JPH0219183B2 - - Google Patents

Info

Publication number
JPH0219183B2
JPH0219183B2 JP19280882A JP19280882A JPH0219183B2 JP H0219183 B2 JPH0219183 B2 JP H0219183B2 JP 19280882 A JP19280882 A JP 19280882A JP 19280882 A JP19280882 A JP 19280882A JP H0219183 B2 JPH0219183 B2 JP H0219183B2
Authority
JP
Japan
Prior art keywords
gas
furnace
carburizing
steel
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19280882A
Other languages
Japanese (ja)
Other versions
JPS5983760A (en
Inventor
Koji Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Original Assignee
Japan Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP19280882A priority Critical patent/JPS5983760A/en
Publication of JPS5983760A publication Critical patent/JPS5983760A/en
Publication of JPH0219183B2 publication Critical patent/JPH0219183B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は炉内に浸炭雰囲気ガスを連続的に流通
しながら炉内の鋼を熱処理する鋼の浸炭処理法に
関するものである。 従来、鋼の浸炭処理法に使われる雰囲気ガスと
しては、高温に保持したガス発生炉にC3H8
C4H10などの燃料ガスと、この燃料ガスが不完全
燃焼となる程度の空気とを導入することによりガ
ス発生炉から反応生成してくる、いわゆる一般に
吸熱型雰囲気ガスと称されているガスが多用され
ている。 上記雰囲気ガスの代表的組成は、ガス発生炉内
でN2:43容量%、H2:32容量%、CO:25容量
%、CO2:0.1容量%、炉内露点D=−5℃であ
り、この雰囲気ガス中には浸炭を妨げるCO2
H2Oなどの酸化性成分が多く含まれてしまつて
いる。このためその使用に際してガス中のH2
COの量を同ガス中のCO2、H2Oの酸化、脱炭作
用を押えるに足る程度に増量し、ガスが鋼に対し
て浸炭の役目を果せるようにしている。又一方、
H2O、CO2量が多いと鋼に含まれる合金元素の中
でもCr、Mnなどの特にO2と親和力の強い金属に
対して酸化作用が及ぶいわゆる粒界酸化が生じて
しまい、そのために粒界近傍での焼入性が低下し
てしまう。これを防ぐにはH2O、CO2量を別途に
減少させるか真空浸炭などの複雑かつ高価な設備
を必要とする他の方法を用いなければならない。
その上更に上記雰囲気ガスによる方法では、
C3H8、C4H10などの燃料ガスと空気とを接触反
応せしめるガス発生炉を必要とし、この炉による
雰囲気ガスの発生が安定化するまでの時間、すな
わち立ち上がり時間がかかるという欠点がある。
さらにまた、使用するガスを発生炉で発生するが
ため必要とする雰囲気ガスの組成およびその流量
の変更などが難しいという欠点がある。そこで一
般にはガス発生炉の運転条件は一定とし、組成制
御を別系統により直接C3H8、C4H10などの炭化
水素を浸炭炉に添加することによつて行なつた
り、必要流量の変更については流量を予め必要最
大量にしており、流量を少なくする場合、過剰分
を大気放出するというガスを無駄に浪費する方法
により行なつている。 本発明は上記事情に鑑みてなされたもので、そ
の目的は経済的で、浸炭効果が高く、浸炭処理中
に鋼中のCr、MnなどのO2と親和力の強い金属が
酸化するのを防ぐことのできる鋼の浸炭処理方法
を提供することにあり、雰囲気ガスの組成および
流量を所定範囲内にコントロールすることによつ
て、炉内のO2、H2O、CO2などの酸化性成分を効
果的に減らし、浸炭、還元作用を有するCH4と、
還元作用を有するH2との効果を最大限に活用で
きるようにしたものである。 以下、この発明を詳しく説明する。本発明の浸
炭雰囲気ガスは、窒素ガスN2および水素ガスH2
とからなる担体ガスとメタンガスCH4とを混合し
て調製するもので、炉内の各構成ガスは容量%で
示すH2の濃度VHとCH4の濃度VCとの和V(=VH
+VC)が2容量%<V<40容量%となるととも
にVHに対するVCの比K(=VC/VH)が0.5K
5となるような割合で混合されるものである。 上記0.5K5および2容量%<V<40容量
%という数値範囲は、次に説明するような理由お
よび方法により定めたものである。 まず、鋼の表面炭素濃度増加速度とKとの関係
を調べてみた。この時、処理温度T=925℃、水
素とメタンとの合計含有量V=8容量%、炉内露
点D=−70℃、炉内酸素濃度V0=0(ppm)であ
り、その結果は第1図に示すようになつた。図か
ら明らかなように、表面炭素濃度増加速度△W0
は、水素とメタンとの比(VC/VH)、K=1.5の
時に最大値0.215重量%/時を示し、Kが1.5より
小さくても、また大きくても上記増加速度△W0
が減少することがわかる。従つて、VC+VH=一
定とした場合、K=1.5あるいは1K2とし
た時が最も表面炭素濃度増加速度△W0が速いこ
とがわかる。しかし実際的にはK値の大小による
反応速度の変動、さらにはCH4ガスとH2ガスの
価格差も勘案する必要があり、実用上の最適K値
として0.5K5に設定した。なお、K=0.5ま
たはK=5の時の増加速度△W0は、△W0の最大
値、すなわちK=1.5の時の△W0に比べて30%程
度小さくなつてしまうが、この程度の増加速度の
低下は、例えば処理温度を20℃程度高くするなど
他の浸炭条件を変えることにより容易にカバーで
きるので、さほどの支障はないものである。 次に水素とメタンの合計含有量(VC+VH)、V
の数値範囲を求めるために炉内露点D、処理温度
T、処理時間H、炉内酸素濃度V0などの因子を
変数とした場合の表面炭素濃度増加量△W(重量
%)を求めた。 まず、処理温度T=925℃、処理時間H=4時
間、炉内酸素濃度V0=0、K=1.5での表面炭素
濃度増加量△W1を炉内露点DならびにCH4濃度
VCを変数として、それらの関係を求めたところ、
次の(1)式のようになつた。 △W1=−0.025×(D+70)+0.25×VC−0.29 …(1) 次に処理温度T(℃)を変数とした鋼の浸炭反
応速度RTをT=925℃の時のRTを1とし、850℃
<T<1050℃の範囲において求めたところ、次の
(2)式が得られた。 RT=1.62×10-2T−14.02 ……(2) また、処理時間H(時間)を変数とした浸炭反
応速度RHをH=4(時間)の時のRHを1として求
めたところ、次の(3)式が得られた。 RH=0.25H ……(3) さらに、炉内酸素濃度V0(ppm)を変数とした
浸炭反応速度Rpを処理温度T=925℃、処理時間
H=4時間、K=1.5でV0=0(ppm)の時のR0
を1として求めたところ、次に(4)式が得られた。 R0=−8.83×10-3×Vp/VC+1 ……(4) 従つて、T、H、Vp、VCの各因子を変数とし
た場合の浸炭反応速度Rは、 R=RT×RH×Rp ……(5) となり、 各因子を変数とした表面炭素濃度増加量△W
(重量%)は、 △W=△W1×Rとして求めることができる。 しかし、雰囲気ガス流速、予め鋼に含有されて
いる炭素濃度、反応阻害因子の影響については、
実操業に用いられる浸炭炉の性能、使用状況など
により大きく左右されるため、上記のような定量
的な関係は見い出しにくい。そのため、このよう
な実操業における変動を考慮し、推定表面炭素濃
度増加量に対して±50%の許容を設けるのが妥当
と考えて、補正係数Aを0.5〜1.5と設定した。従
つて、表面炭素濃度増加量△Wは、次の(6)式のよ
うに示すことができる。 △W=△W1×RT×RH×Rp×A ……(6) この(6)式を用い、下記のようにしてV=VC
VHの数値範囲を求めた。 まず、最も浸炭反応速度が早い条件の下で、通
常の浸炭時間範囲の長時間側に属するH=16時間
処理し、これから表面炭素濃度増加量△Wを浸炭
処理目的として表面硬化が達せられるとされる
0.8重量%にするのに必要なVを求め、この値を
Vの最小値とした。 従つて、処理温度T=1050℃、処理時間H=16
時間、炉内酸素濃度V0=0ppm、炉内露点D=−
70℃、K=1.5、A=1.5の条件下で△W=0.8重量
