JPH02191545A - Oxygen absorbing and desorbing agent and its production - Google Patents

Oxygen absorbing and desorbing agent and its production

Info

Publication number
JPH02191545A
JPH02191545A JP1028889A JP1028889A JPH02191545A JP H02191545 A JPH02191545 A JP H02191545A JP 1028889 A JP1028889 A JP 1028889A JP 1028889 A JP1028889 A JP 1028889A JP H02191545 A JPH02191545 A JP H02191545A
Authority
JP
Japan
Prior art keywords
complex
oxygen
axial ligand
porous polymer
polymer resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1028889A
Other languages
Japanese (ja)
Other versions
JP2934763B2 (en
Inventor
Hiroshi Okamoto
宏 岡本
Sachiko Suyama
陶山 祥子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP1010288A priority Critical patent/JP2934763B2/en
Publication of JPH02191545A publication Critical patent/JPH02191545A/en
Application granted granted Critical
Publication of JP2934763B2 publication Critical patent/JP2934763B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To produce the oxygen adsorbing and desorbing agent by which high- purity oxygen is obtained in good yield by dispersing and fixing an axial ligand in a porous high polymer resin by ionic bonding or covalent bonding, coordinate- bonding a complex having oxygen adsorptivity to the axial ligand. CONSTITUTION:An axial ligand to which a complex having adsorptivity can be coordinate-bonded is previously introduced into a porous high polymer resin, dispersed and fixed by ionic bonding or covalent bonding. The complex having oxygen adsorptivity is then coordinate-bonded to the axial ligand introduced into the high polymer resin to produce an oxygen adsorbent. Pyridine, imidazole, an alkylamine, etc., are exemplified as the axial ligand. Meanwhile, a compd shown by formula I is appropriately used as the complex having oxygen adsorptivity (R<1>, R<2> and R<3> are H, an alkoxy group, etc., R<4> is H, a methyl group, etc., R<5>, R<6>, R<7> and R<8> are an alkyl group, a phenyl group, etc.).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸素吸脱着剤及びその製造方法に関し、特に
空気中の酸素を圧力または温度変動式等の吸着法により
分離する際の吸着剤として好適な酸素吸脱着剤及びその
製造方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an oxygen adsorbent/desorbent and a method for producing the same, and in particular to an adsorbent for separating oxygen from the air by an adsorption method such as a pressure or temperature fluctuation method. The present invention relates to an oxygen adsorbing/desorbing agent suitable as an oxygen adsorbing/desorbing agent and a method for producing the same.

〔従来の技術〕[Conventional technology]

空気中の酸素を分離採取する際に、酸素あるいは窒素を
優先的に吸着する吸脱着剤を用い、圧力あるいは温度を
変動させて酸素を分離する圧力変動式空気分離方法(P
 S A)あるいは温度変動式空気分離方法(T S 
A)が知られている。上記吸脱着剤としては、窒素を優
先的に吸着する天然または合成ゼオライト、あるいは窒
素より酸素の方が吸着速度が速いカーボンモレキュラー
シーブス及びこれらを改良したものが用いられている。
When separating and collecting oxygen from the air, a pressure fluctuation air separation method (P
S A) or temperature variable air separation method (T S
A) is known. As the adsorption/desorption agent, natural or synthetic zeolites which preferentially adsorb nitrogen, carbon molecular sieves which adsorb oxygen faster than nitrogen, and improved versions thereof are used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上述のものでは、いずれも酸素及び窒素を
共に吸着するため、高純度の酸素を得ることが困難であ
り、高純度酸素を得るためには収率を犠牲にしなければ
ならながった。
However, in the above-mentioned methods, since both oxygen and nitrogen are adsorbed, it is difficult to obtain high-purity oxygen, and the yield has to be sacrificed in order to obtain high-purity oxygen.

また酸素吸着能を有するものとして、各種の錯体が知ら
れているが、これらは通常室温以下の温度でないと酸素
と反応しない他、溶液状態では劣化するという問題があ
った。
Furthermore, various complexes are known as having oxygen adsorption ability, but these typically do not react with oxygen unless the temperature is below room temperature, and they also have the problem of deteriorating in a solution state.

そこで本発明は、常温で酸素とのみ可逆的に反応し、繰
り返し使用しても劣化せず、高純度の酸素を高収率で、
かつ低動力原単位で得ることのできる酸素吸脱着剤及び
その製造方法を提供することを目的とする。
Therefore, the present invention reversibly reacts only with oxygen at room temperature, does not deteriorate even after repeated use, and produces high purity oxygen in high yield.
Another object of the present invention is to provide an oxygen adsorbing/desorbing agent that can be obtained with low power consumption and a method for producing the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記した目的を達成するために、本発明の酸素吸脱着剤
は、多孔質高分子樹脂中に軸配位子がイオン結合または
共有結合により分散固定され、該軸配位子に酸素吸着能
を有する錯体が配位結合により固定されていることを特
徴とする特に前記軸配位子は、酸素吸着能を有する錯体
に配位することにより、該錯体の酸素吸着能力が増加す
る軸配位子であることを特徴とするものである。
In order to achieve the above object, the oxygen adsorbing/desorbing agent of the present invention has an axial ligand dispersed and fixed in a porous polymer resin by ionic or covalent bonds, and the axial ligand has oxygen adsorption ability. In particular, the axial ligand is an axial ligand that increases the oxygen adsorption ability of the complex by coordinating with a complex having oxygen adsorption ability. It is characterized by:

また本発明の酸素吸脱着剤の製造方法は、多孔質高分子
樹脂中に酸素吸着能を有する錯体を分散固定して上記酸
素吸脱着剤を製造するにあたり、まず第1に前記錯体が
配位結合し得る軸配位子を、予めイオン結合または共有
結合により前記多孔質高分子樹脂中に導入して分散固定
し、次いで該軸配位子に前記錯体を配位結合させること
、また第2に前記軸配位子が分散固定された多孔質高分
子樹脂を、前記錯体が極性溶媒に溶解した70〜130
℃の錯体溶液中に浸漬して、該錯体と前記軸配位子とを
配位結合させること、さらに第3に多孔質高分子樹脂中
に分散固定された前記軸配位子に、前記錯体を配位結合
させた後、前記多孔質高分子樹脂に物理吸着している錯
体を除去すること、そして第4に錯体が配位結合し得る
軸配位子を、イオン結合または共有結合により多孔質高
分子樹脂中に導入して分散固定し、次いで該軸配位子が
分散固定された多孔質高分子樹脂を、酸素吸着能を有す
る錯体を極性溶媒中に溶解させた錯体溶液中に浸漬し、
該錯体溶液を70〜130’Cの温度に加熱して前記多
孔質高分子樹脂を膨潤させることにより、該錯体と前記
軸配位子とを配位結合させ、その後、前記極性溶媒及び
前記多孔質高分子樹脂に物理吸着している錯体を除去す
ることを特徴とするものである。
Further, in the method for producing an oxygen adsorbing/desorbing agent of the present invention, in producing the oxygen adsorbing/desorbing agent by dispersing and fixing a complex having oxygen adsorbing ability in a porous polymer resin, firstly, the complex is coordinated. A bondable axial ligand is introduced in advance into the porous polymer resin by ionic bonding or covalent bonding, and is dispersed and fixed therein, and then the complex is coordinately bonded to the axial ligand, and a second A porous polymer resin in which the axial ligands are dispersed and fixed is heated to 70 to 130 in which the complex is dissolved in a polar solvent
℃ immersed in a complex solution to form a coordinate bond between the complex and the axial ligand, and thirdly, the axial ligand dispersed and fixed in the porous polymer resin is immersed in the complex. After the coordinate bonding, the complex physically adsorbed to the porous polymer resin is removed, and the fourth step is to remove the axial ligand to which the complex can be coordinately bonded to the porous polymer resin by ionic bonding or covalent bonding. The porous polymer resin in which the axial ligands are dispersed and fixed is then immersed in a complex solution in which a complex having oxygen adsorption ability is dissolved in a polar solvent. death,
By heating the complex solution to a temperature of 70 to 130'C to swell the porous polymer resin, the complex and the axial ligand are coordinately bonded, and then the polar solvent and the porous polymer resin are bonded together. This method is characterized by removing complexes that are physically adsorbed on high-quality polymer resins.

