JPH02191617A - Production of impact-resistant aromatic-based resin - Google Patents

Production of impact-resistant aromatic-based resin

Info

Publication number
JPH02191617A
JPH02191617A JP32171688A JP32171688A JPH02191617A JP H02191617 A JPH02191617 A JP H02191617A JP 32171688 A JP32171688 A JP 32171688A JP 32171688 A JP32171688 A JP 32171688A JP H02191617 A JPH02191617 A JP H02191617A
Authority
JP
Japan
Prior art keywords
aromatic vinyl
conjugated diene
resin
polymerization
vinyl compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32171688A
Other languages
Japanese (ja)
Other versions
JPH06102703B2 (en
Inventor
Takashi Kawada
隆 川田
Takami Hirao
平尾 孝見
Nobuaki Inoguchi
猪口 信明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd, Japan Synthetic Rubber Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP63321716A priority Critical patent/JPH06102703B2/en
Publication of JPH02191617A publication Critical patent/JPH02191617A/en
Publication of JPH06102703B2 publication Critical patent/JPH06102703B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title resin comprising dispersed rubber particles having a specific median particle diameter, specific intrinsic viscosity, excellent impact resistance, appearance characteristics and mechanical characteristics by polymerizing an aromatic vinyl compound in the presence of a specific aromatic vinyl- conjugated diene-based copolymer. CONSTITUTION:An aromatic vinyl compound (preferably styrene) is polymerized in the presence of an aromatic vinyl-conjugated diene-based copolymer which is, for example, obtained by subjecting an aromatic vinyl compound and a conjugated diene to solution polymerization in the presence of an organolithium compound as a catalyst, has 550-2,000 centipoise viscosity in 5wt.% styrene solution at 25 deg.C, 13-30wt.% vinyl bond content of conjugated diene part and <=14wt.% bond content of aromatic vinyl compound component to give the aimed resin comprising dispersed rubber particles having 1-2.5mum median particle diameters and >=0.7dl/g intrinsic viscosity of resin component.

Description

【発明の詳細な説明】 a9産業上の利用分野 本発明は、耐衝撃性芳香族ビニル系樹脂の製造方法に関
し、さらに詳細には耐衝撃性、外観特性および機械的特
性のバランスに優れた耐衝撃性芳香族ビニル系樹脂の製
造方法に関する。
Detailed Description of the Invention: a9 Industrial Field of Application The present invention relates to a method for producing impact-resistant aromatic vinyl resins, and more particularly, to a method for producing impact-resistant aromatic vinyl resins, and more particularly, to a method for producing impact-resistant aromatic vinyl resins, and more specifically, to produce impact-resistant aromatic vinyl resins with excellent balance between impact resistance, appearance characteristics, and mechanical properties. The present invention relates to a method for producing an impact-resistant aromatic vinyl resin.

b、従来の技術 一般に、スチレン系樹脂などの芳香族ビニル系樹脂は、
加工成形時の流動性、成形品の透明性および光沢が良好
であるなど、多くの優れた性質を有しているが、耐衝撃
性が劣るという大きな欠点を有している。
b. Conventional technology In general, aromatic vinyl resins such as styrene resins are
Although it has many excellent properties such as good fluidity during processing and molding, and good transparency and gloss of molded products, it has a major drawback of poor impact resistance.

かかる欠点を補う方法として、■機械的な方法によって
樹脂にゴム状重合体を分散せしめる方法、あるいは■ゴ
ム状重合体に芳香族ビニル化合物(例えばスチレン)を
グラフト重合する方法などが知られている。
Known methods to compensate for these drawbacks include: (1) dispersing a rubbery polymer in a resin using a mechanical method, and (2) grafting an aromatic vinyl compound (for example, styrene) onto a rubbery polymer. .

しかしながら、前記■機械的な方法によって樹脂にゴム
状重合体を分散せしめる方法においては、ゴム状重合体
と樹脂との間に親和性がない場合には、単に脆い混合物
が得られるに過ぎない。また、両者の親和性が良好な場
合には、耐衝撃性が改善されるものの、かかる樹脂は耐
衝撃性以外の機械的特性が充分に改善させず、また成形
品の表面光沢も優れず、さらにゴム状重合体の架橋がな
されていないため、成形品の配向性が大きいという欠点
を−aする。
However, in the above method (1) in which a rubbery polymer is dispersed in a resin by a mechanical method, only a brittle mixture is obtained if there is no affinity between the rubbery polymer and the resin. In addition, when the affinity between the two is good, impact resistance is improved, but such resins do not sufficiently improve mechanical properties other than impact resistance, and the surface gloss of molded products is not excellent. Furthermore, since the rubber-like polymer is not crosslinked, the molded product has a large degree of orientation.

一方、前記■ゴム状重合体に芳香族ビニル化合物をグラ
フト重合する方法では、得られる樹脂の耐衝撃性は改善
されるが、機械的特性、配向性、表面光沢などの特性は
未だ充分に満足できるものではない。
On the other hand, in the method (2) of graft polymerizing an aromatic vinyl compound onto a rubbery polymer, the impact resistance of the resulting resin is improved, but properties such as mechanical properties, orientation, and surface gloss are still sufficiently satisfactory. It's not possible.

かかる欠点を改良する方法として、■ゴム状重合体とし
てビニル結合を多く含有するブタジェン重合体を使用し
、これにスチレンをグラフト重合させる方法が提案され
ている(特公昭45−40546号、特開昭59−18
4216号)。
As a method to improve this drawback, it has been proposed to use a butadiene polymer containing a large number of vinyl bonds as a rubber-like polymer and to graft-polymerize styrene thereto (Japanese Patent Publication No. 45-40546, Japanese Patent Publication No. Showa 59-18
No. 4216).

C9発明が解決しようとする問題点 しかしながら、前記■ゴム状重合体としてビニル結合を
多く含有するブタジェン重合体を使用し、これにスチレ
ンをグラフト重合させる方法によって得られる樹脂は、
配向性および表面光沢は改良されるものの未だ充分では
なく、しかも機械的特性、特に引張強度が低く、また低
温での耐衝撃性が劣るという欠点を有する。
C9 Problems to be Solved by the Invention However, the resin obtained by the above method (1) in which a butadiene polymer containing a large number of vinyl bonds is used as the rubbery polymer and styrene is graft-polymerized thereon is as follows:
Although the orientation and surface gloss are improved, they are still not sufficient, and they have the disadvantages of low mechanical properties, especially low tensile strength, and poor impact resistance at low temperatures.

また、溶液粘度の低い重合体を用いると得られる耐衝撃
性芳香族ビニル樹脂の耐衝撃性が低下する問題が生じる
Further, when a polymer having a low solution viscosity is used, a problem arises in that the impact resistance of the resulting impact resistant aromatic vinyl resin is reduced.

