JPH02191697A - Purification of coke oven gas - Google Patents

Purification of coke oven gas

Info

Publication number
JPH02191697A
JPH02191697A JP997289A JP997289A JPH02191697A JP H02191697 A JPH02191697 A JP H02191697A JP 997289 A JP997289 A JP 997289A JP 997289 A JP997289 A JP 997289A JP H02191697 A JPH02191697 A JP H02191697A
Authority
JP
Japan
Prior art keywords
ammonia
desulfurization
cog
coke oven
hydrogen sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP997289A
Other languages
Japanese (ja)
Inventor
Katsutoshi Saiyama
猜山 勝利
Fuminori Munekane
史典 宗兼
Katsumi Hazama
狭間 勝美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP997289A priority Critical patent/JPH02191697A/en
Publication of JPH02191697A publication Critical patent/JPH02191697A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the cost, etc., by utilizing gaseous ammonia in a purge gas in deammoniation process for improving the absorption efficiency of hydrogen sulfide and simultaneously rationalizing the amount of ammonia absorbed on an absorber in that process. CONSTITUTION:A purge gas from a fractionator 3 in deammoniation process is returned through a conduit 4 to a COG supply pipe 14 to a desulfurization column 11 in desulfurization process 20. By adding the purge gas to the COG supplied to the desulfurization column 11 according to the above-mentioned way, a gaseous ammonia in the purge gas is added to the COG to increase the concentration of ammonia in the COG. Thereby the concentration of ammonia in an absorption solution is increased and the absorption efficiency of hydrogen sulfide in the desulfurization unit 11 is increased.

