JPH02191305A - Superconductive magnet - Google Patents

Superconductive magnet

Info

Publication number
JPH02191305A
JPH02191305A JP1067589A JP1067589A JPH02191305A JP H02191305 A JPH02191305 A JP H02191305A JP 1067589 A JP1067589 A JP 1067589A JP 1067589 A JP1067589 A JP 1067589A JP H02191305 A JPH02191305 A JP H02191305A
Authority
JP
Japan
Prior art keywords
coil
magnetic field
current distribution
type current
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1067589A
Other languages
Japanese (ja)
Other versions
JPH0782933B2 (en
Inventor
Shigeki Isojima
茂樹 礒嶋
Toru Okazaki
徹 岡崎
Takahito Masuda
孝人 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Sumitomo Electric Industries Ltd
Original Assignee
Research Development Corp of Japan
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Sumitomo Electric Industries Ltd filed Critical Research Development Corp of Japan
Priority to JP1010675A priority Critical patent/JPH0782933B2/en
Publication of JPH02191305A publication Critical patent/JPH02191305A/en
Publication of JPH0782933B2 publication Critical patent/JPH0782933B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To obtain a superconductive magnet which allows the slope of a generation magnetic field to be adjusted by combining a superconductive coil of coil winding array of costheta type current distribution and that of cos2theta type current distribution. CONSTITUTION:Two sets of coils, namely a two-pole coil 1 of costheta type current distribution and a four-pole coil of cos2theta type current distribution, are provided at the outer periphery of a beam duct 3 of an electronic accumulation ring. Thus, it becomes possible to adjust the generation magnetic field easily, thus achieving control of conduction current to each coil 1, 2 individually or only either one. Therefore, it is possible to obtain a slope n according to a desired synthesized magnetic field within the beam duct 3 and to compensate for an error of magnetic field distribution accompanied by dimensions, etc., of the superconductive magnet properly.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、電子蓄積リングにおけるビーム偏向用の超
伝導マグネットに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a superconducting magnet for beam deflection in an electron storage ring.

[従来の技術] 電子蓄積リングの真空ダクト内を周回する電子ビームに
対し偏向電磁石で偏向させるとき、ビーム軌道の接線方
向に、赤外線からX線の領域にわたる放射光が放出され
る。この放射光は、極めて強力でかつ指向性が良いこと
から、集積回路における微細パターンの焼き付は等の産
業用途での利用価値が高い。
[Prior Art] When an electron beam circulating in a vacuum duct of an electron storage ring is deflected by a deflecting electromagnet, synchrotron radiation ranging from infrared to X-ray is emitted in the tangential direction of the beam trajectory. Since this synchrotron radiation is extremely powerful and has good directivity, it has high utility value in industrial applications such as printing fine patterns on integrated circuits.

このような電子蓄積リングにおける偏向用マグネットに
超電導マグネットを用いた例としては、特公昭61−2
27400号公報に開示されていて、この種の装置では
、超電導マグネットによる発生磁場に所定の勾配が得ら
れるように、放射先取出口のスリット幅及び超電導マグ
ネットの巻線“の配列を調整している。発生磁場の勾配
れは、で定義され、roはビームの軌道半径、Bは磁束
密度である。
An example of using a superconducting magnet as a deflection magnet in such an electron storage ring is the Japanese Patent Publication No. 61-2
27400, and in this type of device, the slit width of the radiation outlet and the arrangement of the windings of the superconducting magnet are adjusted so that a predetermined gradient is obtained in the magnetic field generated by the superconducting magnet. The gradient of the generated magnetic field is defined by , where ro is the orbital radius of the beam and B is the magnetic flux density.

[発明が解決しようとする課題] 従って、−旦、超電導マグネットの巻線を所望の配列に
形成してしまえば、上記勾装置の値は固定され、任意の
値に調整できないといった問題点があった。
[Problems to be Solved by the Invention] Therefore, once the windings of the superconducting magnet are formed in a desired arrangement, the value of the gradient device is fixed and cannot be adjusted to an arbitrary value. Ta.