上記多孔質高分子樹脂は、酸素を選択的に吸脱着する錯
体を固定するための担体として用いられるものである。
The porous polymer resin described above is used as a carrier for immobilizing a complex that selectively adsorbs and desorbs oxygen.

また上記軸配位子は、錯体の酸素吸着能を高めるために
用いられるものであるが、同時に錯体を前記多孔質高分
子樹脂に固定するための鎖としての役割も担っている。
Further, the above-mentioned axial ligand is used to enhance the oxygen adsorption ability of the complex, but at the same time, it also plays a role as a chain for fixing the complex to the above-mentioned porous polymer resin.

これらは、上記多孔質高分子樹脂と軸配位子との間の結
合構造により各種のものを用いることができる。
Various types of these can be used depending on the bond structure between the porous polymer resin and the axial ligand.

まず上記軸配位子としては、ピリジン、イミダゾール、
アルキルアミンまたはそれらの誘導体であり、これらは
イオン結合あるいはビニル基等の官能基を有するものが
用いられる。
First, the above-mentioned axial ligands include pyridine, imidazole,
Alkylamines or derivatives thereof, which have ionic bonds or functional groups such as vinyl groups, are used.

この官能基は、軸配位子を多孔質高分子樹脂中に分散固
定させるために必要なもので、官能基としてイオン結合
を有する軸配位子としては、例えば、 3−メチル−1,1′ −ドデシルジイミダゾリウムア
イオダイド; 1−(3−アミノプロピル)イミダゾール塩酸塩;4−
ピリジンエタンスルホン酸ナトリウム;4−ピコリルア
ミン塩酸塩: 等を挙げることができる。
This functional group is necessary for dispersing and fixing the axial ligand in the porous polymer resin, and examples of the axial ligand having an ionic bond as a functional group include, for example, 3-methyl-1,1 ' -Dodecyldiimidazolium iodide; 1-(3-aminopropyl)imidazole hydrochloride; 4-
Sodium pyridinethanesulfonate; 4-picolylamine hydrochloride: etc. can be mentioned.

これらのイオン結合を有する軸配位子は、イミダゾール
またはピリジン基の窒素原子の孤立電子対が、錯体の中
心金属に供与されることにより錯体が配位するが、イオ
ン結合を有する部分が上記窒素原子に近い場合、上記窒
素原子の電子対供与性が弱められる。この結果、錯体の
酸素吸着能力もまた弱くなることがあるので、イミダゾ
ールまたはピリジンのイオン結合部分との間に、少なく
とも1つのアルキル炭素を有する構造のものが好ましく
、より好ましくはアルキル炭素が3つ以上、最も好まし
い構造のものはアルキル炭素数が10以上のものである
In these axial ligands having ionic bonds, the lone pair of electrons of the nitrogen atom of the imidazole or pyridine group is donated to the central metal of the complex, so that the complex is coordinated. When the nitrogen atom is close to the atom, the electron pair donating property of the nitrogen atom is weakened. As a result, the oxygen adsorption ability of the complex may also be weakened, so a structure having at least one alkyl carbon between the imidazole or pyridine ionic bonding moiety is preferable, and more preferably three alkyl carbons. As described above, the most preferable structure is one in which the number of alkyl carbon atoms is 10 or more.

官能基としてビニル基を有する軸配位子としては、例え
ば、 4−ビニルピリジン: 8−(イミダゾール−1−−イル)オクタツール・1−
ビニルイミダゾールニ ア 等を挙げることができる。
Examples of the axial ligand having a vinyl group as a functional group include 4-vinylpyridine: 8-(imidazol-1-yl)octatool.1-
Vinyl imidazolnia and the like can be mentioned.

官能基として水酸基を有する軸配位子としては、例えば
、 4−(イミダゾール−1 イル)フェノール; 等を挙げることができる。
Examples of the axial ligand having a hydroxyl group as a functional group include 4-(imidazol-1 yl)phenol; and the like.

官能基としてアミンを有する軸配位子としては、例えば
、 1−(3−アミノプロピル)イミダゾ−・ル;4−アミ
ノピリジン; 3−ピリジンプロパノール; 等を挙げることができる。
Examples of the axial ligand having an amine as a functional group include 1-(3-aminopropyl)imidazole; 4-aminopyridine; 3-pyridinepropanol; and the like.

次に多孔質高分子樹脂としては、各種の樹脂を用いるこ
とができるが、例えば、官能基としてイオン結合を有す
る軸配位子を分散固定する多孔質高分子樹脂としては、
各種のイオン交換樹脂を利用することができる。
Next, various resins can be used as the porous polymer resin. For example, as a porous polymer resin that disperses and fixes an axial ligand having an ionic bond as a functional group,
Various ion exchange resins can be used.

例えば、前記1−(3−アミノプロピル)イミダゾール
塩酸塩のように、イミダゾール基またはピリジン基がカ
チオン部にある場合には陽イオン交換樹脂を用い、前記
4−ピリジンエタンスルホン酸ナトリウムのように、ピ
リジン基またはイミダゾール基がアニオン部にある場合
には陰イオン交換樹脂を用いる。
For example, when an imidazole group or a pyridine group is present in the cation moiety, as in the case of 1-(3-aminopropyl)imidazole hydrochloride, a cation exchange resin is used, as in the case of the above-mentioned sodium 4-pyridinethanesulfonate, When a pyridine group or an imidazole group is present in the anion portion, an anion exchange resin is used.

尚、陽イオン交換樹脂を用いる際には、該陽イオン交換
樹脂の官能基がナトリウム型のものを用いることが望ま
しい。この時、該樹脂の官能基がプロトン型の陽イオン
交換樹脂を用いると、反応後に樹脂中に残るプロトンが
錯体と反応して錯体を劣化させる虞がある。従ってプロ
トン型の陽イオン交換樹脂を用いる場合は、予め、Na
+などの陽イオンとイオン交換を行ってプロトン以外の
陽イオン型に変換することが望ましい。
In addition, when using a cation exchange resin, it is desirable to use one in which the functional group of the cation exchange resin is sodium type. At this time, if a cation exchange resin in which the functional group of the resin is of the proton type is used, there is a possibility that the protons remaining in the resin after the reaction react with the complex and deteriorate the complex. Therefore, when using a proton type cation exchange resin, Na
It is desirable to perform ion exchange with a cation such as + to convert it into a cation type other than proton.