Description

【発明の詳細な説明】 【産業上の利用分野J 本発明はコークス炉ガスM製プロセス中の脱アンモニア
工程特にフオサムプロセスのフラクショネーターよりの
パージガスのリサイクル法に関するものである。 [従来の技術] コークス炉ガス(COG)の精製プロセスの各工程のう
ちCOGからアンモニアを除去する脱アンモニア工程と
してフオサムプロセスが知られている。それは第2図に
示すように脱硫袋fi20による脱硫後のCOGを脱ア
ンモニア装置10のアブソーバ−1にて−リン安(NO
,)H,PO,溶液と接触させCOG中のアンモニアを
吸収する。これにより生成したニリン安fNH41JP
04等を含む吸収液はストリッパー2へ送られ、ここで
アンモニア水蒸気°が追い出される。 このアンモニア水蒸気は、ストリッパー塔頂部よりフラ
クショネータ−3に送られ精製蒸留され純液安が得られ
る。 このフオサム法においてアブソーバ−1の底部を出る吸
収液は、ストリッパー2の底部を出る吸収液と熱交換さ
れる。上記ストリッパー2がら出てアブソ・−バー1に
導入される吸収液は、必要に応じてリン酸を添加し、濃
度を調整される。 このフオサム装置においてワラクシ3ネータ:1中のガ
スには、アンモニアの外に炭酸ガスや硫化水素が含まれ
ている2そのためにこれらのガスによって’A ’11
の腐食や運転の不安定要因となる。 したがってこれらのガスをパージする目的でフラクショ
ネー々−3よりガスを一部抜きとってい供給管番ご戻し
、アブソーバ−1に戻す。そしてCOG中に含まれるア
ンモニアとパージガス中のアンモニアを吸収するように
している。 このパージされるガスのパージ量は、手動バルブの開閉
によって調整されるが、操作圧力の設定値からのずれは
ほとんどなく、パージ量はほぼ一定になるように調整さ
れている。 又アンモニア生産量に対するアンモニア吸収量の比(り
サイクル比)は、前記のようにパージ量がほぼ一定であ
るために、アンモニア生産量が大であれば小になり、逆
にアンモニア生産量が小であれば大になる。 ここでリサイクル比が大になるとアンモニア生産量に対
する蒸気ffJ位は大になる。そのために、リサイクル
比が小さいほうが運転コストの点からは有利である。ま
たアンモニア生産量が大であるときには、アブソーバ−
1での酸性ガス等の混入も大であると考えられるので、
パージ量を増大させた方が、装置の保守上は好ましい。 そのために現在行なわれているパージ量を一定にするよ
うに制御する方式よりもリサイクル比を一定にする。よ
うな制御方式の方が望ましいと云える。 又第2図番ご示すように、フオサムの前の工程として脱
硫工程20がある。この脱硫工程では、吸収液としてア
ンモニア水が用いられ、これをCOGに接触させること
によってCOGから硫化水素を吸収する。この工程は、
脱硫塔11と、脱酸塔12とよりなっている。つまりナ
フタリンスクライバ−13によってナフタリンを回収し
たCOGは、脱硫塔llへ供給されここで吸収液(アン
モニア)と接触されて硫化水素が吸収除去され、次の税
アンモニア装置10へ送られる。又硫化水素を吸収した
吸収液は脱酸塔において分離され硫化水素は排出される
と共に吸収液は再び利用される8 この脱硫塔においてCOG中の硫化水素と反応するダン
モニアは、吸収液中のアンモニア濃度とCOG中のアン
モニア濃度とがほぼ平衡になる。 したがって吸収液中のアンモニア濃度が高くなると吸収
B1体が増大するために硫化水素の吸収がよくなる。し
かし吸収液中のアンモニア濃度が高くなると脱酸塔にお
ける脱硫化水素効率が悪くなり吸収液中に残存する硫化
水素が増大し硫化水素の吸収が悪くなる。 ここで、作成したモデルによってシミュレーションを行
なった結果、脱FirL装置へ供給されるCOG中のア
ンモニア濃度を高くすると少ない吸収液量で目標とする
硫化水素潤度まで吸収でき、硫化水素の吸収により影響
を及ぼすことがわかった。 以上のように吸収液中のアンモニアa廖は、COG中の
アンモニア濃度により決定されるので吸収液中のアンモ
ニア濃度を高くして硫化水素の吸収効率を良くするため
にはCOG中のアンモニアの濃度を増大すればよい。 [発明が解決しようとする問題点J 本発明はコークス炉ガス精製プロセスでの脱アンモニア
工程におけるパージガス中に一部含まれるアンモニアガ
スを利用して脱硫工程における硫化水素の吸収効率を向
上させろと共に脱アンモニア工程のアブソーバ−におけ
るアンモニアの吸取量の適正化によって脱アンモニア工
程でのコスト低減等を可能としたパージガスリサイクル
方法を提供するものである。 c問題点を解決するための手段j 本発明のパージガスリサイクル方法は、コークス炉ガス
精製プロセス中の脱硫工程と脱アンモニア工程において
脱アンモニア工程よりのパージガスを脱硫工程の脱硫塔
へ供給されるCOG中に導入するようにしたもので、こ
れによって脱硫塔での硫化水素の吸収効率の向上をはか
ると共に、脱アンモニア工程のアブソーバ−におけるア
ンモニア吸収液量の適正化をはかりそれいよってストリ
ッパー、フラクショネーターでの蒸気使用量の低減等に
よるコスト低下をもたらすようにした6本発明の方法に
おいて、脱アンモニア工程におけるワラクシ3ネーター
よりのパージガスの供給場所としては脱硫塔前が最適で
ある。なおパージガスの一部は、従来法にしたがってア
ブソーバ−に導入することができる、 [実施例] 以下本発明の方法にもとづく工程の実施例を示V。 第1図は本発明の実施例を示すもので脱硫工程脱アンモ
ニア工程の構成自体は第2図に示す従来例と実質上同じ
であり、この従来例においては脱アンモニア工程におけ
るフラクショネータ−3よりのバ・−ジガスをアブソー
バ−へ戻したものを、第1図に示す実施例においては導
管4により脱硫工程20における脱硫塔11へのCOG
供給管】4へもどしている。このよう1.l:脱硫塔へ
供給されるCOGにパージガスを加えることによってパ
ージガス中に含まれるアンモニアガスをCOGに加え、
COG中のアンモニア濃度を高めることになる。これに
よって吸収液中のアンモニア濃度を高めることになり、
前述のように脱硫装置における硫化水素の吸収効率を高
めることが出来る。 この第1図に示す実施例により実験(計13:) した
結果明らかに硫化水素の吸収効率が増大することがわか
った。 [発明の効果1 本発明の方法によれば、フィーサムのアブソーバ−にお
けるアンモニアの吸収液量が適正化され、ストリッパー
、フラクショネーターでの蒸気の使用量が節減される。 また脱硫装置へ供給さiするCOG中のアンモニア濃度
が増加し脱硫効率が向上する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application J] The present invention relates to a deammonization step in a coke oven gas production process, particularly a method for recycling purge gas from a fractionator in a fosum process. [Prior Art] Among the steps in the refining process of coke oven gas (COG), the fosum process is known as a deammonization step for removing ammonia from COG. As shown in FIG.
, ) H, PO, to absorb ammonia in COG by contacting with solution. Nirinyasu fNH41JP produced by this
The absorbent containing 04 and the like is sent to a stripper 2, where the ammonia water vapor is expelled. This ammonia water vapor is sent to the fractionator 3 from the top of the stripper column and purified and distilled to obtain pure liquid ammonium. In this fosum method, the absorbent liquid exiting the bottom of the absorber 1 is heat exchanged with the absorbent liquid exiting the bottom of the stripper 2. The concentration of the absorption liquid coming out of the stripper 2 and introduced into the absorber 1 is adjusted by adding phosphoric acid as necessary. In this Fuosum device, the gas in the Warakshi 3 inator: 1 contains carbon dioxide and hydrogen sulfide in addition to ammonia. 2 Therefore, these gases cause 'A' 11
This can lead to corrosion and unstable operation. Therefore, for the purpose of purging these gases, a portion of the gas is removed from the fractionator 3, returned to the supply pipe, and returned to the absorber 1. The ammonia contained in the COG and the ammonia in the purge gas are absorbed. The purge amount of gas to be purged is adjusted by opening and closing a manual valve, but the purge amount is adjusted so that there is almost no deviation from the set value of the operating pressure and the purge amount is almost constant. In addition, the ratio of the amount of ammonia absorbed to the amount of ammonia produced (recycle ratio) will decrease if the amount of ammonia produced is large because the purge amount is almost constant as mentioned above, and conversely, if the amount of ammonia produced is small If so, it will be large. Here, when the recycling ratio becomes large, the steam ffJ relative to the ammonia production becomes large. Therefore, a smaller recycling ratio is advantageous in terms of operating costs. Also, when the ammonia production is large, the absorber
Since the contamination of acid gas etc. in step 1 is also considered to be large,