本発明者らは、前記従来の方法の問題点に鑑み、樹脂の
耐衝撃性、外観特性および機械的特性のバランスに優れ
た耐衝撃性芳香族ビニル系樹脂を得ることを目的として
鋭意検討した結果、特定の溶液粘度範囲および特定の構
造を有する芳香族ビニル−共役ジエン系共重合体をゴム
状重合体として使用し、これに芳香族ビニル化合物をグ
ラフト重合して樹脂中に分散したゴム粒子径を特定の範
囲に調節することにより、前記技術的課題を解決できる
ことを見出し、本発明に到達したものである。
In view of the problems of the conventional methods, the present inventors conducted extensive studies with the aim of obtaining an impact-resistant aromatic vinyl resin with an excellent balance of resin impact resistance, appearance characteristics, and mechanical properties. As a result, an aromatic vinyl-conjugated diene copolymer having a specific solution viscosity range and a specific structure was used as a rubber-like polymer, and an aromatic vinyl compound was graft-polymerized onto this to create rubber particles dispersed in the resin. The present invention was achieved by discovering that the above technical problem can be solved by adjusting the diameter within a specific range.

d0問題点を解決するための手段 すなわち、本発明は、芳香族ビニル−共役ジエン系共重
合体の存在下に芳香族ビニル化合物を重合する方法にお
いて、前記芳香族ビニル−共役ジエン系共重合体が ■ 25℃で測定した5重量%スチレン溶液の粘度が5
50〜2000センチボイズ、 ■ 共役ジエン部分のビニル結合金量が13〜30%、 ■ 芳香族ビニル化合物成分の結合含有量が14重量%
以下、 であり、得られる樹脂中に分散したゴム粒子のメジアン
粒子径を1〜2.5μmの範囲に、かつゴム成分を除い
た樹脂成分の固有粘度(25℃トルエン中)を0.7d
1./を以上に調節することを特徴とする耐衝撃性芳香
族ビニル系樹脂の製造方法を提供するものである。
Means for Solving the d0 Problem That is, the present invention provides a method for polymerizing an aromatic vinyl compound in the presence of an aromatic vinyl-conjugated diene copolymer. ■ The viscosity of a 5% styrene solution measured at 25°C is 5
50 to 2000 centivoise, ■ The vinyl bond content of the conjugated diene part is 13 to 30%, ■ The bond content of the aromatic vinyl compound component is 14% by weight.
Hereinafter, the median particle size of the rubber particles dispersed in the obtained resin is in the range of 1 to 2.5 μm, and the intrinsic viscosity (in toluene at 25°C) of the resin component excluding the rubber component is 0.7 d.
1. The present invention provides a method for producing an impact-resistant aromatic vinyl resin, which is characterized by adjusting the .

本発明は、まず特定の芳香族ビニル−共役ジエン系共重
合体を製造し、これに芳香族ビニル化合物を通常のラジ
カル重合開始剤の存在下にグラフト重合することによっ
て、耐衝撃性、外観特性および機械的特性のバランスに
優れた芳香族ビニル系樹脂を製造するものである。
In the present invention, a specific aromatic vinyl-conjugated diene copolymer is first produced, and an aromatic vinyl compound is graft-polymerized thereon in the presence of an ordinary radical polymerization initiator, thereby improving impact resistance and appearance properties. and aromatic vinyl resins with excellent balance of mechanical properties.

本発明に使用される芳香族ビニル−共役ジエン系共重合
体は、通常芳香族ビニル化合物と共役ジエン化合物とを
、有機リチウム化合物を触媒として使用し溶液重合して
得られる。
The aromatic vinyl-conjugated diene copolymer used in the present invention is usually obtained by solution polymerizing an aromatic vinyl compound and a conjugated diene compound using an organic lithium compound as a catalyst.

上記芳香族ビニル化合物としては、スチレン、p・−メ
チルスチレン、ビニルトルエン、α−メチルスチレン、
3,5−ジメチルスチレンなどが挙げられ、好ましくは
スチレンである。
Examples of the aromatic vinyl compounds include styrene, p-methylstyrene, vinyltoluene, α-methylstyrene,
Examples include 3,5-dimethylstyrene, and styrene is preferred.

また、共役ジエン化合物としては、1,3−ブタジェン
、1.3−ペンタジェン、イソプレン、クロロブレン、
1.3−へキサジエン、2.4−へキサジエン、2,3
−ジメチル−1,3−ブタジェン、2−エチル−1,3
−ブタジェン、1゜3−ヘプタジエンなどのほか、炭素
数4〜7の分岐状の各種共役ジエン化合物が挙げられ、
好ましくは1,3−ブタジェン、イソプレン、1,3−
ペンタジェン、特に好ましくは1,3−ブタジェンであ
る。
In addition, conjugated diene compounds include 1,3-butadiene, 1,3-pentadiene, isoprene, chlorobrene,
1.3-hexadiene, 2.4-hexadiene, 2,3
-dimethyl-1,3-butadiene, 2-ethyl-1,3
-butadiene, 1°3-heptadiene, etc., as well as various branched conjugated diene compounds having 4 to 7 carbon atoms,
Preferably 1,3-butadiene, isoprene, 1,3-
Pentadiene, particularly preferably 1,3-butadiene.

また、かかる芳香族ビニル化合物と共役ジエン化合物を
溶液重合する際の触媒である有機リチウム化合物として
は、例えばn−プロピルリチウム、イソプロピルリチウ
ム、n−ブチルリチウム、5ee−ブチルリチウム、t
ert−ブチルリチウム、n−ペンチルリチウム、リチ
ウムトルエン、ベンジルリチウム、1,4−ジリチオ−
〇−ブタン、1,2−ジリチオ−1,2−ジフェニルエ
タン、トリメチレンリチウム、2−ジフェニルエタン、
トリメチレンジリチウム、オリゴイソプレニルジリチウ
ムなどが挙げられ、−船釣にはn−ブチルリチウム、5
ee−ブチルリチウムである。
In addition, examples of organic lithium compounds that are catalysts for solution polymerization of aromatic vinyl compounds and conjugated diene compounds include n-propyllithium, isopropyllithium, n-butyllithium, 5ee-butyllithium, t
ert-butyllithium, n-pentyllithium, lithium toluene, benzyllithium, 1,4-dilithio-
〇-Butane, 1,2-dilithio-1,2-diphenylethane, trimethylene lithium, 2-diphenylethane,
Examples include trimethylene dilithium, oligoisoprenyl dilithium, etc. - For boat fishing, n-butyl lithium, 5
ee-butyllithium.

さらに、前記溶液重合に使用される溶媒としては、炭化
水素溶媒が好ましく、例えばペンタン、ヘキサン、ヘプ
タン、シクロヘキサン、メチルシクロペンタン、ベンゼ
ン、トルエン、キシレンなどが挙げられ、これらの炭化
水素溶媒1種を単独で、または2種以上を混合して使用
できる。
Furthermore, the solvent used in the solution polymerization is preferably a hydrocarbon solvent, such as pentane, hexane, heptane, cyclohexane, methylcyclopentane, benzene, toluene, xylene, etc. It can be used alone or in combination of two or more.