%とするには、(6)式より、 0.8=(0.25×VC−0.29)×2.99×4.0×1×1.5 となり、 VC=1.35 前記した関係K=VC/VH=1.5よりVH=0.9 従つて、 V=VC+VH=2.25>2(重量%) ……(7) となる。 次にVの最大値を求めるにあたり、まずV0
ついてPSA法により製造したN2ガス中に含有さ
れる最大O2濃度(約1000ppm)、あるいは市販N2
ボンベ中のO2濃度度(約50ppm)をも考慮して
V01100ppmとした。そしてH2O量については
浸炭効果を充分に生かす上からもできるだけ少な
い方が良いので、従来法において浸炭雰囲気ガス
中に許容されるH2O量よりも10倍以上少ない
300ppm、つまり炉内露点で示すとD=−32℃よ
り低い範囲と規定した。この条件下で処理温度は
通常行なわれるT=925℃とし、処理時間Hは通
常の浸炭時間範囲の短時間側に近いH=2.5時間
として表面炭素濃度増加量△Wを0.8重量%とす
るに必要なV量を求め、この値をVの最大値とし
た。従つて、処理温度T=925℃処理時間H=2.5
時間、炉内酸素濃度V0=1100ppm、炉内露点D
=−33℃、K=1.5、A=0.5の条件下で△W=0.8
重量%とするには、前記(7)式より、 0.8=(0.25×VC−1.22)×1×0.63×(1−9.71/
VC)×0.5 となり、 VC=23=1.5VH すなわち V=VCVH=38.3<40(重量%) ……(8) となる。 このようにして、実操業において最も効果の上
がる浸炭雰囲気ガスの組成濃度範囲として、0.5
K=VC/VH5および2容量%<V=VH+VC
<40容量%が規定される。次にこの数値範囲を
VCを横軸に、VHを縦軸にとつた座標上にプロツ
トすると、第2図のようになる。つまり、図にお
いて、A、B、C、Dの4つの線に囲繞された領
域に属するようにVC値、VHを選んで雰囲気ガス
を構成すれば、実操業において効率的な浸炭処理
が行なえることになる。 なお、図中A線はK=0.5の線であり、B線は
V=40(重量%)の線、C線はK=5の線、D線
はK=1.5かつV=2.0の時(b点)の浸炭能力と
同等の浸炭能力を示す。 即ち、例えば下記3条件は同等の浸炭能力を示
している。 K=0.5かつV=3(a点) K=1.5かつV=2(b点) K=5 かつV=3(C点) 本発明における雰囲気ガスの導入方法として
は、第3図に示すように、鋼Mを炉1内に装入
後、流量調整弁2開き、ライン3を介してN2
炉1内に導入し、炉1内を充分にパージする。炉
内露点D<−32℃、炉内酸素濃度V01100ppm
に達した後、流量調整弁4を開き、ライン3から
のN2とライン5からのH2を混合し、(N2+H2
混合ガスとして炉1内に導入し、昇温を開始す
る。所定温度に達した後、流量調整弁6を開き、
ライン3からのN2、ライン5からのH2、ライン
7からのCH4を混合し(N2+H2+CH4)混合ガ
スとして炉内に導入し、浸炭処理を行なう。この
時のCH4およびH2の量については、K値を0.5〜
5の間で一定比率とした上で、炉1内の露点D、
雰囲気組成を測定しながら必要とする浸炭能力得
られるように、V量を2<V<40内で調整するこ
とで行なつてもよいし、逆にV量を一定としK値
を変えることによつて行なつてもよい。しかし、
雰囲気ガスを効果的に利用するためにはK=一定
として行なつた方が好ましい。 以上説明したように、本発明に係る浸炭処理方
法によれば、浸炭雰囲気ガスを構成する窒素ガ
ス、水素ガスおよびメタンガスをそれぞれ別々に
流して混合できるばかりでなく、それぞれの組成
濃度を浸炭効果を最も高めることのできる濃度範
囲に設定できる方法なので、 (i) O2、CO2、H2Oなどの酸化性成分量を低く抑
えることができ、しかも浸炭に必要とするCH4
およびH2の量を削減することができる。 (ii) 雰囲気ガスの組成変更は各組成ガスの流量を
調整すれば良く、パージ操作も兼ねることがで
き、経済的である。 (iii) O2、CO2、H2Oの量を極力減らしたので、
O2と親和力の強い合金元素の酸化を抑えるこ
とができ、従来のガス浸炭法に比べて、粒界酸
化物の形成を著しく減少させることができる。 (iv) 雰囲気ガス発生用の炉を必要としないので、
運転操作が容易となり、また組成流量の変動に
対応し易い。 このような、本発明の効果を定量的に確認する
ために、鋼試験片(たて45mm×よこ60mm×厚さ
0.3mm)を用いて種々の条件下で浸炭処理を行な
い、その時の表面炭素濃度増加量を求める実験を
行なつた。なお、初期に含有されている鋼中炭素
濃度は0.004wt%であり、又全ガス流量は800N
ml/minである。 その結果、下表の数値が得られた。
The present invention relates to a method for carburizing steel, in which steel in a furnace is heat treated while a carburizing atmosphere gas is continuously passed through the furnace. Conventionally, the atmospheric gas used in steel carburizing treatment is C 3 H 8 , C 3 H 8 ,
A gas that is generally referred to as an endothermic atmospheric gas and is produced by a reaction from a gas generating furnace by introducing a fuel gas such as C 4 H 10 and air to an extent that causes incomplete combustion of the fuel gas. is frequently used. The typical composition of the above atmospheric gas is N2 : 43% by volume, H2 : 32% by volume, CO: 25% by volume, CO2 : 0.1% by volume in the gas generating furnace, and the dew point in the furnace is D = -5°C. This atmospheric gas contains CO2 , which hinders carburization.
It contains many oxidizing components such as H 2 O. Therefore, when using it, H 2 in the gas,
The amount of CO is increased to an extent sufficient to suppress the oxidation and decarburization effects of CO 2 and H 2 O in the gas, so that the gas can perform the role of carburizing the steel. On the other hand,
When the amount of H 2 O and CO 2 is large, so-called grain boundary oxidation occurs, which has an oxidizing effect on metals that have a particularly strong affinity for O 2 , such as Cr and Mn, among the alloying elements contained in steel. Hardenability near the field decreases. To prevent this, it is necessary to separately reduce the amount of H 2 O and CO 2 or use other methods such as vacuum carburization that require complicated and expensive equipment.
Furthermore, in the above method using atmospheric gas,
It requires a gas generating furnace that causes a catalytic reaction between a fuel gas such as C 3 H 8 or C 4 H 10 and air, and the drawback is that it takes time for the furnace to stabilize the generation of atmospheric gas, that is, it takes a long time to start up. be.