また軸配位子の官能基がビニル基である前記4−ビニル
ビリジン等の場合には、共有結合によりこれを固定する
。例えば、ビニル基を有する軸配位子とスチレン等のモ
ノマー等とを反応させて共重合体を合成することにより
、軸配位子が分散固定した多孔質高分子樹脂を得ること
ができる。この合成は、常法に従って容易に行うことが
できるが、ジビニルベンゼン等の架橋剤やアゾビスイソ
ブチロニトリル等の重合開始剤の他、ポリビニルアルコ
ール等の分散・懸濁安定化剤、アミルアルコール等の重
合体沈殿剤を加える必要がある。
Further, in the case of the above-mentioned 4-vinylpyridine where the functional group of the axial ligand is a vinyl group, it is fixed by a covalent bond. For example, by reacting an axial ligand having a vinyl group with a monomer such as styrene to synthesize a copolymer, a porous polymer resin in which the axial ligand is dispersed and fixed can be obtained. This synthesis can be easily carried out according to conventional methods, but in addition to crosslinking agents such as divinylbenzene and polymerization initiators such as azobisisobutyronitrile, dispersion/suspension stabilizers such as polyvinyl alcohol, amyl alcohol, etc. It is necessary to add a polymer precipitant such as

官能基として水酸基またはアミンを有する軸配位子を分
散固定する多孔質高分子樹脂としては、スルフォン基を
有する陽イオン交換樹脂を利用することができる。この
種の樹脂を、例えば5塩化リンと処理すると、次式に従
って上記スルフォン基が塩化スルフォニルに変換される
As the porous polymer resin for dispersing and fixing the axial ligand having a hydroxyl group or amine as a functional group, a cation exchange resin having a sulfone group can be used. Treatment of this type of resin with, for example, phosphorus pentachloride converts the sulfone groups to sulfonyl chloride according to the following formula.

PCl5 / POCl2 R−3o、 HR−3o2C (上記式中、Rは樹脂を表す。) この塩化スルフォニルは、水酸基またはアミンと容易に
反応するので、この反応により該軸配位子を上記陽イオ
ン交換樹脂中に分散固定することができる。例えば前記
8−(イミダゾール−1−イル)オクタツールの場合は
次式の反応により固定される。
PCl5 / POCl2 R-3o, HR-3o2C (In the above formula, R represents a resin.) This sulfonyl chloride easily reacts with a hydroxyl group or an amine, so this reaction exchanges the axial ligand with the above cation. It can be dispersed and fixed in resin. For example, in the case of the above-mentioned 8-(imidazol-1-yl)octatool, it is fixed by the reaction of the following formula.

(上記式中、Rは樹脂を表す。) また前記1−(3−アミノプロピル)イミダゾールの場
合は、次式の反応により固定される。
(In the above formula, R represents a resin.) In the case of the above 1-(3-aminopropyl)imidazole, it is fixed by the reaction of the following formula.

子に含まれる官能基と反応できる官能基を有する多孔質
高分子樹脂であれば、どのような種類のものでも利用す
ることができる。
Any type of porous polymer resin can be used as long as it has a functional group that can react with the functional group contained in the porous polymer resin.

このように、予め軸配位子を分散固定した軸配位子含有
多孔質高分子樹脂の軸配位子に、酸素吸着能を有する錯
体を配位結合させて樹脂内に分散固定させる。
In this manner, a complex having oxygen adsorption ability is coordinately bonded to the axial ligand of the axial ligand-containing porous polymer resin in which the axial ligand has been dispersed and fixed in advance, and is dispersed and fixed within the resin.

この酸素吸着能を有する錯体としては、一般に酸素担体
等として知られているものを使用することができ、上記
軸配位子含有多孔質高分子樹脂の軸配位子と配位結合を
行うことにより、常温、常圧近傍で酸素を可逆的に吸脱
着するものを選択する。この皿の酸素吸着能を有する錯
体としては、例えば、一般式; (上記式中、Rは樹脂を表す。) 多孔質高分子樹脂としては他に、一般に輔配位(上記式
中、R1、R2、R3はそれぞれ水素またはOCU、な
どのアルコキシ基またはCH,などのアルキル基または
フェニル基を示し、R4は水素またはメチル基またはフ
ェニル基を示し、R5 R6、R? 、R8はそれぞれ水素またはCH3などの
アルキル基またはフェニル基を示す。) で表される錯体、あるいは一般式; (上記式中、RI、R2はそれぞれ水素またはメチル基
またはフェニル基を示す。)で表される錯体、さらに一
般式; (上記式中、RIは水素またはフェニル基を示し、R2
は水素またはCH3などのアルキル基を示す。) で表される錯体等を挙げることができる。
As this complex having oxygen adsorption ability, what is generally known as an oxygen carrier can be used, and it can coordinately bond with the axial ligand of the above-mentioned axial ligand-containing porous polymer resin. Select a material that reversibly adsorbs and desorbs oxygen at room temperature and near normal pressure. The complex having the oxygen adsorption ability of this plate includes, for example, the general formula: (In the above formula, R represents a resin). R2 and R3 each represent hydrogen or an alkoxy group such as OCU, an alkyl group such as CH, or a phenyl group, R4 represents hydrogen, a methyl group, or a phenyl group, R5 R6, R?, and R8 each represent hydrogen or CH3 (In the above formula, RI and R2 each represent hydrogen, a methyl group, or a phenyl group.) or a complex represented by the general formula; Formula; (In the above formula, RI represents hydrogen or a phenyl group, R2
represents hydrogen or an alkyl group such as CH3. ) Complexes represented by the following can be mentioned.

これらの錯体は、いずれも4配位構造のもので、通常6
配位構造で安定な形となるものである。従って、この錯
体の第5番目の配位座に前記軸配位子を配位させると、
第6番目の配位座の酸素吸着能が大きくなってここに酸
素が吸着する。
All of these complexes have a 4-coordinate structure, and usually have a 6-coordinate structure.
It has a stable coordination structure. Therefore, when the axial ligand is coordinated to the fifth coordination site of this complex,
The oxygen adsorption capacity of the sixth coordination site increases and oxygen is adsorbed here.

この錯体としては、一般に、第5番目の配位座に前記軸
配位子が配位した時に、酸素吸着能を示す錯体であれば
、どのような種類のものでも用いることが可能であるが
、後述の極性溶媒への溶解度が0.1M以上のものを使
用することが好ましい。具体的には、(N、N’−ビス
(4−メトキシサリチルアルデヒド)ジメチルエチレン
ジアミン)コバルト; または(N、N’−ビス(4−メトキシサリチルアルデ
ヒド)テトラメチルエチレンジアミン)コバルト; 配位子と錯体とを接近させる必要がある。即ぢ、錯体を
多孔質高分子樹脂中で移動可能として樹脂内の軸配位子
に接触させる必要がある。
Generally, any type of complex can be used as long as it exhibits oxygen adsorption ability when the axial ligand is coordinated to the fifth coordination site. It is preferable to use one having a solubility in a polar solvent described below of 0.1 M or more. Specifically, (N,N'-bis(4-methoxysalicylaldehyde)dimethylethylenediamine)cobalt; or (N,N'-bis(4-methoxysalicylaldehyde)tetramethylethylenediamine)cobalt; Ligand and complex It is necessary to bring them closer together. Therefore, it is necessary to make the complex movable in the porous polymer resin so that it comes into contact with the axial ligand in the resin.