本発明に使用する芳香族ビニル−共役ジエン系共重合体
としては、ブロック部分を有している共重合体でもよい
。しかし、本発明の効果を充分に得るためには、できる
だけランダム化した、すなわちブロック部分のほとんど
ない共重合体であることが望ましい。そのため、上記溶
液重合に際しては、得られる芳香族ビニル−共役ジエン
系共重合体のビニル結合金量を調整し、かつ前記芳香族
ビニル化合物のブロック重合体化を阻止してランダム共
重合体を得るために、重合系に、ジメチルエーテル、ジ
エチルエーテル、テトラヒドロフランなどのエーテル化
合物;ジメチルサルファイド、ジエチルサルファイドな
どのチオエーテル化合物ニジメチルエチルアミン、トリ
n−プロピルアミン、トリエチルアミンなどのアミン化
合物で代表されるルイス塩基を添加することができる。
The aromatic vinyl-conjugated diene copolymer used in the present invention may be a copolymer having a block portion. However, in order to fully obtain the effects of the present invention, it is desirable to use a copolymer that is as randomized as possible, that is, has almost no block portions. Therefore, during the solution polymerization, the amount of vinyl bond in the resulting aromatic vinyl-conjugated diene copolymer is adjusted, and block polymerization of the aromatic vinyl compound is prevented to obtain a random copolymer. For this purpose, Lewis bases represented by ether compounds such as dimethyl ether, diethyl ether, and tetrahydrofuran; thioether compounds such as dimethyl sulfide and diethyl sulfide; and amine compounds such as dimethylethylamine, tri-n-propylamine, and triethylamine are added to the polymerization system. can do.

また、前記芳香族ビニル化合物のブロック重合体化を阻
止してランダム共重合体を得るための他の方法として、
有機リチウム化合物を含む溶液中に芳香族ビニル化合物
および共役ジエン化合物の両モノマーの反応速度より遅
い速度で、芳香族ビニル化合物と共役ジエン化合物の混
合溶液を添加しつつ共重合を行なう方法がある。
In addition, as another method for obtaining a random copolymer by inhibiting block polymerization of the aromatic vinyl compound,
There is a method in which copolymerization is carried out while adding a mixed solution of an aromatic vinyl compound and a conjugated diene compound to a solution containing an organolithium compound at a rate slower than the reaction rate of both monomers, the aromatic vinyl compound and the conjugated diene compound.

また、上記溶液重合の反応操作温度は、通常の重合温度
、例えば50〜150℃、好ましくは70〜120℃で
実施される。
Moreover, the reaction operation temperature for the solution polymerization is a normal polymerization temperature, for example, 50 to 150°C, preferably 70 to 120°C.

さらに、本発明において使用される芳香族ビニル−共役
ジエン系共重合体は、以上のように芳香族ビニル化合物
と共役ジエン化合物を重合することによって得られるゴ
ム状重合体であるが、さらに下記■〜■の要件を満足す
る必要がある。
Furthermore, the aromatic vinyl-conjugated diene copolymer used in the present invention is a rubber-like polymer obtained by polymerizing an aromatic vinyl compound and a conjugated diene compound as described above, and furthermore, the following It is necessary to satisfy the requirements of ~■.

■その5fffffi%スチレン溶液の粘度が25℃で
550〜2000センチボイズ、好ましくは600〜1
500センチポイズである。
■The viscosity of the 5fffffi% styrene solution at 25°C is 550 to 2000 centiboise, preferably 600 to 1
It is 500 centipoise.

本発明に使用される芳香族ビニル−共役ジエン系共重合
体の25℃で測定した5重量%スチレン溶液の粘度が5
50センチボイズ未満では、本発明に規定される芳香族
ビニル系樹脂中に分散したゴム粒子の粒子径と固有粘度
を同時に達成することが困難となり、耐衝撃性の点で劣
ったものとなる。一方、25℃で測定した5重量%スチ
レン溶液の粘度が2000センチポイズを超えるものは
、耐衝撃性芳香族ビニル樹脂の製造にあたってスチレン
への溶解性が著しく低下し、溶解に長時間を要して生産
性が低下し好ましくなく、しかも分散したゴム粒子の粒
子径も不揃いなものとなり、光沢が低下するので好まし
くない。
The viscosity of a 5% by weight styrene solution of the aromatic vinyl-conjugated diene copolymer used in the present invention measured at 25°C is 5%.
If it is less than 50 centivoids, it will be difficult to simultaneously achieve the particle size and intrinsic viscosity of the rubber particles dispersed in the aromatic vinyl resin as specified in the present invention, resulting in poor impact resistance. On the other hand, if the viscosity of a 5% styrene solution measured at 25°C exceeds 2000 centipoise, the solubility in styrene will be significantly reduced and it will take a long time to dissolve in the production of impact-resistant aromatic vinyl resin. This is undesirable because productivity decreases, and the particle diameters of the dispersed rubber particles also become irregular, resulting in a decrease in gloss.

−1−記5重量%スチレン溶液の粘度は、芳香族ビニル
−共役ジエン系共重合体の溶液重合の際に使用する有機
リチウム化合物の使用量および重合温度によって調整す
ることが可能である。例えば、有機リチウム化合物とし
てn−ブチルリチウムを使用した場合、その使用量を約
0.02〜0.O5ppm、重合温度を約70〜120
℃として芳香族ビニル−共役ジエン系共重合体を溶液重
合することにより、上記ムーニー粘度と5重量%スチレ
ン溶液の粘度のものを得ることができる。
The viscosity of the 5% by weight styrene solution described in -1- can be adjusted by the amount of the organolithium compound used in the solution polymerization of the aromatic vinyl-conjugated diene copolymer and the polymerization temperature. For example, when n-butyllithium is used as the organic lithium compound, the amount used is approximately 0.02 to 0.0. O5ppm, polymerization temperature about 70-120
By solution polymerizing an aromatic vinyl-conjugated diene copolymer at a temperature of 0.degree.

また、■芳香族ビニルー共役ジエン系ランダム共重合体
のビニル結合金量は13〜30%、好ましくは14〜2
5%、さらに好ましくは15〜20%である。
In addition, the vinyl bond content of the aromatic vinyl-conjugated diene random copolymer is 13 to 30%, preferably 14 to 2%.
5%, more preferably 15-20%.

本発明に使用される芳香族ビニル−共役ジエン系共重合
体のビニル結合金量が13%未満の場合は、得られる樹
脂の耐衝撃性が劣り、しかも配向性が大きく、一方、ビ
ニル結合金量が30%を超えると、得られる樹脂の配向
性は良好となるが、低温耐衝撃性が低下するため、好ま
しくない。
If the amount of vinyl bond in the aromatic vinyl-conjugated diene copolymer used in the present invention is less than 13%, the resulting resin will have poor impact resistance and high orientation; If the amount exceeds 30%, the resulting resin will have good orientation, but low-temperature impact resistance will decrease, which is not preferable.

」二足ビニル結合金量は、芳香族ビニル−共役ジエン系
共重合体の溶液重合系に、前記ルイス塩基を添加すると
ともに、その添加量を選択することにより、容易に調整
することが可能である。例えば、ルイス塩基としてテト
ラヒドロフランを使用した場合、その冷加量を溶剤に対
し約30〜1500ppilこすることにより、得られ
る芳香族ビニル−共役ジエン系共重合体のビニル結合金
量を上記の範囲に調整することができる。
"The amount of bipedal vinyl bond can be easily adjusted by adding the Lewis base to the solution polymerization system of the aromatic vinyl-conjugated diene copolymer and selecting the amount added. be. For example, when tetrahydrofuran is used as the Lewis base, by rubbing the cooled amount of about 30 to 1,500 ppil against the solvent, the amount of vinyl bond in the resulting aromatic vinyl-conjugated diene copolymer can be adjusted to the above range. Can be adjusted.