Furthermore, since the gas used is generated in a generating furnace, it is difficult to change the composition and flow rate of the required atmospheric gas. Therefore, in general, the operating conditions of the gas generating furnace are kept constant, and the composition is controlled by directly adding hydrocarbons such as C 3 H 8 and C 4 H 10 to the carburizing furnace through a separate system, or by controlling the required flow rate. Changes are made by setting the flow rate to the required maximum amount in advance, and when reducing the flow rate, the excess amount is released into the atmosphere, which wastes gas. The present invention was made in view of the above circumstances, and its purpose is to be economical, have a high carburizing effect, and prevent metals that have a strong affinity for O 2 such as Cr and Mn in steel from oxidizing during carburizing treatment. Our objective is to provide a method for carburizing steel that can eliminate oxidizing components such as O 2 , H 2 O, and CO 2 in the furnace by controlling the composition and flow rate of atmospheric gas within a predetermined range. CH4 , which has carburizing and reducing effects, effectively reduces
This makes it possible to make maximum use of the effect of H 2 , which has a reducing effect. This invention will be explained in detail below. The carburizing atmosphere gas of the present invention is nitrogen gas N2 and hydrogen gas H2.
It is prepared by mixing a carrier gas consisting of H
+V C ) becomes 2% by volume < V < 40% by volume, and the ratio K of V C to V H (= V C /V H ) is 0.5K.
They are mixed at a ratio of 5. The above numerical ranges of 0.5K5 and 2% by volume<V<40% by volume were determined based on the reasons and methods described below. First, we investigated the relationship between the rate of increase in surface carbon concentration of steel and K. At this time, the treatment temperature T = 925°C, the total content of hydrogen and methane V = 8% by volume, the dew point in the furnace D = -70°C, the oxygen concentration in the furnace V 0 = 0 (ppm), and the results are It became as shown in Figure 1. As is clear from the figure, the rate of increase in surface carbon concentration △W 0
shows the maximum value of 0.215% by weight/hour when the ratio of hydrogen to methane (V C /V H ), K = 1.5, and the above increase rate △W 0
It can be seen that the amount decreases. Therefore, when V C +V H = constant, it can be seen that the rate of increase in surface carbon concentration ΔW 0 is fastest when K = 1.5 or 1K2. However, in practice, it is necessary to take into account fluctuations in the reaction rate depending on the magnitude of the K value, as well as the price difference between CH 4 gas and H 2 gas, so the optimum K value for practical use was set at 0.5K5. Note that the increasing speed △W 0 when K = 0.5 or K = 5 is about 30% smaller than the maximum value of △W 0 , that is, △W 0 when K = 1.5. The decrease in the rate of increase in carburization can be easily compensated for by changing other carburizing conditions, such as increasing the treatment temperature by about 20° C., so it does not pose much of a problem. Next, the total content of hydrogen and methane (V C +V H ), V
In order to find the numerical range of , the amount of increase in surface carbon concentration ΔW (wt %) was determined when factors such as in-furnace dew point D, processing temperature T, processing time H, and in-furnace oxygen concentration V 0 were used as variables. First, the amount of increase in surface carbon concentration △W 1 at treatment temperature T = 925°C, treatment time H = 4 hours, in-furnace oxygen concentration V 0 = 0, and K = 1.5 is expressed as in-furnace dew point D and CH 4 concentration.
When we calculated the relationship between them using V C as a variable, we found that
The result is as shown in equation (1) below. △W 1 = −0.025×(D+70)+0.25×V C −0.29 …(1) Next, the carburizing reaction rate R T of steel with treatment temperature T (℃) as a variable is R when T = 925℃ T is 1, 850℃