It is preferable to increase the amount of purge from the viewpoint of maintenance of the apparatus. For this purpose, the recycle ratio is made more constant than the current method of controlling the amount of purge to be constant. It can be said that such a control method is more desirable. As shown in the second figure, there is a desulfurization process 20 as a process before the fuosum process. In this desulfurization step, aqueous ammonia is used as an absorption liquid, and hydrogen sulfide is absorbed from the COG by bringing it into contact with the COG. This process is
It consists of a desulfurization tower 11 and a deoxidation tower 12. That is, the COG from which naphthalene has been recovered by the naphthalene scriber 13 is supplied to the desulfurization tower 11, where it is contacted with an absorption liquid (ammonia) to absorb and remove hydrogen sulfide, and is sent to the next tax ammonia equipment 10. In addition, the absorption liquid that has absorbed hydrogen sulfide is separated in a deoxidation tower, hydrogen sulfide is discharged, and the absorption liquid is reused. The ammonia concentration and the ammonia concentration in COG are almost in equilibrium. Therefore, when the ammonia concentration in the absorption liquid increases, the number of absorbed B1 bodies increases, which improves the absorption of hydrogen sulfide. However, when the ammonia concentration in the absorption liquid increases, the efficiency of desulfurizing hydrogen in the deoxidizing tower deteriorates, the amount of hydrogen sulfide remaining in the absorption liquid increases, and the absorption of hydrogen sulfide deteriorates. Here, as a result of simulation using the created model, it was found that by increasing the ammonia concentration in the COG supplied to the FirL removal device, the target hydrogen sulfide moisture level could be absorbed with a small amount of absorption liquid, and the effect of hydrogen sulfide absorption was It was found that As mentioned above, the ammonia concentration in the absorption liquid is determined by the ammonia concentration in the COG, so in order to increase the ammonia concentration in the absorption liquid and improve the absorption efficiency of hydrogen sulfide, the ammonia concentration in the COG is determined by the ammonia concentration in the COG. All you have to do is increase it. [Problem to be Solved by the Invention J] The present invention aims to improve the absorption efficiency of hydrogen sulfide in the desulfurization process by using ammonia gas partially contained in the purge gas in the deammonization process in the coke oven gas refining process. The present invention provides a purge gas recycling method that makes it possible to reduce costs in the ammonia removal process by optimizing the amount of ammonia absorbed by an absorber in the ammonia process. c Means for Solving the Problems j The purge gas recycling method of the present invention is characterized in that in the desulfurization step and the deammonization step in the coke oven gas refining process, the purge gas from the deammonization step is supplied to the desulfurization tower in the desulfurization step. This is intended to improve the absorption efficiency of hydrogen sulfide in the desulfurization tower, as well as to optimize the amount of ammonia absorbed in the absorber in the deammonization process. In the method of the present invention, which reduces costs by reducing the amount of steam used in the deammonization process, the optimal place for supplying the purge gas from the wax ternator in the deammonization step is before the desulfurization tower. Note that a part of the purge gas can be introduced into the absorber according to a conventional method. [Example] Below, an example of a process based on the method of the present invention will be shown. FIG. 1 shows an embodiment of the present invention, and the structure of the desulfurization process and the deammonification process itself is substantially the same as the conventional example shown in FIG. In the embodiment shown in FIG.
Supply pipe] Returned to 4. Like this 1. l: Ammonia gas contained in the purge gas is added to the COG by adding purge gas to the COG supplied to the desulfurization tower,
This will increase the ammonia concentration in COG. This increases the ammonia concentration in the absorption liquid,
As mentioned above, the absorption efficiency of hydrogen sulfide in the desulfurization equipment can be increased. As a result of conducting experiments (13 tests in total) using the example shown in FIG. 1, it was found that the hydrogen sulfide absorption efficiency was clearly increased. [Effect of the Invention 1] According to the method of the present invention, the amount of ammonia absorption liquid in the absorber of the fee sum is optimized, and the amount of steam used in the stripper and the fractionator is reduced. Furthermore, the ammonia concentration in the COG supplied to the desulfurization device increases, and the desulfurization efficiency improves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法にもとづく一実施例の構成を示す
図、第2図は従来の方法にもとづ(構成を示す図である
FIG. 1 is a diagram showing the configuration of an embodiment based on the method of the present invention, and FIG. 2 is a diagram showing the configuration based on the conventional method.