さらに、■芳香族ビニルー共役ジエン系共重合体中にお
ける芳香族ビニル化合物成分の結合台a量は14重量%
以下であり、好ましくは1〜12重量%、さらに好まし
くは2〜10重量%、特に好ましくは3〜8重量%であ
る。
Furthermore, ■ the amount of bond a of the aromatic vinyl compound component in the aromatic vinyl-conjugated diene copolymer is 14% by weight.
The content is preferably 1 to 12% by weight, more preferably 2 to 10% by weight, particularly preferably 3 to 8% by weight.

本発明に使用される芳香族ビニル−共役ジエン系共重合
体中の芳香族ビニル化合物成分の結合含有量が14重量
%を超える場合は、常温および低温における耐衝撃性が
低下する。
When the bond content of the aromatic vinyl compound component in the aromatic vinyl-conjugated diene copolymer used in the present invention exceeds 14% by weight, impact resistance at room temperature and low temperature decreases.

本発明においては、前記特定の芳香族ビニル−共役ジエ
ン系共重合体を使用すると同時に、得られる樹脂中に分
散したゴム粒子の平均粒子径をメジアン径で1〜2.5
μm1好ましくは1.2〜2.3μmとする必要がある
。メジアン径が1μm未満では耐衝撃性が劣り、2.5
μmを超える場合は光沢の劣ったものしか得られない。
In the present invention, while using the specific aromatic vinyl-conjugated diene copolymer, the average particle diameter of the rubber particles dispersed in the resulting resin is 1 to 2.5 in median diameter.
μm1 preferably needs to be 1.2 to 2.3 μm. If the median diameter is less than 1 μm, impact resistance will be poor;
If it exceeds μm, only a product with poor gloss can be obtained.

また、樹脂の固有粘度は樹脂をトルエンに溶解し、遠心
分離機によってゴム成分と樹脂成分とに分離し、得られ
た樹脂成分についてウベローデ型粘度計で25℃トルエ
ン溶液にて測定したものである。かかる樹脂成分の固有
粘度は0.7dj!/g以上とする必要があり、好まし
くは0.7〜1゜4df!/gである。0.7df!/
g未満では耐衝撃性が劣り好ましくない。
In addition, the intrinsic viscosity of the resin is determined by dissolving the resin in toluene, separating it into a rubber component and a resin component using a centrifuge, and measuring the obtained resin component using an Ubbelohde viscometer in a toluene solution at 25°C. . The intrinsic viscosity of this resin component is 0.7dj! /g or more, preferably 0.7 to 1°4df! /g. 0.7df! /
If it is less than g, the impact resistance will be poor and undesirable.

前記のように高い固有粘度の範囲で、かつ粒子径を1〜
2.5μmの特定の範囲に調節するには、通常行なわれ
るようなグラフト重合時の撹拌の回転数の調節だけでは
困難であり、分子量調節剤の量を極めて少なく、スチレ
ンに対して300 ppm以下、好ましくは250 p
pm以下とし、かつ前記特定の溶液粘度の芳香族ビニル
−共役ジエン系共重合体を使用する。
As mentioned above, within the high intrinsic viscosity range and with a particle size of 1 to 1
In order to adjust the molecular weight to a specific range of 2.5 μm, it is difficult to simply adjust the rotation speed of stirring during graft polymerization, which is usually done. , preferably 250 p
pm or less and the aromatic vinyl-conjugated diene copolymer having the above-mentioned specific solution viscosity is used.

次に、本発明は、前記特定の芳香族ビニル−共役ジエン
系共重合体を使用し、これに芳香族ビニル化合物をグラ
フト重合するものである。
Next, the present invention uses the specific aromatic vinyl-conjugated diene copolymer and graft-polymerizes an aromatic vinyl compound thereto.

上記芳香族ビニル化合物としては、スチレン、α−メチ
ルスチレン、p−メチルスチレン、ビニルトルエン、ビ
ニルナフタレン、ビニルエチルベンゼン、ビニルキシレ
ンなどを挙げることができるが、好ましくはスチレン、
α−メチルスチレン、p−メチルスチレンであり、さら
に好ましくはスチレンである。
Examples of the aromatic vinyl compound include styrene, α-methylstyrene, p-methylstyrene, vinyltoluene, vinylnaphthalene, vinylethylbenzene, vinylxylene, etc., but preferably styrene,
α-methylstyrene and p-methylstyrene, more preferably styrene.

また、前記特定の芳香族ビニル−共役ジエン系共重合体
に芳香族ビニル化合物をラジカル共重合する方法として
は、特に制限されるものではないが、例えば前記芳香族
ビニル−共役ジエン系共重合体を溶解した芳香族ビニル
化合物溶液を塊状重合するか、塊状重合−懸濁重合の組
み合わせによりラジカル重合する方法により実施される
Further, the method of radical copolymerizing the aromatic vinyl compound to the specific aromatic vinyl-conjugated diene copolymer is not particularly limited, but for example, the method of radical copolymerizing the aromatic vinyl compound to the specific aromatic vinyl-conjugated diene copolymer This is carried out by bulk polymerization of a solution of an aromatic vinyl compound dissolved therein or by radical polymerization by a combination of bulk polymerization and suspension polymerization.

前記芳香族ビニル−共役ジエン系共重合体と芳香族ビニ
ル化合物のグラフト重合において、芳香族ビニル−共役
ジエン系共重合体と芳香族ビニル化合物の混合割合は重
量%比で3/97〜15/85、好ましくは4/96〜
10/90である。
In the graft polymerization of the aromatic vinyl-conjugated diene copolymer and the aromatic vinyl compound, the mixing ratio of the aromatic vinyl-conjugated diene copolymer and the aromatic vinyl compound is from 3/97 to 15/1 in weight percent. 85, preferably 4/96~
It is 10/90.

芳香族ビニル−共役ジエン系共重合体の使用量が3重量
%未満では、得られる樹脂の耐衝撃性が低下し本発明の
目的を達成し難く、一方、15市口%を超えるとグラフ
ト重合溶液の粘度が非常に高くなるため、実際にグラフ
ト重合することが困難となる。
If the amount of the aromatic vinyl-conjugated diene copolymer used is less than 3% by weight, the impact resistance of the resulting resin will decrease and it will be difficult to achieve the object of the present invention, whereas if it exceeds 15% by weight, graft polymerization will occur. Since the viscosity of the solution becomes extremely high, it becomes difficult to actually carry out graft polymerization.

芳香族ビニル−共役ジエン系重合体と芳香族ビニル化合
物とのグラフト重合を塊状重合によって行なう場合には
、前記芳香族ビニル−共役ジエン系共重合体を芳香族ビ
ニル化合物に溶解させ、次いで必要に応じて分子量調節
剤を添加して重合させる。
When graft polymerization of an aromatic vinyl-conjugated diene polymer and an aromatic vinyl compound is carried out by bulk polymerization, the aromatic vinyl-conjugated diene copolymer is dissolved in the aromatic vinyl compound, and then, if necessary, Add a molecular weight regulator as required and polymerize.

L記分子量調節剤としては、例えばα−メチルスチレン
ダイマー n−デシルメルカプタン、tert−ドデシ
ルメルカプタン、1−フェニルブテン−2−フルオレン
ならびにジペンテン、クロロホルムなどのメルカプタン
類、テルペン類、ハロゲン化合物などが用いられる。
Examples of molecular weight regulators used include α-methylstyrene dimer, n-decylmercaptan, tert-dodecylmercaptan, 1-phenylbutene-2-fluorene, dipentene, mercaptans such as chloroform, terpenes, and halogen compounds. .