この発明は、上述した問題点をなくすためになされたも
のであり、発生磁場の勾配を調整可能とした超電導マグ
ネットを提供することを目的とする。
This invention was made to eliminate the above-mentioned problems, and an object thereof is to provide a superconducting magnet in which the gradient of the generated magnetic field can be adjusted.

[課題を解決するための手段] この発明の超電導マグネットは、電子蓄積リングに用い
るビーム偏向用の超電導マグネットであって、C05O
形電流分布の巻線配列の超電導コイルと、cos2θ型
電流分布の巻線配列の超電導コイルとを組み合わせたこ
とを特徴とする。
[Means for Solving the Problems] A superconducting magnet of the present invention is a superconducting magnet for beam deflection used in an electron storage ring, and is a superconducting magnet for beam deflection used in an electron storage ring.
The present invention is characterized by a combination of a superconducting coil with a winding arrangement having a cos2θ type current distribution and a superconducting coil having a winding arrangement with a cos2θ type current distribution.

[作用] 第1図に示すように、cosθ形電流分布の二極コイル
lと、cos2θ形電流分布の超電導イル2との2組の
コイルを、電子蓄積リングのビームダクト3の外周に設
けたことにより、発生磁場の調整が容易となり、請求項
(2)に記載のごとく、各コイル!、2への通電電流を
個別に、もしくは一方のみを制御することにより、ビー
ムダクト3内には所望の勾配になる磁場分布が得られる
。尚、コイルの形状から、第1図では二極コイル1を四
極コイル2の外側に配したが、特にこの構造に限定され
ない。
[Function] As shown in Fig. 1, two sets of coils, a bipolar coil 1 with a cos θ type current distribution and a superconducting coil 2 with a cos 2 θ type current distribution, are provided on the outer periphery of the beam duct 3 of the electron storage ring. This makes it easy to adjust the generated magnetic field, and as described in claim (2), each coil! , 2 individually or by controlling only one of them, a magnetic field distribution having a desired gradient can be obtained in the beam duct 3. Although the two-pole coil 1 is arranged outside the four-pole coil 2 in FIG. 1 due to the shape of the coil, the present invention is not particularly limited to this structure.

[実施例] 以下この発明の一実施例を第2図及び第3図を参照して
説明する。第2図は、電子蓄積リングにおける偏向マグ
ネットを切断してその端面より眺めた断面図、第3図は
、電子蓄積リングにおける偏向マグネットの周方向に沿
って切断したときの断面図である。
[Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 2 and 3. FIG. 2 is a cross-sectional view of the deflection magnet in the electron storage ring as seen from its end surface, and FIG. 3 is a cross-sectional view of the deflection magnet in the electron storage ring taken along the circumferential direction.

3は、電子蓄積リングにおけるビームダクトを示してい
る。四極コイル2(2a、2b、2c、2d)は、ビー
ムダクト3の外周に設けられた絶縁物よりなる巻芯4に
巻回され、更に、この四極コイル2の外周には、コイル
冷却用の冷却チャンネル5を挟んで、絶縁物よりなる巻
芯6と7とが2層に設けられ、それぞれの巻芯6.7に
二極コイルlが巻回される。その際、二極コイルlと、
四極コイル2とは第1図のように、同心で各々の水平レ
ベルが同じになるように設けられる。二極コイルlの外
周には更に冷却チャンネル8が設けられ、そして、最後
に、二極及び四極のコイル1.2の電磁力による線材の
変形を防止するために、冷却チャンネル8の外周を包囲
するように、断面が半円状の補強カラー9 a、 9 
bが設けられ、双方の補強カラー9 a、 9 bは、
ボルト及びナツト10により一体となるように締め付け
られる。尚、補強カラー9 a、 9 bに複数に設け
られた小穴11は、冷却チャンネル8内の冷媒のコンダ
クタンスを良くするために設けられたものである。又、
第3図におけるビームボート12はSOR先取出口であ
り、Qは、ビーム軌道を示している。
3 shows the beam duct in the electron storage ring. The quadrupole coils 2 (2a, 2b, 2c, 2d) are wound around a winding core 4 made of an insulator provided on the outer periphery of the beam duct 3, and furthermore, a coil cooling coil is provided on the outer periphery of the quadrupole coil 2. Winding cores 6 and 7 made of an insulating material are provided in two layers with a cooling channel 5 in between, and a bipolar coil 1 is wound around each winding core 6.7. At that time, the bipolar coil l,
As shown in FIG. 1, the quadrupole coils 2 are installed concentrically and at the same horizontal level. A cooling channel 8 is further provided on the outer circumference of the bipolar coil l, and finally, the outer circumference of the cooling channel 8 is surrounded to prevent deformation of the wire due to the electromagnetic force of the bipolar and quadrupolar coils 1.2. Reinforcement collars 9a, 9 with semicircular cross sections
b is provided, and both reinforcing collars 9 a, 9 b are
They are tightened together with bolts and nuts 10. The plurality of small holes 11 provided in the reinforcing collars 9 a and 9 b are provided to improve the conductance of the refrigerant within the cooling channel 8 . or,
The beam boat 12 in FIG. 3 is the SOR prefetching outlet, and Q indicates the beam trajectory.