Claims (1)

【特許請求の範囲】[Claims] コークス炉ガス精製プロセス中の脱硫工程とこれに次ぐ
脱アンモニア工程において、前記脱硫工程が吸収液によ
り硫化水素の吸収を行なう脱硫塔と吸収液より酸性成分
ガスを分離する脱酸塔とよりなり又前記脱アンモニア工
程が吸収液によりアンモニアの吸収を行なうアブソーバ
ーとアンモニア蒸気を追い出すストリッパーとアンモニ
ア蒸気を精製蒸留し液体のアンモニアを得るフラクショ
ネーターよりなり、前記脱アンモニア工程におけるフラ
クショネーターよりパージガスを一部抜き取りこれを脱
硫工程の脱硫塔へ供給されるコークス炉ガス中へ導入す
ることを特徴とするコークス炉ガス精製方法。
In the desulfurization step and the subsequent deammonia step in the coke oven gas purification process, the desulfurization step consists of a desulfurization tower that absorbs hydrogen sulfide with an absorption liquid and a deoxidation tower that separates acidic component gas from the absorption liquid. The deammonification process comprises an absorber that absorbs ammonia using an absorption liquid, a stripper that expels ammonia vapor, and a fractionator that purifies and distills the ammonia vapor to obtain liquid ammonia. A method for refining coke oven gas, characterized in that a portion of the coke oven gas is extracted and introduced into coke oven gas to be supplied to a desulfurization tower in a desulfurization step.
JP997289A 1989-01-20 1989-01-20 Purification of coke oven gas Pending JPH02191697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP997289A JPH02191697A (en) 1989-01-20 1989-01-20 Purification of coke oven gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP997289A JPH02191697A (en) 1989-01-20 1989-01-20 Purification of coke oven gas