また、得られる樹脂の成形加工性を向」ニさせるために
滑剤を加えることができる。例えば、ステアリン酸ブチ
ル、フタル酸ブチルなどのエステル系滑剤、ミネラルオ
イル、パラフィンワックスなどの従来の樹脂加工におい
て用いられる滑剤を使用することができる。
Furthermore, a lubricant can be added to improve the moldability of the resulting resin. For example, ester lubricants such as butyl stearate and butyl phthalate, mineral oil, paraffin wax, and other lubricants used in conventional resin processing can be used.

これらを前記の重合体溶液に溶解後、重合開始剤として
、ベンゾイルパーオキサイド、ラウロイルパーオキサイ
ド、キュメンハイドロパーオキサイド、メチルエチルケ
トンパーオキサイド、ジクミルパーオキサイド、ジイソ
プロピルパーオキシジカーボネート、ターシャリ−ブチ
ルパーオキシアセテート、ジ−ターシャリ−ブチルシバ
−オキシイソフタレートまたはアゾビスイソブチロニト
リルなどを添加して、不活性ガス雰囲気下、反応温度6
0〜200℃で撹拌しながら重合反応を完結させる。
After dissolving these in the above polymer solution, benzoyl peroxide, lauroyl peroxide, cumene hydroperoxide, methyl ethyl ketone peroxide, dicumyl peroxide, diisopropyl peroxydicarbonate, tert-butyl peroxy acetate were added as a polymerization initiator. , di-tert-butylshiba-oxyisophthalate or azobisisobutyronitrile, etc., and the reaction temperature was increased to 6°C under an inert gas atmosphere.
The polymerization reaction is completed while stirring at 0 to 200°C.

また、塊状重合の際には、重合開始剤を用いずに熱ある
いは光によって重合を開始させる重合も可能である。
Furthermore, during bulk polymerization, it is also possible to initiate polymerization using heat or light without using a polymerization initiator.

前記塊状重合反応中において、通常は芳香族ビニル化合
物の重合率が約30%になるまでの段階において効果的
に撹拌することが好ましく、一方、該芳香族ビニル化合
物の重合率が約30%を超えて進んだ後には撹拌を緩和
することが好ましい。
During the bulk polymerization reaction, it is usually preferable to stir effectively until the polymerization rate of the aromatic vinyl compound reaches about 30%; It is preferable to ease the agitation after the temperature has been exceeded.

またこの際、重合系の粘度を低下させる目的でトルエン
、エチルベンゼン、キシレンなどの炭化水素溶媒を加え
てもよい。
Further, at this time, a hydrocarbon solvent such as toluene, ethylbenzene, xylene, etc. may be added for the purpose of lowering the viscosity of the polymerization system.

重合終了後、ベント式ルーダ−またはスチームストリッ
ピングなどによって、脱モノマー、脱溶媒することによ
り重合生成物からモノマーおよび溶媒が回収される。
After the polymerization is completed, the monomer and solvent are recovered from the polymerized product by removing the monomer and the solvent using a vented Ruder or steam stripping.

また、芳香族ビニル−共役ジエン系共重合体と芳香族ビ
ニル化合物とのグラフト重合を塊状重合−懸濁重合の組
み合わせによって行なう場合には、まずモノマー(芳香
族ビニル化合物)の約10〜45市量%が重合体に転化
するまで塊状重合を行ない、この溶液をポリビニルアル
コール、ポリメタクリル酸塩、第三燐酸カルシウムなど
の懸濁安定剤を溶解した水溶液中に分散させ、懸濁状態
を保ちながら反応温度60〜150℃で重合を完結させ
る。重合終了後、重合生成物を充分に水洗して懸濁安定
剤を除去したのち乾燥することにより、芳香族ビニル系
樹脂が回収される。
In addition, when graft polymerization of an aromatic vinyl-conjugated diene copolymer and an aromatic vinyl compound is carried out by a combination of bulk polymerization and suspension polymerization, first about 10 to 45 molecules of the monomer (aromatic vinyl compound) are Bulk polymerization is carried out until % of the polymer is converted into a polymer, and this solution is dispersed in an aqueous solution containing a suspension stabilizer such as polyvinyl alcohol, polymethacrylate, or tribasic calcium phosphate, while maintaining a suspended state. Polymerization is completed at a reaction temperature of 60 to 150°C. After the polymerization is completed, the polymerized product is thoroughly washed with water to remove the suspension stabilizer, and then dried to recover the aromatic vinyl resin.

なお、前記塊状重合あるいは塊状−懸濁重合によりラジ
カル重合する際に、使用されるモノマーの50重量%以
上が前記芳香族ビニル化合物であることが好ましく、5
0重量%未満のモノマーを該化合物以外のアクリロニト
リル、メタクリロニトリル、アクリル酸、アクリル酸メ
チル、メタクリル酸メチルなどの脂肪族ビニル化合物で
置き換えてもよい。
In addition, when performing radical polymerization by the bulk polymerization or bulk-suspension polymerization, it is preferable that 50% by weight or more of the monomer used is the aromatic vinyl compound,
Less than 0% by weight of the monomer may be replaced with an aliphatic vinyl compound other than the above compound, such as acrylonitrile, methacrylonitrile, acrylic acid, methyl acrylate, or methyl methacrylate.

また、前記両型合法で得られた樹脂には、既知の酸化防
止剤、例えば2,6−シーtert−ブチル−4−メチ
ルフェノール、2−(1−メチルシクロヘキシル)−4
,6−シメチルフエノール、2.2′−メチレン−ビス
(4−エチル−6−tert−ブチルフェノール)、4
.4’ −チオビス=(5−tert−ブチル−3−メ
チルフェノール)、ジラウリルチオジプロピオネート、
トリス(ジ−ノニルフェニル)ホスファイト、ワックス
;既知の紫外線吸収剤、例えばp−tert−プチルフ
ェニルサリシレ−1・、2.2′−ジヒドロキシ−4−
メトキシベンゾフェノン、2−(2′−ヒドロキシ−4
′−n−オクトキシフェニル)ベンゾチリアゾール;既
知の滑剤、例えばパラフィンワックス、ステアリン酸、
硬化油、ステアロアミド、メチレンビスステアロアミド
、n−ブチルステアレート、ケトンワックス、オクチル
アルコール、ラウリルアルコール、ヒドロキシステアリ
ン酸トリグリセリド;既知の難燃剤、例えば酸化アンチ
モン、水酸化アルミニウム、硼酸亜鉛、トリクレジルホ
スフェート、トリス(ジクロロプロピル)ホスフェート
、塩素化パラフィン、テトラブロモブタン、ヘキサブロ
モベンゼン、テトラブロモビスフェノールA;既知の帯
電防止法、例えばステアロアミドプロピルジメチル−β
−ヒドロキシエチルアンモニウムニトレート;既知の着
色剤、例えば酸化チタン、カーボンブラック、その他の
無機あるいは有機顔料;既知の充填剤、例えば炭酸カル
シウム、クレー、シリカ、ガラス繊維、ガラス球、カー
ボン繊維などを必要に応じて添加することができる。
In addition, the resins obtained by both types of methods may contain known antioxidants, such as 2,6-tert-butyl-4-methylphenol, 2-(1-methylcyclohexyl)-4
, 6-dimethylphenol, 2,2'-methylene-bis(4-ethyl-6-tert-butylphenol), 4
.. 4'-thiobis=(5-tert-butyl-3-methylphenol), dilaurylthiodipropionate,
Tris(di-nonylphenyl) phosphite, wax; known UV absorbers such as p-tert-butylphenyl salicyle-1., 2,2'-dihydroxy-4-
Methoxybenzophenone, 2-(2'-hydroxy-4
'-n-octoxyphenyl)benzothiliazole; known lubricants such as paraffin wax, stearic acid,
Hydrogenated oils, stearamide, methylene bisstearamide, n-butyl stearate, ketone wax, octyl alcohol, lauryl alcohol, hydroxystearic acid triglyceride; known flame retardants such as antimony oxide, aluminum hydroxide, zinc borate, tricresyl phosphate, tris(dichloropropyl) phosphate, chlorinated paraffin, tetrabromobutane, hexabromobenzene, tetrabromobisphenol A; known antistatic methods, e.g. stearamidopropyldimethyl-β
- hydroxyethylammonium nitrate; known colorants such as titanium oxide, carbon black, other inorganic or organic pigments; known fillers such as calcium carbonate, clay, silica, glass fibers, glass spheres, carbon fibers, etc. required; It can be added depending on the situation.