上記二極コイル1と、四極コイル2とに対し、それぞれ
個別の電源(不図示)を備え、各コイル1゜2への通電
電流が個別に制御される。
Separate power supplies (not shown) are provided for the two-pole coil 1 and the four-pole coil 2, and the current flowing to each coil 1.degree. 2 is individually controlled.

このように、2組のコイル1.2への通電電流を制御す
ることにより、ビームダクト3内に合成磁場により所望
の勾装置を得ることができろ。又、超電導マグネットの
寸法誤差等に伴う磁場分布の誤差を適切に補正すること
らできる。
In this way, by controlling the currents flowing to the two sets of coils 1.2, a desired gradient device can be obtained within the beam duct 3 by means of a combined magnetic field. Furthermore, errors in the magnetic field distribution due to dimensional errors of the superconducting magnet can be appropriately corrected.

[発明の効果コ 以上説明したように、この発明は、2組のコイルを設け
たので、発生磁場の調整が容易となり、例えば、少なく
とも一方のコイルへの通ff17[!流制御することに
より、ビームダクト内に所望の合成磁場による勾装置を
得ることができ、超電導マグネットの寸法等に伴う磁場
分布の誤差を適切にNli正することができる。
[Effects of the Invention] As explained above, in the present invention, since two sets of coils are provided, it is easy to adjust the generated magnetic field. By controlling the current, a gradient device with a desired composite magnetic field can be obtained in the beam duct, and errors in the magnetic field distribution due to the dimensions of the superconducting magnet can be appropriately corrected by Nli.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の超電導マグネットの構成を示すため
の断面図、第2図は、この発明の一実施例を示す超電導
マグネットを、電子蓄積リングにおける偏向マグネット
を切断して端面から眺めた断面図、第3図は、第2図に
おける超電導マグネットを、電子蓄積リングの周方向に
切断したときの断面図である。 l・・・二極コイル、2・・・四極コイル、3・・・ビ
ームダクト、 6.7・・・巻芯、 8・・・冷却チャンネ ル、 ト。 9 a、 9 b・・・補強カラー、 ボルト及びナラ
FIG. 1 is a cross-sectional view showing the structure of a superconducting magnet of the present invention, and FIG. 2 is a cross-sectional view of a superconducting magnet showing an embodiment of the present invention, as seen from the end surface of a deflection magnet in an electron storage ring. 3 are cross-sectional views of the superconducting magnet shown in FIG. 2 taken in the circumferential direction of the electron storage ring. l... Two-pole coil, 2... Quadrupole coil, 3... Beam duct, 6.7... Winding core, 8... Cooling channel, G. 9 a, 9 b...Reinforcement collar, bolt and oak

Claims (3)