この両者の接触は、上記錯体を極性溶媒中に溶解させて
錯体溶液を調製し、該錯体溶液中に前記軸配位子含有多
孔質高分子樹脂を浸漬するとともに、該錯体溶液を50
〜150℃、好ましくは70〜130℃の温度に加熱し
て前記多孔質高分子樹脂を膨潤させることにより行うこ
とができる。
The contact between the two can be carried out by dissolving the complex in a polar solvent to prepare a complex solution, immersing the axial ligand-containing porous polymer resin in the complex solution, and dipping the complex solution at 50%
This can be carried out by heating the porous polymer resin to a temperature of ~150°C, preferably 70~130°C to swell the porous polymer resin.

これにより、錯体が樹脂内を移動可能となり、樹脂内部
に固定された軸配位子と錯体との配位結合が可能となる
This allows the complex to move within the resin, allowing for coordination bonding between the axial ligand fixed within the resin and the complex.

上記極性溶媒としては、例えば γ−ブチロラクトン; 等を上げることができる。Examples of the above polar solvent include γ-butyrolactone; etc. can be raised.

上記錯体と軸配位子とを配位結合させるには、前記多孔
質高分子樹脂中に分散固定されている軸H,C−5−C
H。
In order to coordinately bond the complex and the axial ligand, the axial H, C-5-C, which is dispersed and fixed in the porous polymer resin.
H.

ジメチルホルムアミド; (CH3) 2 N CH0 1−メチル−2−ピロリジノン(N−メチルピロリジノ
ン); スルホラン; 等を挙げることができるが、加熱中の極性溶媒の蒸発ロ
スを少なくするためには、沸点の高いものを用いること
が好ましい。
Dimethylformamide; (CH3) 2 N CH0 1-methyl-2-pyrrolidinone (N-methylpyrrolidinone); sulfolane; etc., but in order to reduce the evaporation loss of the polar solvent during heating, It is preferable to use a high-quality one.

また錯体溶液を加熱するため、該錯体溶液中に溶存する
酸素により錯体の三量化反応が生じ、錯体の酸素吸着能
を失活させる虞がある。そこで軸配位子含有多孔質高分
子樹脂を錯体溶液に浸漬して加熱する際には、アルゴン
ガス等の不活性ガスのバブリング等により溶液中を無酸
素状態とすることが好ましい。
Furthermore, since the complex solution is heated, the oxygen dissolved in the complex solution causes a trimerization reaction of the complex, which may deactivate the oxygen adsorption ability of the complex. Therefore, when the axial ligand-containing porous polymer resin is immersed in a complex solution and heated, it is preferable to make the solution anoxic by bubbling an inert gas such as argon gas.

この時、錯体溶液の加熱温度が70℃未満の場合は、多
孔質高分子樹脂の膨潤が不十分で軸配位子と錯体との配
位結合を十分に行うことが困難であり、また加熱温度が
130℃を超えると、錯体の分解が起きたり、極性溶媒
の蒸発ロスが多くなり、さらに加熱源のエネルギーの無
駄となる。
At this time, if the heating temperature of the complex solution is less than 70°C, the swelling of the porous polymer resin will be insufficient and it will be difficult to make sufficient coordination bonds between the axial ligand and the complex. If the temperature exceeds 130° C., the complex may be decomposed, the polar solvent may be evaporated, and the energy of the heating source may be wasted.

このように、錯体溶液を加熱して多孔質高分子樹脂中の
軸配位子と錯体とを配位結合させることにより、本発明
の酸素吸脱着剤を得ることができるが、このままの状態
では、軸配位子に配位しなかった錯体が物理吸着により
多孔質高分子樹脂内に残存している。この配位結合でき
なかった錯体は、酸素吸着能が弱いばかりでなく、酸素
の吸着分離を行う際に酸素が酸素吸脱着剤内で移動拡散
するのを阻害し、酸素吸脱着剤の性能を低下させる虞が
ある。
As described above, the oxygen adsorbing/desorbing agent of the present invention can be obtained by heating the complex solution to form a coordinate bond between the axial ligand in the porous polymer resin and the complex. , the complex that is not coordinated to the axial ligand remains in the porous polymer resin due to physical adsorption. This complex that cannot be coordinated not only has a weak oxygen adsorption ability, but also inhibits the movement and diffusion of oxygen within the oxygen adsorbent and desorbent during oxygen adsorption and separation, reducing the performance of the oxygen adsorbing and desorbing agent. There is a risk that it may deteriorate.

そのため、上記配位結合を行った後に、多孔質高分子樹
脂内に物理吸着により残存している錯体を除去すること
が好ましい。この錯体の除去は、得られた酸素吸脱着剤
を錯体溶液から分離し、アセトン等の適宜な溶媒で洗浄
することにより行うことができる。
Therefore, after performing the coordination bond, it is preferable to remove the complex remaining in the porous polymer resin by physical adsorption. This complex can be removed by separating the obtained oxygen adsorbing/desorbing agent from the complex solution and washing it with an appropriate solvent such as acetone.

そして洗浄後の酸素吸脱着剤を真空乾燥等で乾燥させる
ことにより、得られる酸素吸脱着剤中に含まれる極性溶
媒や上記洗浄用溶媒が除去され、膨潤していた樹脂が元
の状態にまで収縮し、酸素吸着能を有する錯体が多孔質
高分子樹脂中に分散固定された酸素吸脱着剤を得ること
ができる。
Then, by drying the oxygen adsorbent/desorbent after washing by vacuum drying, etc., the polar solvent contained in the oxygen adsorbent/desorbent and the cleaning solvent mentioned above are removed, and the swollen resin returns to its original state. It is possible to obtain an oxygen adsorbing/desorbing agent in which a complex that shrinks and has oxygen adsorption ability is dispersed and fixed in a porous polymer resin.

尚、これらの官能基を含む軸配位子、多孔質高分子樹脂
、錯体は、例として挙げたもので本発明の範囲を限定す
るものではなく、条件により様々なものを用いることが
できる。
The axial ligands, porous polymer resins, and complexes containing these functional groups are listed as examples and do not limit the scope of the present invention, and various types can be used depending on the conditions.

〔作 用〕[For production]

前記例示した錯体が単独で溶液中にある場合は、25℃
前後の常温付近では、通常、酸素分離ができる程の酸素
吸着能を示さない。さらに、三量化反応として知られる
劣化が生じる。
When the exemplified complex is alone in solution, the temperature is 25°C.
At around room temperature, it usually does not exhibit enough oxygen adsorption ability to separate oxygen. Additionally, a degradation known as trimerization occurs.