e、実施例 以下、実施例を挙げ本発明をさらに具体的に説明するが
、本発明はこれらの実施例によって限定されるものでは
ない。
e. Examples Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

なお、実施例中、部および%は特に断らない限り重量基
準で示した。
In the examples, parts and percentages are expressed on a weight basis unless otherwise specified.

また、実施例中における各種の測定は、下記に示す方法
に従った。
Moreover, various measurements in the examples were carried out according to the methods shown below.

芳香族ビニル−共役ジエン系共重合体のミクロ構造は赤
外分光分析法(モレロ法)により、結合芳香族ビニル化
合物成分量は赤外分光分析法で波数699c+n’″1
におけるフェニル基により吸収ピークの強度を測定し、
予め求めておいた検量線からその量を求め、5重量%ス
チレン溶液の粘度はキャノンフェンスケ型粘度計を用い
、25℃にて測定した。
The microstructure of the aromatic vinyl-conjugated diene copolymer was determined by infrared spectroscopy (Morello method), and the amount of bonded aromatic vinyl compound was determined by infrared spectroscopy at a wave number of 699c+n'''1.
Measure the intensity of the absorption peak due to the phenyl group in
The amount was determined from a previously determined calibration curve, and the viscosity of the 5% by weight styrene solution was measured at 25° C. using a Cannon-Fenske viscometer.

また、芳香族ビニル−共役ジエン系共重合体の分子量分
布は、東洋曹達工業■製、HLC−802A型GPCを
用い、検知器として示差屈折計を用い、次の条件で測定
した。
The molecular weight distribution of the aromatic vinyl-conjugated diene copolymer was measured using HLC-802A type GPC manufactured by Toyo Soda Kogyo ■ and a differential refractometer as a detector under the following conditions.

カラム;東洋曹達工業仲製カラl1、 GMH−3、GMH−6 移動相;テトラヒドロフラン 測定温度;40℃ 耐衝撃性ポリスチレン系樹脂の物性は、次の方法に従っ
て測定した。
Column: Toyo Soda Kogyo Nakako Co., Ltd. Color 11, GMH-3, GMH-6 Mobile phase: Tetrahydrofuran Measurement temperature: 40°C The physical properties of the impact-resistant polystyrene resin were measured according to the following method.

アイゾツト衝撃強度(1部4インチ、ノツチ付き);8
oz射出成形機を用い、シリンダー温度200℃得られ
た樹脂を成形し、その成形品について、ASTM  D
−256に準じて測定した。
Izotsu impact strength (1 part 4 inches, with notch): 8
The resulting resin was molded using an oz injection molding machine at a cylinder temperature of 200°C, and the molded product was rated according to ASTM D.
-256.

引張強度;8oz射出成形機を用い、シリンダー温度2
00℃で得られた樹脂を成形し、その成形品について、
ASTM  D−638に準じて測定した。
Tensile strength: Using an 8oz injection molding machine, cylinder temperature 2
The resin obtained at 00°C is molded, and the molded product is
Measured according to ASTM D-638.

光 沢;8oz射出成形機を用い、シリンダー温度20
0℃で得られた樹脂を成形し、その成形品について、A
STM  D−523に準じ45″反射光沢度を測定し
た。
Gloss: Using an 8oz injection molding machine, cylinder temperature 20
The resin obtained at 0°C is molded, and the molded product is A.
45'' reflective gloss was measured according to STM D-523.

配向性;3.5oz射出成形機を用い、シリンダー温度
200℃で、80X64X2.4+++a+の金型内に
ゲートから樹脂を導入し、短冊状のサンプル片をその長
手方向が樹脂の流れ方向と平行方向のものと、垂直方向
であるものを作製し、各々のサンプルについてノツチ付
きアイゾツト衝撃強度を測定し、た。
Orientation: Using a 3.5oz injection molding machine, resin was introduced from the gate into an 80x64x2.4+++a+ mold at a cylinder temperature of 200°C, and a strip-shaped sample piece was placed so that its longitudinal direction was parallel to the flow direction of the resin. One in the vertical direction and one in the vertical direction were prepared, and the notched Izo impact strength of each sample was measured.

また、非配向度(%)は、下記式で計算した。Moreover, the degree of non-orientation (%) was calculated using the following formula.

分散ゴム粒子のメジアン粒子径;樹脂ペレット1〜2粒
をジメチルホルムアミド約50m1中に入れ、約3時間
放置する。次にこのジメチルホルムアミド溶解液を電解
質溶液(ISOTON■■)に添加し、適度の粒子濃度
としてコールタ−カウンターにて測定し、得られた粒径
分布から50%のメジアン粒径を算出した。
Median particle size of dispersed rubber particles: 1 to 2 resin pellets are placed in about 50 ml of dimethylformamide and left for about 3 hours. Next, this dimethylformamide solution was added to an electrolyte solution (ISOTON ■■), and the particle concentration was measured using a Coulter counter to obtain an appropriate particle concentration, and the 50% median particle size was calculated from the obtained particle size distribution.

実施例1 内容積152の撹拌機付重合反応器を用い、重合反応器
底部より1.3−ブタジェン1425g/llr、スチ
レン75g/Hr、シクロヘキサン10゜500 g/
firSn−ブチルリチウム0. 5/llr、テトラ
ヒドロフラン0. 5g/Jlrの流量となるように定
量ポンプを用いて連続的に供給し、重合反応器内を終始
95℃に保って重合させた。重合反応器の頂部から連続
的に抜き出された重合溶液に重合体100部あたり0.
5部の2.6−シーtert−ブチル−p−クレゾール
を加えた。得られた重合溶液をスチームストリッピング
により脱溶媒し、110℃の熱ロールで乾燥して、スチ
レン−ブタジェン共重合体を得た。
Example 1 Using a polymerization reactor with an internal volume of 152 mm and equipped with a stirrer, 1,3-butadiene 1425 g/llr, styrene 75 g/Hr, and cyclohexane 10° 500 g/L were added from the bottom of the polymerization reactor.
firSn-butyllithium 0. 5/llr, tetrahydrofuran 0. The mixture was continuously supplied using a metering pump at a flow rate of 5 g/Jlr, and the inside of the polymerization reactor was maintained at 95° C. from beginning to end for polymerization. 0.0% per 100 parts of polymer is added to the polymerization solution continuously withdrawn from the top of the polymerization reactor.
5 parts of 2.6-sheet tert-butyl-p-cresol were added. The resulting polymer solution was desolvented by steam stripping and dried with a hot roll at 110°C to obtain a styrene-butadiene copolymer.