When calculated in the range of <T<1050℃, the following
Equation (2) was obtained. R T = 1.62 × 10 -2 T - 14.02 ... (2) In addition, the carburizing reaction rate R H with the processing time H (hours) as a variable was determined by setting R H when H = 4 (hours) to 1. However, the following equation (3) was obtained. R H = 0.25H ...(3) Furthermore, the carburizing reaction rate R p with the oxygen concentration V 0 (ppm) in the furnace as a variable is calculated as V at treatment temperature T = 925°C, treatment time H = 4 hours, and K = 1.5. R 0 when 0 = 0 (ppm)
When calculated with 1 as 1, the following equation (4) was obtained. R 0 = -8.83×10 -3 ×V p /V C +1 ...(4) Therefore, the carburizing reaction rate R when the factors T, H, V p , and V C are variables is R= R T ×R H ×R p ...(5), and the increase in surface carbon concentration △W with each factor as a variable
(% by weight) can be determined as △W=△W 1 ×R. However, regarding the influence of atmospheric gas flow rate, carbon concentration pre-contained in steel, and reaction inhibiting factors,
It is difficult to find a quantitative relationship like the one above because it largely depends on the performance and usage conditions of the carburizing furnace used in actual operations. Therefore, in consideration of such fluctuations in actual operation, it was considered appropriate to provide a tolerance of ±50% for the estimated increase in surface carbon concentration, and the correction coefficient A was set at 0.5 to 1.5. Therefore, the surface carbon concentration increase amount ΔW can be expressed as in the following equation (6). △W=△W 1 ×R T ×R H ×R p ×A ...(6) Using this formula (6), V=V C +
The numerical range of VH was determined. First, under the conditions where the carburizing reaction rate is the fastest, treatment is performed for H = 16 hours, which is on the long side of the normal carburizing time range, and from this point on, the increase in surface carbon concentration △W is set as the purpose of carburizing, and surface hardening is achieved. be done
The V required to make it 0.8% by weight was determined, and this value was taken as the minimum value of V. Therefore, processing temperature T = 1050°C, processing time H = 16
time, oxygen concentration in the furnace V 0 = 0 ppm, dew point in the furnace D = -
To make △W=0.8% by weight under the conditions of 70℃, K=1.5, and A=1.5, from equation (6), 0.8=(0.25×V C −0.29)×2.99×4.0×1×1.5. , V C =1.35 From the above-mentioned relationship K=V C /V H =1.5, V H =0.9. Therefore, V=V C +V H =2.25>2 (weight %) (7). Next, to find the maximum value of V, first, for V 0 , the maximum O 2 concentration (approximately 1000 ppm) contained in N 2 gas produced by the PSA method, or commercially available N 2
Considering the O 2 concentration in the cylinder (approximately 50 ppm)
V 0 was set to 1100ppm. As for the amount of H 2 O, it is better to keep it as low as possible in order to fully utilize the carburizing effect, so the amount of H 2 O allowed in the carburizing atmosphere gas in the conventional method is more than 10 times lower.
It was defined as 300 ppm, that is, a range lower than D=-32°C in terms of the dew point inside the furnace. Under these conditions, the treatment temperature is set to T = 925°C, which is the usual value, the treatment time H is set to H = 2.5 hours, which is close to the short time side of the normal carburizing time range, and the increase in surface carbon concentration △W is set to 0.8% by weight. The required amount of V was determined and this value was taken as the maximum value of V. Therefore, processing temperature T = 925°C processing time H = 2.5
Time, oxygen concentration in the furnace V 0 = 1100ppm, dew point D in the furnace
△W=0.8 under the conditions of =-33℃, K=1.5, A=0.5
To calculate weight%, from the above formula (7), 0.8=(0.25×V C −1.22)×1×0.63×(1−9.71/