Publications (1)

Publication Number Publication Date
JPH02191697A true JPH02191697A (en) 1990-07-27

Family

ID=11734835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP997289A Pending JPH02191697A (en) 1989-01-20 1989-01-20 Purification of coke oven gas

Country Status (1)

Country Link
JP (1) JPH02191697A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010001431A (en) * 1999-06-04 2001-01-05 이구택 A method for removing hydrogen sulfide in coke oven gas purification
JP2005179611A (en) * 2003-12-24 2005-07-07 Toho Gas Co Ltd Method for producing fuel gas
CN105779021A (en) * 2016-03-10 2016-07-20 王平山 Method for recovering energy of gas in coking riser and separating coal tar in gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010001431A (en) * 1999-06-04 2001-01-05 이구택 A method for removing hydrogen sulfide in coke oven gas purification
JP2005179611A (en) * 2003-12-24 2005-07-07 Toho Gas Co Ltd Method for producing fuel gas
CN105779021A (en) * 2016-03-10 2016-07-20 王平山 Method for recovering energy of gas in coking riser and separating coal tar in gas
CN105779021B (en) * 2016-03-10 2019-04-26 王平山 Coal tar separation method in a kind of recycling of coking tedge gas energy and coal gas

Similar Documents

Publication Publication Date Title
RU2239488C2 (en) Absorbing compositions for removing acid gases from gas streams
US8398748B2 (en) Configurations and methods for acid gas absorption and solvent regeneration
CN101333464B (en) Desulphurization process by vacuum ammonia method
US5716587A (en) Apparatus for removal of contaminates from a gas stream
US7004997B2 (en) Method for removal of acid gases from a gas flow
US20090165650A1 (en) Boiler Feed Water Deaerator Method and Apparatus
EP1654052A1 (en) Low energy so2 scrubbing process
US4412977A (en) Selective acid gas removal
CN1027042C (en) Processing for removing acid gas from gas mixture containing acid gas
US4299801A (en) Regenerating alkanolamine desulfurizer solutions
US4557911A (en) Process for producing sweet CO2 and hydrocarbon streams
JPH02191697A (en) Purification of coke oven gas
EP0140191A2 (en) Tail gas treating process
JPH01304026A (en) Selective removal of hydrogen sulfide from fluid mixture using high purity triethanolamine
KR100450224B1 (en) Method for removing hydrogen sulfide of coke oven gas
US4778490A (en) Process for removal of volatile matter from coke-oven plant waters
CN104843951B (en) A kind of preprocess method of vacuum potassium carbonate coal gas desulfurization waste liquid
KR20190069357A (en) Method for preventing vaporization of absorbent in the CO2 capture process
JPH02214523A (en) Process for removing hyurogen sulfide from gas mixture
CN1215628A (en) Process for removing and recovery of sulfur dioxide from waste gas
CN212757284U (en) Mixed acid separation equipment
JPH0140875B2 (en)
CN115703981A (en) Natural gas desulfurization and purification system and process
CN116656401A (en) Method and system for simultaneously removing carbon disulfide and thiophene in coke oven gas
SU1511553A1 (en) Method of preparing natureal gas for transporting