得られたスチレン−ブタジェン共重合体のムーニー粘度
(ML   、100℃)は127.5重1+4 量%スチレン溶液の粘度は820センチボイズ、ビニル
結合金量は15%、結合スチレン量は4゜8%、分子量
分布(M w / M n )は1.7であった。
The Mooney viscosity (ML, 100°C) of the obtained styrene-butadiene copolymer was 127.5% by weight, 1+4% by weight. The viscosity of the styrene solution was 820 centiboise, the amount of vinyl bond was 15%, and the amount of bound styrene was 4°8%. , the molecular weight distribution (Mw/Mn) was 1.7.

次いで、前記で得られたスチレン−ブタジェン共重合体
6部、スチレン94部の混合物を室温で約8時間撹拌し
、均一に溶解した。この溶液を内容積10℃の撹拌機付
重合反応器に移し、これにtert−ドデシルメルカプ
タン150 ppmおよびベンゾイルパーオキシド0.
05部を添加し、回転数30 Orpm 、 118℃
でスチレンの重合率が約30%になるまで重合させた。
Next, a mixture of 6 parts of the styrene-butadiene copolymer obtained above and 94 parts of styrene was stirred at room temperature for about 8 hours to uniformly dissolve the mixture. This solution was transferred to a polymerization reactor with an internal volume of 10° C. equipped with a stirrer, and 150 ppm of tert-dodecyl mercaptan and 0.0 ppm of benzoyl peroxide were added thereto.
05 parts, rotation speed 30 Orpm, 118°C
Polymerization was carried out until the polymerization rate of styrene reached approximately 30%.

次いで、重合溶液100部当たりジクミルパーオキサイ
ド0.05部を添加し、さらに懸濁安定剤として第三燐
酸カルシウム3部、界面活性剤としてドデシルベンゼン
スルホン酸ナトリウム0゜005部を含む水150部を
加え、撹拌下に懸濁させた。この懸濁混合物を撹拌しつ
つ、120℃で2時間、140℃で2時間、さらに16
0℃で2時間加熱して重合させた。
Next, 0.05 part of dicumyl peroxide was added per 100 parts of the polymerization solution, and 150 parts of water containing 3 parts of tribasic calcium phosphate as a suspension stabilizer and 0.005 parts of sodium dodecylbenzenesulfonate as a surfactant was added. was added and suspended under stirring. The suspension mixture was heated to 120°C for 2 hours, 140°C for 2 hours, and then for 16 hours with stirring.
Polymerization was carried out by heating at 0° C. for 2 hours.

得られたビーズ状の樹脂を戸別し、水洗処理後、乾燥し
て押出機でベレット化した。
The resulting bead-shaped resin was distributed door to door, washed with water, dried, and made into pellets using an extruder.

かくて得られたスチレン系樹脂を射出成形して物性測定
用の試験片を作成し、その物性を評価した。その測定結
果を表−1に示す。
The thus obtained styrenic resin was injection molded to prepare test pieces for measuring physical properties, and the physical properties were evaluated. The measurement results are shown in Table-1.

実施例2 実施例1において、テトラヒドロフランの供給量を4.
2g/Hrに変えた以外は実施例1と同様に行なった。
Example 2 In Example 1, the amount of tetrahydrofuran supplied was increased to 4.
The same procedure as in Example 1 was carried out except that the rate was changed to 2 g/Hr.

その結果を表−1に示す。The results are shown in Table-1.

実施例3 実施例1において、n−ブチルリチウムの供給量を0.
6g/Hrに変えた以外は実施例1と同様に行なった。
Example 3 In Example 1, the amount of n-butyllithium supplied was reduced to 0.
The same procedure as in Example 1 was carried out except that the rate was changed to 6 g/Hr.

その結果を表−1に示す。The results are shown in Table-1.

実施例4 実施例−1において、n−ブチルリチウムの供給量を0
.4g/Hrに、重合温度を90℃に変えた以外は実施
例1と同様に行なった。その結果を表−1に示す。
Example 4 In Example-1, the amount of n-butyllithium supplied was set to 0.
.. The same procedure as in Example 1 was carried out except that the polymerization rate was changed to 4 g/Hr and the polymerization temperature was changed to 90°C. The results are shown in Table-1.

比較例1 実施例1において、作製したスチレン−ブタジェン共重
合体をグラフト重合する際、t−ドデシルメルカプタン
の量を700 ppmに変えた以外は実施例1と同様に
行なった。その結果を表−1に示す。
Comparative Example 1 The graft polymerization of the prepared styrene-butadiene copolymer was carried out in the same manner as in Example 1, except that the amount of t-dodecylmercaptan was changed to 700 ppm. The results are shown in Table-1.

比較例2 実施例1において、n−ブチルリチウムの供給量を0.
8g/)Irに、テトラヒドロフランの供給をストップ
し、グラフト重合の際のt−ドデシルメルカプタンの量
を700 ppllに変えた以外は実施例1と同様に行
なった。その結果を表−1に示す。
Comparative Example 2 In Example 1, the amount of n-butyllithium supplied was changed to 0.
The same procedure as in Example 1 was carried out except that the supply of tetrahydrofuran to 8 g/)Ir was stopped and the amount of t-dodecylmercaptan during graft polymerization was changed to 700 ppll. The results are shown in Table-1.

比較例3 比較例2において、t−ドデシルメルカプタンの量を1
50 ppmに変えた以外は比較例2と同様に行なった
。結果を表−1に示す。
Comparative Example 3 In Comparative Example 2, the amount of t-dodecyl mercaptan was reduced to 1
The same procedure as Comparative Example 2 was carried out except that the concentration was changed to 50 ppm. The results are shown in Table-1.

比較例4 実施例1において、1,3−ブタジェンの供給量を12
75 g/Hr、スチレンの供給量を225g/Hrに
変えた以外は実施例1と同様に行なった。
Comparative Example 4 In Example 1, the amount of 1,3-butadiene supplied was increased to 12
The same procedure as in Example 1 was carried out except that the styrene supply amount was changed to 75 g/Hr and 225 g/Hr.

結果を表−1に示す。The results are shown in Table-1.

比較例5 実施例1において、テトラヒドロフランの供給量を21
g/Ilrに変えた以外は実施例1と同様に行なった。
Comparative Example 5 In Example 1, the amount of tetrahydrofuran supplied was changed to 21
The same procedure as in Example 1 was carried out except that the concentration was changed to g/Ilr.

結果を表−1に示す。The results are shown in Table-1.