V C )×0.5, V C =23=1.5V H , that is, V=V C V H =38.3<40 (weight %)...(8). In this way, the composition concentration range of the carburizing atmosphere gas that is most effective in actual operation was determined to be 0.5
K=V C /V H 5 and 2 volume%<V=V H +V C
<40% by volume is specified. Next, change this numerical range to
If plotted on a coordinate system with V C on the horizontal axis and V H on the vertical axis, it will look like Figure 2. In other words, if the atmospheric gas is configured by selecting the V C value and V H so that they belong to the area surrounded by the four lines A, B, C, and D in the figure, efficient carburizing treatment can be achieved in actual operation. It will be possible to do it. In addition, line A in the figure is a line when K=0.5, line B is a line when V=40 (weight%), line C is a line when K=5, and line D is a line when K=1.5 and V=2.0 ( The carburizing ability is equivalent to that of point b). That is, for example, the following three conditions show equivalent carburizing ability. K=0.5 and V=3 (point a) K=1.5 and V=2 (point b) K=5 and V=3 (point C) The method of introducing atmospheric gas in the present invention is as shown in FIG. After charging the steel M into the furnace 1, the flow rate regulating valve 2 is opened and N2 is introduced into the furnace 1 through the line 3 to sufficiently purge the inside of the furnace 1. Furnace dew point D<-32℃, furnace oxygen concentration V 0 1100ppm
After reaching , open flow regulating valve 4 and mix N 2 from line 3 and H 2 from line 5 to (N 2 + H 2 ).
The mixed gas is introduced into the furnace 1 and the temperature is started to rise. After reaching a predetermined temperature, open the flow rate adjustment valve 6,
N 2 from line 3, H 2 from line 5, and CH 4 from line 7 are mixed (N 2 +H 2 +CH 4 ) and introduced into the furnace as a mixed gas for carburizing. For the amount of CH 4 and H 2 at this time, the K value is 0.5 ~
5, and the dew point D in the furnace 1,
This can be done by adjusting the V amount within 2<V<40 so as to obtain the required carburizing ability while measuring the atmosphere composition, or conversely, by keeping the V amount constant and changing the K value. You can do it later. but,
In order to effectively utilize the atmospheric gas, it is preferable to perform the process with K=constant. As explained above, according to the carburizing method of the present invention, not only can nitrogen gas, hydrogen gas, and methane gas constituting the carburizing atmosphere gas be flowed separately and mixed, but also the composition concentration of each can be adjusted to achieve the carburizing effect. Since it is a method that can set the concentration within the range where it can be increased the most, (i) the amount of oxidizing components such as O 2 , CO 2 , H 2 O, etc. can be kept low, and moreover, the amount of CH 4 required for carburization can be kept low;
and the amount of H2 can be reduced. (ii) The composition of the atmospheric gas can be changed by adjusting the flow rate of each composition gas, and it can also be used as a purge operation, which is economical. (iii) Since the amounts of O 2 , CO 2 , and H 2 O were reduced as much as possible,
Oxidation of alloying elements that have a strong affinity for O 2 can be suppressed, and the formation of grain boundary oxides can be significantly reduced compared to conventional gas carburizing methods. (iv) Since a furnace for generating atmospheric gas is not required,
Operation is easy and it is easy to respond to fluctuations in composition flow rate. In order to quantitatively confirm the effects of the present invention, a steel test piece (length 45 mm x width 60 mm x thickness
0.3mm) under various conditions, and conducted an experiment to determine the amount of increase in surface carbon concentration at that time. The initial carbon concentration in the steel is 0.004wt%, and the total gas flow rate is 800N.
ml/min. As a result, the values shown in the table below were obtained.

