showed high water permeability and inulin passage rate.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の重合体組成物から得られた中
空繊維の透水性能、イヌリン通過率を測定する為
の装置であり、1は処理液の入口、2は処理液の
出口を示す、4は中空繊維束であり、両端は樹脂
でポツテイング(5及び6)されている。3は中
空繊維壁を通して過された液の出口を示す。
Figure 1 shows an apparatus for measuring the water permeability and inulin passage rate of hollow fibers obtained from the polymer composition of the present invention, in which 1 indicates the inlet of the treatment liquid, 2 indicates the outlet of the treatment liquid, and 4 is a hollow fiber bundle, and both ends are potted with resin (5 and 6). 3 indicates the outlet of the liquid passed through the hollow fiber wall.

Claims (1)

【特許請求の範囲】 1 (A) 実質的に繊維軸方向に連続した中空部を
有する中空繊維であつて、該中空繊維が、実質
的にアクリロニトリル(以下ANと略す)の重
合量が40重量%以上であるアクリロニトリル系
重合体(以下AN系重合体と略す)が5〜50重
量%と、80重量%以上のAN重合量を有するセ
グメントと (B) 分子内に水酸基、カルボキシル基、アミノ
基、アミド基、イミド基、メチルエステル基、
エチルエステル基を有するビニル単量体の一種
または二種以上を20重量%以上含有するセグメ
ント とからなるAB型ブロツク共重合体が50〜95重量
%とからなり、かつ下式(1)及び(2)を同時に満足し
てなることを特徴とするアクリロニトリル系重合
体からなる中空繊維。 イヌリン通過率≧50 (1) log(透水量)≧110−(イヌリン通過率)/30 (2)
[Scope of Claims] 1 (A) A hollow fiber having a hollow portion substantially continuous in the fiber axis direction, wherein the hollow fiber has a substantially polymerized amount of acrylonitrile (hereinafter abbreviated as AN) of 40% by weight. % or more of acrylonitrile-based polymer (hereinafter abbreviated as AN-based polymer) is 5 to 50% by weight, and (B) a segment having an AN polymerization amount of 80% or more by weight, and (B) a hydroxyl group, a carboxyl group, or an amino group in the molecule. , amide group, imide group, methyl ester group,
AB type block copolymer consisting of 50 to 95% by weight of a segment containing 20% by weight or more of one or more vinyl monomers having an ethyl ester group, and having the following formula (1) and ( A hollow fiber made of an acrylonitrile polymer, characterized in that it satisfies 2) at the same time. Inulin passage rate ≧50 (1) log (water permeability) ≧110− (inulin passage rate) / 30 (2)
JP18373781A 1981-11-18 1981-11-18 Hollow fiber made of acrylonitrile polymer Granted JPS5887318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18373781A JPS5887318A (en) 1981-11-18 1981-11-18 Hollow fiber made of acrylonitrile polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18373781A JPS5887318A (en) 1981-11-18 1981-11-18 Hollow fiber made of acrylonitrile polymer

Publications (2)

Publication Number Publication Date
JPS5887318A JPS5887318A (en) 1983-05-25
JPH0219205B2 true JPH0219205B2 (en) 1990-05-01

Family

ID=16141085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18373781A Granted JPS5887318A (en) 1981-11-18 1981-11-18 Hollow fiber made of acrylonitrile polymer

Country Status (1)

Country Link
JP (1) JPS5887318A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8453653B2 (en) * 2007-12-20 2013-06-04 Philip Morris Usa Inc. Hollow/porous fibers and applications thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50134984A (en) * 1974-04-16 1975-10-25
JPS5590616A (en) * 1978-12-23 1980-07-09 Nippon Zeon Co Ltd Production of hollow acrylonitrile fiber
JPS55155044A (en) * 1979-05-21 1980-12-03 Mitsubishi Rayon Co Ltd Acrylonitrile polymer composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50134984A (en) * 1974-04-16 1975-10-25
JPS5590616A (en) * 1978-12-23 1980-07-09 Nippon Zeon Co Ltd Production of hollow acrylonitrile fiber
JPS55155044A (en) * 1979-05-21 1980-12-03 Mitsubishi Rayon Co Ltd Acrylonitrile polymer composition

Also Published As

Publication number Publication date
JPS5887318A (en) 1983-05-25

Similar Documents

Publication Publication Date Title
US4439322A (en) Polymethyl methacrylate membrane
AU660425B2 (en) High efficiency removal of low density lipoprotein-cholesterol from whole blood
KR100284911B1 (en) Hydrophilic materials and semipermeable membranes using the same
US5039420A (en) Hydrophilic semipermeable membranes based on copolymers of acrylonitrile and hydroxyalkyl esters of (meth) acrylic acid
EP0066408B1 (en) Porous membrane
CN108636374A (en) Double crosslinked microspheres of a kind of dopamine graft sulfonation sodium alginate and its preparation method and application
JPH06335522A (en) Blood compatible material
JPH0398628A (en) Cellulose membrane
JPH0451216B2 (en)
JPH0219205B2 (en)
JP2510540B2 (en) Polyacrylonitrile-based semipermeable membrane and method for producing the same
JPS6361972B2 (en)
JPH0611320B2 (en) Hollow fiber membrane for hemodialysis
EP0092587B1 (en) Polymethyl methacrylate hollow yarn ultra-filtration membrane and process for its production
US5859175A (en) Process for the preparation of polyether amide solutions, steam-sterilizable dialysis membranes obtainable using the polyether-amide solutions, and a process for the production of these membranes
JPH05111624A (en) Semipermeable membrane
JP2003290638A (en) Polysulfone-based semipermeable membrane and artificial kidney using the same
JP2006124714A (en) Contamination resistant material and contamination resistant semipermeable membrane
JPH0760085A (en) Acrylonitrile copolymer membrane and preparation and use thereof
JP2000157852A (en) Polysulfone blood treatment membrane
US20040102587A1 (en) Hydrophilic polymer membranes made of single phase polymer blends comprising polysulfones and hydrophilic copolymers
JP3808968B2 (en) Method for producing blood compatible porous membrane
JP2003292625A (en) Polysulfone copolymer
JPH1080477A (en) Module for blood treatment
US20220267497A1 (en) Membrane and polymer for the manufacture thereof