しかし、本発明の酸素吸脱着剤では、錯体が高分子樹脂
中に分散固定されているため、錯体の熱振動が抑制され
、その結果、錯体が低温下に置かれた状態となり、常温
でも酸素分離できる程の十分な酸素吸着能を示す。更に
、分散固定されているため三量化反応が防止され、錯体
の劣化がなくなる。
However, in the oxygen adsorbing/desorbing agent of the present invention, since the complex is dispersed and fixed in the polymer resin, the thermal vibration of the complex is suppressed, and as a result, the complex is placed at a low temperature, and even at room temperature, oxygen Shows sufficient oxygen adsorption capacity for separation. Furthermore, since it is dispersed and fixed, trimerization reaction is prevented and deterioration of the complex is eliminated.

この酸素吸脱着剤は、酸素を吸着後に加熱あるいは減圧
することにより、容易に酸素を脱着・放出し、繰返し酸
素を吸着・脱着させることができる。
This oxygen adsorbing/desorbing agent easily desorbs and releases oxygen by heating or reducing pressure after adsorbing oxygen, and can adsorb and desorb oxygen repeatedly.

〔実施例〕〔Example〕

以下、本発明を、実施例及び比較例に基づいてさらに詳
細に説明する。
Hereinafter, the present invention will be explained in more detail based on Examples and Comparative Examples.

実施例1 1.2−ジアミノ−2−メチルプロパン;(CH3)2
 C(NH2)CH2NH24,41g (0,05モ
ル)をエタノール20m1に溶解した温度90℃の溶液
に、4−メトキシサリチルアルデヒド; CHO OCH3 15,22g (0,05モル)を加えて反応させ、ビ
ス(4−メトキシサリチルアルデヒド)ジメチルエチレ
ンジアミン; の黄色溶液を得た。
Example 1 1.2-diamino-2-methylpropane; (CH3)2
To a solution of C(NH2)CH2NH24,41 g (0,05 mol) dissolved in 20 ml of ethanol at a temperature of 90°C, 15,22 g (0,05 mol) of 4-methoxysalicylaldehyde; CHO OCH3 was added and reacted to form bis. A yellow solution of (4-methoxysalicylaldehyde)dimethylethylenediamine was obtained.

これに酢酸コバルト四水和物12.45g (0゜05
モル)の水溶液を投入して暗燈色の沈澱物を得た。これ
を放冷して吸引濾過後に真空乾燥を行い、酸素吸着能を
有する錯体; (N、N’−ビス(4−メトキシサリチルアルデヒド)
ジメチルエチレンジアミン)コバルト(以下、Co (
4−MeO5a 1)Dmenという)23gを得た(
収率的85%)。
To this, 12.45 g of cobalt acetate tetrahydrate (0°05
mol) was added to obtain a dark light colored precipitate. This is left to cool, filtered with suction, and then vacuum dried to form a complex with oxygen adsorption ability; (N,N'-bis(4-methoxysalicylaldehyde))
Cobalt (dimethylethylenediamine) (hereinafter referred to as Co(
23 g of 4-MeO5a 1) Dmen was obtained (
yield 85%).

この様に合成したCo (4−MeO3a l)Dme
nd、3zをγ−ブチロラクトン10m1に溶解させ、
0.072回錯体溶液とした。この錯体溶液に、4−ビ
ニルピリジンとスチレンとを常法により共重合させた径
約1mm+の多孔質共重合体粒状樹脂2g(乾燥重量)
を無酸素下で浸漬し、90℃に加熱してアルゴンガス気
流下で4時間還流した。
Co(4-MeO3a l)Dme synthesized in this way
nd, 3z was dissolved in 10 ml of γ-butyrolactone,
0.072 times as a complex solution. 2 g (dry weight) of a porous copolymer granular resin with a diameter of approximately 1 mm+ is obtained by copolymerizing 4-vinylpyridine and styrene in this complex solution using a conventional method.
was immersed in an oxygen-free environment, heated to 90°C, and refluxed for 4 hours under an argon gas stream.

放冷後、錯体溶液と樹脂とを分離し、樹脂をアセトンで
洗浄して物理吸着している錯体を除去し、最後に80℃
で15時間真空乾燥を行い、多孔質共重合体粒状樹脂中
にCo (4−Me OS a 1)Dmenを分散固
定した酸素吸脱着剤1.7gを得た。
After cooling, the complex solution and resin are separated, the resin is washed with acetone to remove the physically adsorbed complex, and finally the resin is heated to 80°C.
Vacuum drying was carried out for 15 hours to obtain 1.7 g of an oxygen adsorption/desorption agent in which Co (4-Me OS a 1) Dmen was dispersed and fixed in a porous copolymer granular resin.

得られた酸素吸脱着剤における酸素及び窒素ガスの吸着
量を電子天秤で重量法により測定した。
The amount of oxygen and nitrogen gas adsorbed in the obtained oxygen adsorbent/desorbent was measured gravimetrically using an electronic balance.

その結果、窒素ガスの吸着量は測定不可能な程少なかっ
たが、酸素ガスについては図に示す吸着能を得た。尚、
4−ビニルピリジンとスチレンとからなる多孔質共重合
体粒状樹脂は、酸素及び窒素ガスの吸着能を有していな
い。
As a result, although the adsorption amount of nitrogen gas was so small that it could not be measured, the adsorption capacity shown in the figure for oxygen gas was obtained. still,
The porous copolymer granular resin made of 4-vinylpyridine and styrene does not have the ability to adsorb oxygen and nitrogen gas.

比較例 錯体溶液を加熱せずに常温で処理した以外は、上記実施
例1と同様に操作を行ったところ、得られた樹脂の酸素
ガスに対する吸着能は、ごく低い値であった。
Comparative Example The same procedure as in Example 1 was performed except that the complex solution was treated at room temperature without heating. The adsorption capacity of the resulting resin for oxygen gas was extremely low.

実施例2 常法に従いスズC3C50Oを触媒として、2.3−ジ
メチル−2,3−ジニトロブタン:(CHi ) 2 
C(NOx ) C(CH3) 2 N0230gを3
7%塩酸水溶液で処理してテトラメチルエチレンジアミ
ン; (CH3)2 CCNH2)C(CH3)2 NH21
0,9gを得た(収率55%)。
Example 2 2,3-dimethyl-2,3-dinitrobutane: (CHi) 2 using tin C3C50O as a catalyst according to a conventional method.
C(NOx) C(CH3) 2 30g of N0
Tetramethylethylenediamine by treatment with 7% aqueous hydrochloric acid; (CH3)2 CCNH2)C(CH3)2 NH21
0.9 g was obtained (yield 55%).

これを、実施例1と同様の手順で、4−メトキシサリチ
ルアルデヒド15.22g、及び酢酸コバルト四水和物
12.45gと反応させて、酸素吸着能を有する錯体(
N、N’−ビス(4−メトキシサリチルアルデヒド)テ
トラメチルエチレンジアミン)コバルト(以下、Co(
4−Messal)Tmenという)17.6gを得た
(収率80%)。
This was reacted with 15.22 g of 4-methoxysalicylaldehyde and 12.45 g of cobalt acetate tetrahydrate in the same manner as in Example 1 to form a complex (
N,N'-bis(4-methoxysalicylaldehyde)tetramethylethylenediamine) cobalt (hereinafter referred to as Co(
17.6 g of 4-Messal)Tmen were obtained (yield: 80%).