【表】 上表からも明らかなように、表面炭素濃度増加
量はいずれも0.8wt%以上あり、浸炭能力は従来
と同等以上の能力を持つことがわかる。しかも本
発明方法で処理すると該浸炭処理に用いるN2
CH4、H2ガスは、いずれも高純度、低露点であ
るため、炉内酸素濃度、炉内露点を相当低く維持
することができ、それ由、従来に比べてCH4
H2などの高価な活性ガスの使用量が減少するば
かりでなく、ちなみに従来法の場合はH2、CO、
炭化水素などの活性ガス量が50〜60vol%又水分
も約4000ppm(D.D≒−5℃)含まれているため、
この水分が粒界酸化物を形成するが、本発明方法
でこの好ましくない現象を惹起することなく、極
めて良好な浸炭処理が出来る。
[Table] As is clear from the above table, the increase in surface carbon concentration was more than 0.8wt% in all cases, and it can be seen that the carburizing ability was equal to or higher than that of the conventional method. Moreover, when treated with the method of the present invention, N 2 used in the carburizing treatment,
Since both CH 4 and H 2 gases have high purity and low dew points, the oxygen concentration in the furnace and the dew point in the furnace can be maintained considerably lower.
This not only reduces the amount of expensive active gases such as H 2 used, but also reduces the amount of H 2 , CO,
Because it contains 50 to 60 vol% of active gases such as hydrocarbons and approximately 4000 ppm of water (DD≒-5℃),
This moisture forms grain boundary oxides, but the method of the present invention allows extremely good carburizing treatment without causing this undesirable phenomenon.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は表面炭素濃度増加速度△W0とKとの
関係図、第2図は本発明に使用される浸炭雰囲気
ガス中の水素およびメタンガスの濃度範囲を示す
図、第3図は本発明を実施するに好適な浸炭処理
装置の概略構成図である。 1…炉、2…窒素ガス流量調整弁、3…窒素ガ
スライン、4…水素ガス流量調整弁、5…水素ガ
スライン、6…メタンガス流量調整弁、7…メタ
ンガスライン。
Fig. 1 is a diagram showing the relationship between surface carbon concentration increase rate △W 0 and K, Fig. 2 is a diagram showing the concentration range of hydrogen and methane gas in the carburizing atmosphere gas used in the present invention, and Fig. 3 is a diagram showing the concentration range of hydrogen and methane gas in the carburizing atmosphere gas used in the present invention. 1 is a schematic configuration diagram of a carburizing treatment apparatus suitable for carrying out. 1...Furnace, 2...Nitrogen gas flow rate adjustment valve, 3...Nitrogen gas line, 4...Hydrogen gas flow rate adjustment valve, 5...Hydrogen gas line, 6...Methane gas flow rate adjustment valve, 7...Methane gas line.