比較例6 実施例1において、1,3−ブタジェンの供給量を14
67 g/IIr、スチレンの供給量を33r/!1「
に変えた以外は実施例1と同様に行なった。
Comparative Example 6 In Example 1, the amount of 1,3-butadiene supplied was increased to 14
67 g/IIr, styrene supply amount 33r/! 1"
The same procedure as in Example 1 was carried out except that .

結果を表−1に示す。The results are shown in Table-1.

実施例5 スチレン−ブタジェン共重合体の重合形式を回分式に変
えて重合を行なった。すなわち、内容積10ゑの撹拌器
付き重合反応器を用い、シクロヘキサン4900g、テ
トラヒドロフラン2.Or。
Example 5 Polymerization of a styrene-butadiene copolymer was performed by changing the polymerization method to a batch method. That is, using a polymerization reactor with an internal volume of 10 ゜ and equipped with a stirrer, 4900 g of cyclohexane and 2.0 g of tetrahydrofuran were added. Or.

n−ブチルリチウム0.22gを仕込み、さらに1.3
−ブタジェン660gとスチレン40tの混合モノマー
を1時間で添加し終るように定量ポンプを用いて連続的
に反応系中に加え、85℃にて重合した。
Charge 0.22g of n-butyllithium, and add 1.3g of n-butyllithium.
- A monomer mixture of 660 g of butadiene and 40 tons of styrene was continuously added to the reaction system using a metering pump so that the addition was completed in 1 hour, and polymerization was carried out at 85°C.

結果を表−1に示す。The results are shown in Table-1.

以 下 余 白 f1発明の効果 本発明によれば、耐衝撃性、外観特性および機械的特性
のバランスに優れた耐衝撃性芳香族ビニル化合物樹脂を
得ることができ、その工業的意義は極めて大である。
Margin below f1 Effects of the Invention According to the present invention, it is possible to obtain an impact-resistant aromatic vinyl compound resin with an excellent balance of impact resistance, appearance characteristics, and mechanical properties, and its industrial significance is extremely large. .

特許出願人  日本合成ゴム株式会社Patent applicant: Japan Synthetic Rubber Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)芳香族ビニル−共役ジエン系共重合体の存在下に
芳香族ビニル化合物を重合する方法において、前記芳香
族ビニル−共役ジエン系共重合体が[1]25℃で測定
した5重量%スチレン溶液の粘度が550〜2000セ
ンチポイズ、 [2]共役ジエン部分のビニル結合金量が13〜30%
、 [3]芳香族ビニル化合物成分の結合含有量が14重量
%以下、 であり、かつ得られる樹脂中に分散したゴム粒子のメジ
アン粒子径を1〜2.5μm、ゴム成分を除いた樹脂成
分の固有粘度(25℃トルエン中)を0.7dl/g以
上に調節することを特徴とする耐衝撃性芳香族ビニル系
樹脂の製造方法。
(1) In the method of polymerizing an aromatic vinyl compound in the presence of an aromatic vinyl-conjugated diene copolymer, the aromatic vinyl-conjugated diene copolymer contains [1] 5% by weight measured at 25°C. The viscosity of the styrene solution is 550 to 2000 centipoise, [2] The amount of vinyl bond in the conjugated diene part is 13 to 30%.
, [3] The bond content of the aromatic vinyl compound component is 14% by weight or less, and the median particle diameter of the rubber particles dispersed in the resulting resin is 1 to 2.5 μm, and the resin component excluding the rubber component A method for producing an impact-resistant aromatic vinyl resin, which comprises adjusting the intrinsic viscosity (in toluene at 25° C.) of 0.7 dl/g or more.
(2)重合に際して、分子量調節剤を芳香族ビニル化合
物に対して300ppm以下にすることを特徴とする請
求項1記載の耐衝撃性芳香族ビニル系樹脂の製造方法。
(2) The method for producing an impact-resistant aromatic vinyl resin according to claim 1, characterized in that during the polymerization, the amount of the molecular weight regulator is 300 ppm or less based on the aromatic vinyl compound.
JP63321716A 1988-12-20 1988-12-20 Method for producing impact-resistant aromatic vinyl resin Expired - Lifetime JPH06102703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63321716A JPH06102703B2 (en) 1988-12-20 1988-12-20 Method for producing impact-resistant aromatic vinyl resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63321716A JPH06102703B2 (en) 1988-12-20 1988-12-20 Method for producing impact-resistant aromatic vinyl resin

Publications (2)

Publication Number Publication Date
JPH02191617A true JPH02191617A (en) 1990-07-27
JPH06102703B2 JPH06102703B2 (en) 1994-12-14

Family

ID=18135643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63321716A Expired - Lifetime JPH06102703B2 (en) 1988-12-20 1988-12-20 Method for producing impact-resistant aromatic vinyl resin

Country Status (1)

Country Link
JP (1) JPH06102703B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349012A (en) * 1990-03-02 1994-09-20 Nippon Steel Chemical Co., Ltd. Process for preparing rubber-modified styrene resins

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162713A (en) * 1986-12-26 1988-07-06 Japan Synthetic Rubber Co Ltd Production of impact-resistant aromatic vinyl resin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162713A (en) * 1986-12-26 1988-07-06 Japan Synthetic Rubber Co Ltd Production of impact-resistant aromatic vinyl resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349012A (en) * 1990-03-02 1994-09-20 Nippon Steel Chemical Co., Ltd. Process for preparing rubber-modified styrene resins

Also Published As

Publication number Publication date
JPH06102703B2 (en) 1994-12-14

Similar Documents

Publication Publication Date Title
KR960000567B1 (en) Rubber-reinforced monovinylidene aromatic polymer resins and a method for their preparation
CA1077185A (en) High-impact polystyrene composition and production thereof
JPS63162713A (en) Production of impact-resistant aromatic vinyl resin
JPH02191617A (en) Production of impact-resistant aromatic-based resin
JPH01279943A (en) Styrene resin composition
JP2712600B2 (en) High gloss impact resistant aromatic vinyl resin composition
JP2658295B2 (en) Method for producing impact-resistant aromatic vinyl resin
JP2727616B2 (en) Method for producing impact-resistant aromatic vinyl resin
JP5089839B2 (en) Novel rubber-modified aromatic vinyl copolymer resin composition
US3465066A (en) Process for the production of shock resisting polymers
JPH06102704B2 (en) Method for producing impact-resistant aromatic vinyl resin
JPH02208312A (en) Production of impact-resistant aromatic vinyl resin
JPH0297510A (en) Manufacture of impact-resistant aromatic vinyl resin
JPS6296510A (en) Production of impact-resistant aromatic vinyl resin
JPS6295309A (en) Production of impact-resistant aromatic vinyl resin
JPH0488006A (en) High-gloss and impact-resistant aromatic vinylic resin composition
JPH1030047A (en) Rubber-modified styrene resin composition
JPH02185508A (en) Preparation of impact-resistant polystyrene
JPH0655800B2 (en) Method for producing impact-resistant aromatic vinyl resin
JPS62280211A (en) Production of impact-resistant resin
JPH0372510A (en) Production of impact-resistant aromatic vinyl resin
JPH06104708B2 (en) Method for producing impact-resistant polystyrene resin
JPH0578433A (en) Rubber-modified vinyl aromatic resin composition
JPS61241311A (en) Production of composition containing shock-resistant polystyrene and polystyrene for general purpose
JPH03195753A (en) Styrenic resin composition