このように合成したCo (4−MeO8a 1)Tm
enO,88gを1−メチル−2−ピロリジノン5.0
mlに溶解させ、0.40g錯体溶液とした。
Co (4-MeO8a 1)Tm synthesized in this way
enO, 88 g to 1-methyl-2-pyrrolidinone 5.0
ml to obtain a 0.40 g complex solution.

以下、実施例1と同様の手順で4−ビニルピリジンとス
チレンの多孔質共重合体の粒状樹脂1g(乾燥重量)中
にCo (4−MeO3a l)Tmenを分散固定し
、酸素吸脱着剤0.8gを得た。
Hereinafter, Co (4-MeO3a l)Tmen was dispersed and fixed in 1 g (dry weight) of a granular resin of a porous copolymer of 4-vinylpyridine and styrene using the same procedure as in Example 1, and 0 .8g was obtained.

得られた酸素吸脱着剤の酸素ガス吸脱着量を電子天秤を
用いて測定した。この測定では温度を一20℃から+5
0℃の間で変動させ、温度変化に基づく酸素吸脱着量を
測定した。
The amount of oxygen gas adsorbed and desorbed by the obtained oxygen adsorbent/desorbent was measured using an electronic balance. In this measurement, the temperature was changed from -20℃ to +5℃.
The temperature was varied between 0°C and the amount of oxygen adsorption and desorption based on temperature changes was measured.

その結果、酸素分圧が500 TorrO時、酸素吸脱
着量は、粒状樹脂1g当り0.811+gであった。
As a result, when the oxygen partial pressure was 500 TorrO, the amount of oxygen adsorption and desorption was 0.811+g per gram of granular resin.

この温度変動式酸素吸脱着テストを200回繰り返した
が、酸素吸脱着量は変らなかった。
This temperature fluctuation type oxygen adsorption/desorption test was repeated 200 times, but the amount of oxygen adsorption/desorption did not change.

実施例3 まず、常法により1,1′−ドデカメチレンジイミダゾ
ール; を合成し、この〕、〕1′−ドデカメチレンジイミダゾ
ール227g (7゜50X10−3モル)のトルエン
溶液(200ml)に、ヨードメタン5゜38g (3
,75X10−’モル)のトルエン溶液50m1を滴下
し、50℃で一晩反応させた後、0茶の固体を濾別し、
トルエンで洗浄した。次いて100℃で真空乾燥して、
軸配位子となる3−メチル−1,1′−ドデシルジイミ
ダゾリウムアイオダイド1.5.、Ogを得た(収率9
0%)。
Example 3 First, 1,1'-dodecamethylene diimidazole was synthesized by a conventional method, and in a toluene solution (200 ml) of 227 g (7°50 x 10-3 mol) of this],]1'-dodecamethylene diimidazole, Iodomethane 5°38g (3
, 75 x 10-' mol) in toluene was added dropwise, and after reacting overnight at 50°C, the solid of 0.0% was filtered out.
Washed with toluene. Next, vacuum dry at 100°C.
3-methyl-1,1'-dodecyldiimidazolium iodide as an axial ligand 1.5. , Og was obtained (yield 9
0%).

一方、プロトン型の陽イオン交換樹脂、商品名アンバー
リスト(15)(東京有機化学工業■製)]、 Ogを
、100当量(176g )の水酸化ナトリウムと蒸留
水下でイオン交換させてナトリウム型の陽イオン交換樹
脂を得た。次いでこのナトリウム型の陽イオン交換樹脂
0.5gを、2.5当量(3,47g)の前記3−メチ
ル−1,1′ドデシルジイミダゾリウムアイオダイドと
蒸留水下でイオン交換させた。濾液のNaイオン濃度測
定から、イオン交換率は48%であった。
On the other hand, a proton type cation exchange resin, trade name Amberlyst (15) (manufactured by Tokyo Organic Chemical Industry ■)], was ion-exchanged with 100 equivalents (176 g) of sodium hydroxide under distilled water to obtain a sodium form. A cation exchange resin was obtained. Next, 0.5 g of this sodium type cation exchange resin was ion-exchanged with 2.5 equivalents (3.47 g) of the 3-methyl-1,1' dodecyldiimidazolium iodide in distilled water. Measurement of the Na ion concentration of the filtrate revealed that the ion exchange rate was 48%.

そして、前記実施例2で合成した(Co(4−MeOS
a 1)Tmenl、324gを1−メチル−2−ピロ
リジノン10m1に溶解し、0.30M錯体溶液を調整
した。この錯体溶液に、上記軸配位子を導入したイオン
交換樹脂0.5gをアルゴンガス下で浸漬し、100℃
で3日間還流した。
Then, (Co(4-MeOS) synthesized in Example 2)
a1) 324g of Tmenl was dissolved in 10ml of 1-methyl-2-pyrrolidinone to prepare a 0.30M complex solution. In this complex solution, 0.5 g of the ion exchange resin into which the above-mentioned axial ligand was introduced was immersed under argon gas and heated to 100°C.
The mixture was refluxed for 3 days.

以下実施例1と同様の手順でイオン交換樹脂にCo (
4−MeOSa 1)Tmenを包埋した酸素吸脱着剤
を得た。
Hereinafter, in the same manner as in Example 1, Co (
4-MeOSa 1) An oxygen adsorption/desorption agent in which Tmen was embedded was obtained.

得られた酸素吸脱着剤における酸素ガス吸着量を測定し
た結果、酸素分圧300 Torr、吸着温度25℃の
時、樹脂1g当り15.3mgの酸素吸着を示した。
As a result of measuring the amount of oxygen gas adsorbed in the obtained oxygen adsorbing/desorbing agent, it was found that at an oxygen partial pressure of 300 Torr and an adsorption temperature of 25° C., 15.3 mg of oxygen was adsorbed per 1 g of resin.

実施例4 実施例3で用いた陽イオン交換樹脂20gを乾燥後、五
塩化リン125g/オキシ塩化リン250gの混合溶媒
中に投入し、窒素下100〜110℃で48時間反応さ
せ、塩化スルフォニル型の陽イオン交換樹脂に変換した
Example 4 After drying 20 g of the cation exchange resin used in Example 3, it was poured into a mixed solvent of 125 g of phosphorus pentachloride/250 g of phosphorus oxychloride, and reacted under nitrogen at 100 to 110°C for 48 hours to form a sulfonyl chloride type resin. was converted into a cation exchange resin.

次に常法により、8−(イミダゾール−1−イル)オク
タツールを合成し、得られた8−(イミダゾール−1−
イル)オクタツール7gを1−メチル−2−ピロリジノ
ン中に溶解し、前記の塩化スルフォニル型樹脂2.Og
に窒素下0℃で滴下後、80℃で3時間反応させ、8−
(イミダゾール−1−イル)オクタツールを共有結合に
より、樹脂中に分散固定させた。
Next, 8-(imidazol-1-yl)octatool was synthesized by a conventional method, and the obtained 8-(imidazol-1-yl)
7 g of octatool) was dissolved in 1-methyl-2-pyrrolidinone, and the above sulfonyl chloride type resin 2. Og
8-
(imidazol-1-yl)octatool was dispersed and immobilized in the resin by covalent bonding.