Claims (1)

【特許請求の範囲】[Claims] 1 炉内露点DをD<−32℃に設定するとともに
炉内酸素濃度V0をV01100ppmに設定した炉内
に鋼を置き、この炉内に窒素ガスと水素ガスとメ
タンガスとからなる浸炭雰囲気ガスを連続的に流
通させつつ鋼を850℃〜1050℃で熱処理する方法
であり、上記炉内の浸炭雰囲気ガス中の水素ガス
とメタンガスとの合計容量Vが2容量%<V<40
容量%となるとともに水素ガスに対するメタンガ
スの容量比Kが0.5K5になるように上記窒
素、水素およびメタンの各ガスの流量を調節する
ことを特徴とする鋼の浸炭処理方法。
1 Steel is placed in a furnace with the furnace dew point D set to D<-32°C and the furnace oxygen concentration V 0 set to V 0 1100 ppm, and carburizing gas consisting of nitrogen gas, hydrogen gas, and methane gas is placed in the furnace. This is a method of heat treating steel at 850°C to 1050°C while continuously circulating atmospheric gas, and the total volume V of hydrogen gas and methane gas in the carburizing atmospheric gas in the above furnace is 2% by volume < V < 40
A method for carburizing steel, comprising adjusting the flow rates of each of the nitrogen, hydrogen and methane gases so that the volume ratio K of methane gas to hydrogen gas is 0.5K5.
JP19280882A 1982-11-02 1982-11-02 Method for carburization of steel Granted JPS5983760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19280882A JPS5983760A (en) 1982-11-02 1982-11-02 Method for carburization of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19280882A JPS5983760A (en) 1982-11-02 1982-11-02 Method for carburization of steel