【特許請求の範囲】[Claims] (1)電子蓄積リングに用いるビーム偏向用の超電導マ
グネットであって、cosθ形電流分布の巻線配列の超
電導コイルと、cos2θ型電流分布の巻線配列の超電
導コイルとを組み合わせたことを特徴とする超電導マグ
ネット。
(1) A superconducting magnet for beam deflection used in an electron storage ring, characterized by a combination of a superconducting coil with a winding arrangement having a cos θ type current distribution and a superconducting coil having a winding arrangement having a cos 2 θ type current distribution. superconducting magnet.
(2)上記二つの超電導コイルの電源を2系統として、
少なくとも一方の超電導コイルへの通電電流値を変える
ことにより、所望の磁場分布を得る請求項(1)記載の
超電導マグネット。
(2) Assuming two power sources for the two superconducting coils above,
The superconducting magnet according to claim 1, wherein a desired magnetic field distribution is obtained by changing the value of the current flowing to at least one of the superconducting coils.
(3)cos2θ形電流分布の超電導コイルを、cos
θ形電流分布の超電導コイルの内側に配した請求項(1
)もしくは(2)記載の超電導マグネット。
(3) A superconducting coil with cos 2θ type current distribution, cos
Claim (1) disposed inside a superconducting coil with a θ-shaped current distribution
) or the superconducting magnet described in (2).
JP1010675A 1989-01-19 1989-01-19 Superconducting magnet Expired - Lifetime JPH0782933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1010675A JPH0782933B2 (en) 1989-01-19 1989-01-19 Superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1010675A JPH0782933B2 (en) 1989-01-19 1989-01-19 Superconducting magnet

Publications (2)

Publication Number Publication Date
JPH02191305A true JPH02191305A (en) 1990-07-27
JPH0782933B2 JPH0782933B2 (en) 1995-09-06

Family

ID=11756835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1010675A Expired - Lifetime JPH0782933B2 (en) 1989-01-19 1989-01-19 Superconducting magnet

Country Status (1)

Country Link
JP (1) JPH0782933B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153733A (en) * 2014-02-19 2015-08-24 株式会社東芝 Superconducting magnet device and charged particle accelerator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60136148A (en) * 1983-12-23 1985-07-19 Shimadzu Corp Magnetic field scanning type mass spectrometer
JPS61227400A (en) * 1985-03-28 1986-10-09 ケルンフオルシユンクスツエントルム・カールスルーエ・ゲーエムベーハー Superconductive magnet system for particle accelerator of synchrotron radiation source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60136148A (en) * 1983-12-23 1985-07-19 Shimadzu Corp Magnetic field scanning type mass spectrometer
JPS61227400A (en) * 1985-03-28 1986-10-09 ケルンフオルシユンクスツエントルム・カールスルーエ・ゲーエムベーハー Superconductive magnet system for particle accelerator of synchrotron radiation source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153733A (en) * 2014-02-19 2015-08-24 株式会社東芝 Superconducting magnet device and charged particle accelerator

Also Published As

Publication number Publication date
JPH0782933B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
JP4445973B2 (en) Undulator and method of operating the undulator
JPH04273409A (en) Superconducting magnet device; particle accelerator using said superconducting magnet device
JPS63188908A (en) Magnet device equipped with warped coil winding
JP4937196B2 (en) Superconducting coil device
US7619375B2 (en) Electromagnetic wave generating device
CN111048277A (en) ECR ion source superconducting magnet structure
JPH02191305A (en) Superconductive magnet
US10726986B2 (en) Apparatus and method for magnetic field compression using a toroid coil structure
JPH11238600A (en) Particle beam therapy device
JP2652703B2 (en) Deflection magnet for synchrotron radiation ring
CN211016663U (en) ECR ion source superconducting magnet structure
JP2511990B2 (en) Deflection magnet and its excitation device
KR930000388B1 (en) Magnetic shunt deflection yokes
JPS58186915A (en) Superconductive magnet
JP5362045B2 (en) Superconducting coil device
US3805202A (en) Betatron electromagnet
JP3097993B2 (en) Magnet structure for superconducting wiggler
KR0147040B1 (en) 6pole electromagnet of accelerator
Ricci et al. Design of the 16 T bending dipole for the Future Circular Collider
JPH04345800A (en) Deflecting electromagnet
JPH07176400A (en) System for feeding electricity to electromagnet
JPS63224230A (en) X-ray exposure device
JP2001043998A (en) Electromagnet, circular accelerator using it and circular accelerator system
JPS63292607A (en) Sloped magnetic field coil
Ijspeert et al. Design of corrector magnets for the LHC