そして、前記実施例2で合成した錯体Co(4−M e
 OS a 1 ) T m e nを1−メチル−2
−ピロリジノンに溶解し、錯体の0.3M溶液を調整し
た。この溶液中に、前記軸配位子を分散固定させたイオ
ン交換樹脂2gを浸漬し、アルゴンガス雰囲気下、10
0℃で24時間還流を行った。
Then, the complex Co(4-M e
OS a 1) T m e n 1-methyl-2
- A 0.3M solution of the complex was prepared by dissolving it in pyrrolidinone. In this solution, 2 g of the ion exchange resin in which the axial ligand was dispersed and fixed was immersed, and the mixture was soaked for 10 min in an argon gas atmosphere.
Reflux was carried out at 0°C for 24 hours.

以下、実施例1と同様の手順でイオン交換樹脂にCo 
(4−MeOSa l)Tmenを包埋した酸素吸脱着
剤を得た。
Hereinafter, Co was added to the ion exchange resin in the same manner as in Example 1.
An oxygen adsorption/desorption agent in which (4-MeOSal)Tmen was embedded was obtained.

得られた酸素吸脱着剤における酸素ガスの吸着量を測定
した結果、酸素分圧300 Torr、吸着温度25℃
の時、樹脂1g当たり7.62mgの酸素吸着量を示し
た。
As a result of measuring the amount of oxygen gas adsorbed in the obtained oxygen adsorbing/desorbing agent, the oxygen partial pressure was 300 Torr, and the adsorption temperature was 25°C.
At this time, the amount of oxygen adsorbed was 7.62 mg per 1 g of resin.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の酸素吸脱着剤は、酸素を
可逆的に吸脱着する錯体が、樹脂中に分散固定された軸
配位子に配位結合して分散固定されているので、大量の
錯体を樹脂中に保持させることができるとともに、錯体
の酸素吸着能を向上させることができる。また錯体がそ
れぞれ軸配位子に固定されているため、錯体の三量化反
応による劣化を受けず、長期に亘って優れた酸素吸着能
を維持することができる。さらに酸素のみを吸脱着する
ものであるから、PSAあるいはTSAの吸着剤として
用いることにより、高純度の酸素を高収率で得ることが
可能となり、動力原単位を低減させることができる。
As explained above, in the oxygen adsorbing and desorbing agent of the present invention, the complex that reversibly adsorbs and desorbs oxygen is dispersed and immobilized by coordinate bonding to the axial ligand that is dispersed and immobilized in the resin. A large amount of the complex can be retained in the resin, and the oxygen adsorption ability of the complex can be improved. Furthermore, since the complexes are each fixed to the axial ligands, the complexes are not degraded by the trimerization reaction of the complexes, and excellent oxygen adsorption ability can be maintained over a long period of time. Furthermore, since it adsorbs and desorbs only oxygen, by using it as an adsorbent for PSA or TSA, it is possible to obtain highly purified oxygen at a high yield, and the power unit consumption can be reduced.

また酸素吸脱着剤を製造するにあたり、錯体が配位結合
し得る軸配位子を、予め多孔質高分子樹脂中に分散固定
し、該軸配位子に酸素吸着能を有する錯体を配位結合さ
せることより、大量の錯体を容易に分散固定させること
ができる。
In addition, when producing an oxygen adsorption/desorption agent, an axial ligand to which a complex can coordinate is dispersed and fixed in advance in a porous polymer resin, and a complex having oxygen adsorption ability is coordinated to the axial ligand. By bonding, a large amount of complex can be easily dispersed and fixed.

さらに樹脂中の軸配位子に酸素吸着能を有する錯体を配
位結合させる際に、極性溶媒に錯体を溶解させた錯体溶
液に樹脂を浸漬し、該錯体溶液を加熱することにより、
樹脂を膨潤させて錯体を樹脂の内部にまで移動させるこ
とができるので、錯体と軸配位子との配位結合を十分に
行わせることができる。
Furthermore, when coordinating a complex with oxygen adsorption ability to the axial ligand in the resin, the resin is immersed in a complex solution in which the complex is dissolved in a polar solvent, and the complex solution is heated.
Since the resin can be swollen and the complex can be moved into the interior of the resin, sufficient coordination bonding between the complex and the axial ligand can be achieved.

そして酸素吸着能を有する錯体を配位結合により分散固
定した後にこの樹脂を洗浄し、配位結合せずに樹脂に物
理吸着している錯体を除去することにより、生成した酸
素吸脱着剤中の酸素の移動・拡散を円滑にすることがで
き、酸素吸着能をさらに向上させることができる。
After dispersing and immobilizing the complex with oxygen adsorption ability through coordination bonds, this resin is washed to remove the complex that is physically adsorbed to the resin without coordination bonds. The movement and diffusion of oxygen can be made smoother, and the oxygen adsorption ability can be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図は実施例1において製造した酸素吸脱着剤の酸素吸着
能を示すものである。 O2帳鴫量(mg/g) ■
The figure shows the oxygen adsorption ability of the oxygen adsorption/desorption agent produced in Example 1. O2 amount (mg/g) ■

Claims (1)