Publications (2)

Publication Number Publication Date
JPS5983760A JPS5983760A (en) 1984-05-15
JPH0219183B2 true JPH0219183B2 (en) 1990-04-27

Family

ID=16297327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19280882A Granted JPS5983760A (en) 1982-11-02 1982-11-02 Method for carburization of steel

Country Status (1)

Country Link
JP (1) JPS5983760A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139584A (en) * 1989-07-13 1992-08-18 Solo Fours Industriels Sa Carburization process
DE10321414B4 (en) * 2003-05-13 2008-12-18 Robert Bosch Gmbh Process for the heat treatment of metallic workpieces in chamber furnaces

Also Published As

Publication number Publication date
JPS5983760A (en) 1984-05-15

Similar Documents

Publication Publication Date Title
CA1140438A (en) Process for carburizing ferrous metals
CA1125011A (en) Inert carrier gas heat treating control process
JPH064906B2 (en) Carburizing of metal work
US4153485A (en) Process for heating steel powder compacts
CA2399936A1 (en) Method of producing high nitrogen ultra low carbon steel
JPS6346144B2 (en)
US4028100A (en) Heat treating atmospheres
JPH0219183B2 (en)
US4236941A (en) Method of producing heat treatment atmosphere
JPS58123821A (en) Heat treatment
JPH11158559A (en) Method for controlling atmosphere in continuous annealing furnace
US5785773A (en) Process for avoiding stickers in the annealing of cold strip
JP3273205B2 (en) Decarburization refining method of chromium-containing molten steel
JP5793802B2 (en) Gas carburizing method
US6143098A (en) Process and plant for thermal treatment of metals in protecting atmosphere
JP3613016B2 (en) Adjustment method of nitrogen concentration in molten steel
JPS5980713A (en) Heat treatment of steel product accompanied by no decarburization
JP3305313B2 (en) Decarburization method using RH degasser
JPH0515782B2 (en)
SU1652375A1 (en) Method for carrying out gas carburizing of iron alloy parts
JPS5967310A (en) Vacuum decarburization refining method using gaseous co2
EP0063655A1 (en) Process for carburizing ferrous metals
JPH0578736A (en) Continuous decarburized annealing method of silicon steel strip
US20040231753A1 (en) Method for carburizing and carbonitriding steel by carbon oxide
JPH03126859A (en) Gas carburizing method