【特許請求の範囲】 1、多孔質高分子樹脂中に軸配位子がイオン結合または
共有結合により分散固定され、該軸配位子に酸素吸着能
を有する錯体が配位結合により固定されていることを特
徴とする酸素吸脱着剤。 2、前記軸配位子は、酸素吸着能を有する錯体に配位す
ることにより、該錯体の酸素吸着能力が増加する軸配位
子であることを特徴とする請求項1記載の酸素吸脱着剤
。 3、多孔質高分子樹脂中に酸素吸着能を有する錯体を分
散固定して酸素吸脱着剤を製造するにあたり、前記錯体
が配位結合し得る軸配位子を、予め前記多孔質高分子樹
脂中に導入してイオン結合または共有結合により分散固
定し、次いで該軸配位子に前記錯体を配位結合させるこ
とを特徴とする酸素吸脱着剤の製造方法。 4、多孔質高分子樹脂中に酸素吸着能を有する錯体を分
散固定して酸素吸脱着剤を製造するにあたり、前記錯体
を配位結合し得る軸配位子が分散固定された多孔質高分
子樹脂を、前記錯体が極性溶媒に溶解した70〜130
℃の錯体溶液中に浸漬して、該錯体と前記軸配位子とを
配位結合させることを特徴とする酸素吸脱着剤の製造方
法。 5、多孔質高分子樹脂中に酸素吸着能を有する錯体を分
散固定して酸素吸脱着剤を製造するにあたり、多孔質高
分子樹脂中に分散固定された、前記錯体を配位結合し得
る軸配位子に、前記錯体を配位結合させた後、前記多孔
質高分子樹脂に物理吸着している錯体を除去することを
特徴とする酸素吸脱着剤の製造方法。 6、錯体が配位結合し得る軸配位子を、イオン結合また
は共有結合により多孔質高分子樹脂中に導入して分散固
定し、次いで該軸配位子が分散固定された多孔質高分子
樹脂を、酸素吸着能を有する錯体を極性溶媒中に溶解さ
せた錯体溶液中に浸漬し、該錯体溶液を70〜130℃
の温度に加熱して前記多孔質高分子樹脂を膨潤させるこ
とにより、該錯体と前記軸配位子とを配位結合させ、そ
の後、前記極性溶媒及び前記多孔質高分子樹脂に物理吸
着している錯体を除去することを特徴とする酸素吸脱着
剤の製造方法。
[Claims] 1. An axial ligand is dispersed and fixed in a porous polymer resin by ionic or covalent bonds, and a complex having oxygen adsorption ability is fixed to the axial ligand by coordinate bonds. An oxygen adsorbing and desorbing agent. 2. The oxygen adsorption/desorption method according to claim 1, wherein the axial ligand is an axial ligand that increases the oxygen adsorption ability of the complex by coordinating with the complex having oxygen adsorption ability. agent. 3. When manufacturing an oxygen adsorbing/desorbing agent by dispersing and fixing a complex having oxygen adsorption ability in a porous polymer resin, an axial ligand to which the complex can coordinate is preliminarily added to the porous polymer resin. 1. A method for producing an oxygen adsorbing/desorbing agent, which comprises introducing the complex into an axial ligand, dispersing and fixing the complex through ionic or covalent bonds, and then coordinating the complex with the axial ligand. 4. When producing an oxygen adsorbing/desorbing agent by dispersing and fixing a complex having oxygen adsorption ability in a porous polymer resin, a porous polymer in which an axial ligand that can coordinately bond the complex is dispersed and fixed. 70 to 130 in which the complex is dissolved in a polar solvent.
A method for producing an oxygen adsorbing/desorbing agent, which comprises immersing it in a complex solution at 0.degree. C. to form a coordinate bond between the complex and the axial ligand. 5. When producing an oxygen adsorbing/desorbing agent by dispersing and fixing a complex having oxygen adsorption ability in a porous polymer resin, an axis capable of coordinating the complex, which is dispersed and fixed in the porous polymer resin. 1. A method for producing an oxygen adsorbing/desorbing agent, which comprises binding the complex to a ligand and then removing the complex physically adsorbed to the porous polymer resin. 6. An axial ligand to which the complex can coordinately bond is introduced into a porous polymer resin by ionic bonding or covalent bonding and dispersed and fixed therein, and then the porous polymer in which the axial ligand is dispersed and fixed is prepared. The resin is immersed in a complex solution in which a complex having oxygen adsorption ability is dissolved in a polar solvent, and the complex solution is heated at 70 to 130°C.
The complex and the axial ligand are coordinately bonded by heating the porous polymer resin to a temperature of 1. A method for producing an oxygen adsorbing/desorbing agent, the method comprising: removing a complex containing an oxygen adsorbing/desorbing agent.
JP1010288A 1989-01-19 1989-01-19 Oxygen adsorbent Expired - Fee Related JP2934763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1010288A JP2934763B2 (en) 1989-01-19 1989-01-19 Oxygen adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1010288A JP2934763B2 (en) 1989-01-19 1989-01-19 Oxygen adsorbent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10156537A Division JP3084522B2 (en) 1998-06-05 1998-06-05 Method for producing oxygen adsorbent

Publications (2)

Publication Number Publication Date
JPH02191545A true JPH02191545A (en) 1990-07-27
JP2934763B2 JP2934763B2 (en) 1999-08-16

Family

ID=11746119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1010288A Expired - Fee Related JP2934763B2 (en) 1989-01-19 1989-01-19 Oxygen adsorbent

Country Status (1)

Country Link
JP (1) JP2934763B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115869923A (en) * 2022-12-28 2023-03-31 威格科技(苏州)股份有限公司 Oxygen absorbing material, preparation method thereof and prepared adsorbing material capable of adsorbing oxygen and organic solvent simultaneously

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123392A (en) * 1977-04-05 1978-10-27 Hidetoshi Tsuchida Gas adsorbent
JPS5438287A (en) * 1977-08-31 1979-03-22 Hidetoshi Tsuchida Gas adsorbent
JPS5527028A (en) * 1978-08-14 1980-02-26 Hidetoshi Tsuchida Adsorbent for gas
JPS6393789A (en) * 1986-10-08 1988-04-25 Agency Of Ind Science & Technol Schiff base based metal complex compound and oxygen adsorbent and oxygen-separating membrane consisting of said compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123392A (en) * 1977-04-05 1978-10-27 Hidetoshi Tsuchida Gas adsorbent
JPS5438287A (en) * 1977-08-31 1979-03-22 Hidetoshi Tsuchida Gas adsorbent
JPS5527028A (en) * 1978-08-14 1980-02-26 Hidetoshi Tsuchida Adsorbent for gas
JPS6393789A (en) * 1986-10-08 1988-04-25 Agency Of Ind Science & Technol Schiff base based metal complex compound and oxygen adsorbent and oxygen-separating membrane consisting of said compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115869923A (en) * 2022-12-28 2023-03-31 威格科技(苏州)股份有限公司 Oxygen absorbing material, preparation method thereof and prepared adsorbing material capable of adsorbing oxygen and organic solvent simultaneously
CN115869923B (en) * 2022-12-28 2024-03-22 威格科技(苏州)股份有限公司 Oxygen absorbing material, preparation method thereof and prepared adsorption material capable of simultaneously adsorbing oxygen and organic solvent

Also Published As

Publication number Publication date
JP2934763B2 (en) 1999-08-16

Similar Documents

Publication Publication Date Title
Duan et al. Water-resistant porous coordination polymers for gas separation
KR101474579B1 (en) Synthesis, characterization and design of crystalline 3d- and 2d-covalent organic frameworks
JP4116240B2 (en) Intermolecularly bonded transition element complexes for selective adsorption of oxygen
EP1070537A2 (en) Oxygen-selective adsorbents
US5922640A (en) Adsorbent for carbon monoxide
EP0571952A1 (en) Reversible oxygen sorbent compositions
WO2009020745A2 (en) Preparation of functionalized zeolitic frameworks
CN85101183A (en) Select absorption and reclaim organic gas with the faujasite of ion-exchange
JP2015514666A (en) Linker exchange in the zeolite imidazolate framework.
NL2029682B1 (en) Mofs material with high gas adsorbability and preparation method and use thereof
Pal et al. Highly scalable acid-base resistant Cu-Prussian blue metal-organic framework for C2H2/C2H4, biogas, and flue gas separations
Liu et al. Highly Robust Microporous Metal‐Organic Frameworks for Efficient Ethylene Purification under Dry and Humid Conditions
KR100562816B1 (en) Coordination polymer and solvate thereof with porous metal-organic framework
JPH02191545A (en) Oxygen absorbing and desorbing agent and its production
KR101176875B1 (en) Mixed-ligand metal-organic frameworks with large pores
JP3084522B2 (en) Method for producing oxygen adsorbent
JP5196413B2 (en) Adsorption material
JP2535282B2 (en) Method of oxygen separation from oxygen-containing fluid streams
EP1106245A2 (en) Intermolecularly bound transition metal complexes for oxygen-selective adsorption
EP4347114A1 (en) Spherical metal-organic frameworks using alginate
JP3083857B2 (en) Oxygen separating agent and method for producing the same
US5391791A (en) Methods of production of novel molybdenum-sulfide dimers and reactions of the same
KR20100089340A (en) Highly porous metal organic framework and its use for gas storage material and method for manufacturing metal organic framework
WO2023075192A1 (en) Chromium-based organic/inorganic hybrid nanoporous body including fluorine-bearing organic ligand and nitro- or amine-bearing organic ligand
JPH0222700B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees